

HERBAL NANOTHERAPY FOR DIABETES

Editors:

Prashant Upadhyay
Sukirti Upadhyay

Bentham Books

Herbal Nanotherapy for Diabetes

Edited by

Prashant Upadhyay

Department of Pharmaceutics

School of Pharmaceutical Sciences

Faculty of Pharmacy, IFTM University

Moradabad, Uttar Pradesh, India

&

Sukirti Upadhyay

Department of Pharmacognosy

School of Pharmaceutical Sciences

Faculty of Pharmacy, IFTM University

Moradabad, Uttar Pradesh, India

J gtdcrPcpqj gtc{ 'hqt 'F kcdgvgu

Editors: Prashant Upadhyay & Sukirti Upadhyay

ISBN (Online): 979-8-89881-108-2

ISBN (Print): 979-8-89881-109-9

ISBN (Paperback): 979-8-89881-110-5

© 2025, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore, in collaboration

with Eureka Conferences, USA. All Rights Reserved.

First published in 2025.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.org.

Usage Rules:

1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
2. Your rights under this License Agreement will automatically terminate without notice and without the

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.

No. 9 Raffles Place
Office No. 26-01
Singapore 048619
Singapore
Email: subscriptions@benthamscience.net

CONTENTS

FOREWORD	i
PREFACE	ii
LIST OF CONTRIBUTORS	iii
CHAPTER 1 INTRODUCTION TO HERBAL NANO THERAPY: UNDERSTANDING THE SCIENCE	1
<i>Prashant Upadhyay, Shipra Sharma, Reetika Rawat, Tapasvi Gupta, Durga Prasad, Divya Sharma, Sukirti Upadhyay cpf Arti Gupta</i>	
INTRODUCTION	2
TRANSFORMING DIABETIC CARE WITH NANOTECHNOLOGY	3
Nanocarriers in Phytopharmaceuticals	4
<i>Phytopharmaceutical in Diabetes Management</i>	4
<i>Nanocarriers and Diabetes Treatment</i>	4
NANOCARRIERS DRUG DELIVERY SYSTEM BASED ON HERBAL MEDICINES	6
Lipid Nanocarriers Based on Vesicular System	7
<i>Liposomes</i>	7
<i>Phytosomes</i>	8
<i>Niosomes</i>	8
<i>Transfersomes</i>	8
Non-vesicular Nanocarriers	9
<i>SLN for Natural Plant-based Therapies</i>	9
<i>Nanostructured Lipid Carriers</i>	10
<i>Nanoemulsion</i>	10
<i>Self-nano-emulsifying Drug Delivery System</i>	11
Metal Nanoparticle	11
<i>Silver Nanoparticles</i>	11
<i>Zinc Nanoparticles</i>	12
<i>Gold Nanoparticles</i>	12
UNLOCKING THE POTENTIAL OF HERBS WITH NANOCARRIER TECHNOLOGY	13
Improved Delivery Mechanism	13
Higher Efficiency of Phytochemicals	13
Improved Shelf Life and Stability	13
Biosynthesis of Nanoparticles	14
Nanocarriers' Application in Targeting Specific Health Conditions	14
Customized Herbal Medicine	14
OVERCOMING FORMULATION CHALLENGES IN HERBAL MEDICINE: BRIDGING TRADITION AND MODERN SCIENCE	14
Challenges of Herbal and Allopathic Drug Interactions	15
Quality Control Challenges in Herbal Drug Development	16
<i>Challenges in Harvesting and Processing of Herbal Materials</i>	16
Challenges in Regulating and Ensuring the Safety of Herbal Remedies	18
Challenges in Evaluating Herbal Medicines Through Clinical Studies	19
CONCLUSION	19
ABBREVIATIONS	20
ACKNOWLEDGEMENTS	20
REFERENCES	20
CHAPTER 2 THE EPIDEMIC OF DIABETES: CHALLENGES AND CURRENT TREATMENTS	28

,Ramesh Kumar Gupta, Mandeep Kumar Gupta, Pradeep Singh, Rajkishor Pandey
Sukirti Upadhyay cpf Prashant Upadhyay

INTRODUCTION	29
EPIDEMIOLOGY OF DIABETES	29
Global and Regional Prevalence	29
Risk Factors and Demographic Trends	30
Socio-Economic Impact	31
CHALLENGES IN DIABETES MANAGEMENT	31
CURRENT TREATMENTS FOR DIABETES	32
Insulin and Insulin Preparations	32
Oral Antidiabetic Agents	33
<i>Biguanides</i>	33
<i>Sulfonylureas</i>	34
<i>Thiazolidinediones (TZDs)</i>	34
<i>Dipeptidyl Peptidase-4 Inhibitors</i>	35
<i>Glucagon like Peptide-1 (GLP-1) Analogs</i>	35
<i>Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors</i>	35
Lifestyle Interventions	36
Diabetes Self-Management Education (DSME)	37
EMERGING TREATMENTS AND INNOVATIONS	37
Nanocarrier-Based Oral Hypoglycemic Agents	38
Artificial Pancreas Systems	39
Continuous Glucose Monitor (CGM)	40
CRISPR-Cas9 Gene Editing	40
Smart Insulin Patches	41
Oral Insulin and GLP-1 Receptor Agonists	41
Insulin Pump	41
Digital Health Platforms and Applications	42
FUTURE DIRECTIONS	43
CONCLUSION	43
REFERENCES	44
CHAPTER 3 EXPLORING HERBAL REMEDIES: TRADITIONAL WISDOM MEETS MODERN SCIENCE	52
Deepali D. Bhandari, Komal S. Hatkar, Sharayu P. Rathod, Ramanlal R. Kachave, Sunil V. Amrutkar cpf Dattatraya M. Shinkar	
INTRODUCTION	53
EVALUATING THE SAFETY OF HERBAL REMEDIES	55
Herbal Medications and their Mixes	55
The Possible Toxicity and Safety of Herbal Treatments	56
Understanding the Utilization of Herbal Medicines and Anticipating Side Effects and Toxicities	57
DRUG-HERBAL COMBINATIONS	60
HERBAL MEDICINE'S EFFECTIVENESS	62
The Long History of using Herbal Remedies as Medicine	62
THE STUDY OF EPIDEMIOLOGY	63
THE CAUSES OF DIABETES	64
TYPES OF DIABETES	65
IDENTIFICATION OF DIABETES MELLITUS	65
THE PATHOGENESIS OF DIABETIC MELLITUS	65
DRUG USED FOR DIABETES	66

TRADITIONAL HERBAL ANTI-DIABETIC DRUGS	67
DIABETIC MEDICATIONS	67
HERBAL TREATMENT	67
Conventional Herbal Remedies for Diabetes	68
<i>Allium Sativum</i>	68
<i>Aloe borbadensis</i>	69
<i>Azadirachta indica</i>	69
<i>Brassica juncea</i>	69
<i>Carica papaya</i>	69
<i>Catharanthus roseus</i>	69
<i>Coriandrum sativum</i>	70
<i>Eugenia jambolana</i>	70
<i>Gymnema sylvestre</i>	70
<i>Mangifera indica</i>	70
<i>Momordica charantia</i>	70
<i>Ocimum sanctum</i>	71
<i>Tinospora cardifolia</i>	71
VITAMINS AND THEIR ANTIDIABETIC PROPERTIES	71
Vitamin D and their Antidiabetic Properties	71
Vitamin E and their Antidiabetic Properties	72
Vitamin C and their Antidiabetic Properties	73
HERBAL MARKETED FORMULATION FOR DIABETIC MELLITUS	74
Aegle marmelos	74
<i>Allium cepa</i>	74
THE PROBLEMS WITH HERBAL REMEDIES IN INDIA	75
THE PROSPECTS FOR USING HERBAL REMEDIES FOR TYPE II DIABETES	76
CONCLUSION	76
REFERENCES	77
CHAPTER 4 NANOTECHNOLOGY AS A MEDICINE: A BRIEF OVERVIEW	84
<i>Sourajyoti Goswami, Pratibha Bhowmick, Shouvik Kumar Nandy, Sukirti Upadhyay, Prashant Upadhyay, Sandeep Kumar Sonkar cpf Mithun Bhowmick</i>	
INTRODUCTION	85
Nanotechnology in Medicine	85
Historical Success	86
NANOMATERIAL BASICS: CATEGORIES OF NANOPARTICLES	87
Organic Nanoparticles	87
Inorganic Nanoparticles	87
<i>Metal Based</i>	87
<i>Carbon-based</i>	88
UNFOLD OF NANOROBOTS	89
USAGE OF NANOSENSORS	89
Gas Leak Detection	90
Glucose Monitoring	91
Asthma Identification	91
Astronaut's Diagnosis	91
NANOMEDICINE MECHANISM	92
Controlled Drug Deliveries	93
Liposomes	94
Dendrimers	94
Nanoparticles	95

Solid-Lipid Nanoparticles	95
Nanofibers	95
Carbon Nanotubes	96
UTILITIES IN HEALTH	96
Cancer Detection and Treatment	96
Cardiovascular Problems	97
Neurological Disorders	97
Fight against Various Infectious Diseases	98
ADVANTAGES AND DISADVANTAGES OF NANOMEDICINES	99
Health Risks, Environmental Impacts, and Ethical Concerns	101
RECENT SUCCESS STORIES	102
Working Case Scenario	102
Recent Research and Developments in Nanotechnology	103
FUTURE SCOPE OF NANOMEDICINES WITH NEW GENERATION DEVELOPMENT	104
Recent Technologies Used in Nanotechnologies	105
Metal-organic Frameworks (MOFs) as a Novel Technological Advancement	105
Potential Impact on Healthcare	105
CONCLUSION	106
REFERENCES	107
CHAPTER 5 HERBAL NANO THERAPY: MECHANISM OF ACTION	112
<i>Rohini Kharwade, Nikhil Hatwar cpf Nilesh Mahajan</i>	
INTRODUCTION	112
Need for Herbal Nanotherapy	114
TECHNIQUE USED FOR FORMULATION	118
High-Pressure Homogenization (HPH)	118
Complex Coacervation Method	119
Co-precipitation Method	120
Salting-out Method	120
Solvent Displacement Method	121
Solvent Emulsification–Diffusion Method	123
Self-assembly Method	123
NANOCARRIERS FOR HERBAL THERAPY	123
Liposomes Nanocarriers	123
Niosomes Nanocarriers	125
Phytosomes Nanocarriers	125
Ethosomes Nanocarriers	126
Micelles	126
Metallic Nanoparticles	127
CHARACTERIZATION TECHNIQUES OF HERBAL NANOFORMULA- TIONS	127
Spectroscopic Analysis	128
Surface Morphology and Particle Size Characterization	128
Fourier Transform Infrared Spectroscopy (FT-IR)	129
X-ray Diffraction (XRD)	130
Dynamic Light Scattering	131
Zeta Potential	131
NANOTOXICITY	132
FUTURE PROSPECTS	134
CONCLUSION	136
ACKNOWLEDGEMENTS	136
REFERENCES	136

CHAPTER 6 FORMULATION AND DELIVERY OF HERBAL NANOCARRIERS	144
<i>Nishant B. Chopade, Prashant K. Deshmukh, Sukirti Upadhyay, Prashant Upadhyay cpf Raju R. Thengen</i>	
INTRODUCTION	144
Overview of Diabetes Mellitus	144
Current Treatment Strategies and their Limitations	145
Role of Herbal Medicine in Diabetes Management	147
Advantages of Synthetic Drugs	148
Introduction to Nanotechnology in Drug Delivery	149
HERBAL COMPOUNDS FOR DIABETES	149
Selection of Antidiabetic Herbs	149
Criteria for Herb Selection	152
<i>Glycemic Control</i>	153
<i>Anti-inflammatory and Antioxidant Properties</i>	154
<i>Lipid Metabolism Regulation</i>	154
<i>Weight Management Support</i>	154
EXTRACTION AND ISOLATION OF COMPOUNDS	155
Extraction Techniques	155
Isolation of Compounds	156
FORMULATION TECHNIQUES AND NANOCARRIER SYSTEMS FOR HERBAL DELIVERY	156
Overview of Nanocarriers	156
<i>Lipid Nanocarriers Based on Vesicular System</i>	157
<i>Non-vesicular Lipid Nanocarriers</i>	162
<i>Polymeric Nanocarriers</i>	164
<i>Inorganic Nanocarriers</i>	166
<i>Carbon Nanotubes</i>	167
DRUG LOADING	167
Methods for Preparing and Drug Loading of Herbal Nanocarriers	167
<i>Solvent Evaporation Method</i>	167
<i>Emulsification-Solvent Diffusion Method</i>	168
<i>Nano-precipitation Technique</i>	168
<i>High-Pressure Homogenization Method</i>	168
<i>Supercritical Fluid Extraction Method</i>	168
<i>Spray Drying Method</i>	168
<i>Salting Out Method</i>	169
<i>Nanoprecipitation Method</i>	169
<i>Coacervation Method</i>	169
<i>Ionic Gelation Technique</i>	170
CHARACTERIZATION OF HERBAL NANOCARRIER	170
CHALLENGES IN HERBAL NANOCARRIER DEVELOPMENT AND REGULATORY HURDLES	172
FUTURE DIRECTIONS	173
CONCLUSION	174
REFERENCES	174
CHAPTER 7 CLINICAL EVIDENCE: EFFICACY AND SAFETY OF HERBAL NANO THERAPY	186
<i>Surya Prakash Dwivedi, Neeraj Dwivedi, Shweta Singh, Sukirti Upadhyay cpf Prashant Upadhyay</i>	
INTRODUCTION	187

IMPORTANCE OF ASSESSING EFFICACY AND SAFETY	187
OBJECTIVES AND SCOPE OF THE CHAPTER	189
FUNDAMENTALS OF HERBAL NANO THERAPY	189
Basics of Nanotechnology in Herbal Medicine	189
Types of Nanoformulations and Their Mechanisms	190
BIOACTIVITY ENHANCEMENT OF HERBAL COMPOUNDS THROUGH NANOTECHNOLOGY	191
HERBAL NANO THERAPY: REVOLUTIONIZING NATURAL REMEDIES	192
THE EFFECTIVENESS OF HERBAL NANO-THERAPY	194
THERAPEUTIC APPLICATIONS AND CONDITIONS TREATED	194
COMPARATIVE ANALYSIS	196
Herbal Nano Therapy vs. Conventional Herbal Treatments	196
CASE STUDIES	197
Success Stories and Examples	197
OUTCOMES AND PATIENT RESPONSE	197
SAFETY OF HERBAL NANO THERAPY	198
Long-term Safety Considerations	199
Regulatory and Ethical Considerations	200
Ethical Issues in Clinical Research	201
CHALLENGES AND LIMITATIONS OF HERBAL NANO THERAPY	201
Challenges in Standardization and Reproducibility	203
Regulatory and Implementation Issues: Barriers to Approval and Market Adoption	204
FUTURE PERSPECTIVES ON HERBAL NANO THERAPY	205
Technological Developments in Nanoformulation	205
Potential for New Therapeutic Indications	206
CLINICAL PROOF OF HERBAL THERAPIES BASED ON NANOTECHNOLOGY	207
Recommendations for Future Research	210
Ideas for Better Research Designs and Techniques	211
CONCLUDING REMARKS	212
Assessment of Efficacy and Safety	212
Observations about the Prospects of Herbal Nano-therapy in Clinical Settings	213
REFERENCES	213
CHAPTER 8 INTEGRATING HERBAL NANO SOLUTIONS INTO DIABETES CARE	
PLANS	216
<i>Arvind Raghav, Vijay Sharma, Km. Anjali, Ashish Singh Chauhan cpf Arif Nur Muhammad Ansori</i>	
INTRODUCTION	217
Pathophysiology	217
NANOTECHNOLOGY IN MEDICINE	219
HERBAL REMEDIES FOR DIABETES	219
HERBAL NANO SOLUTIONS	221
Advantages of Herbal Nanoformulations	221
<i>Improved Bioavailability and Absorption of Active Compounds</i>	221
<i>Targeted Delivery to Specific Tissues or Cells for Reducing Side Effects</i>	221
<i>Sustained Release of Herbal Ingredients for Prolonged Therapeutic Effects</i>	222
TECHNIQUES FOR NANOPARTICLE SYNTHESIS	222
Top-Down Approaches	222
<i>Milling</i>	222
<i>Lithography</i>	222
Bottom-Up Approaches	223

<i>Sol-Gel Synthesis</i>	223
<i>Co-Precipitation</i>	223
<i>Green Synthesis Using Plant Extracts</i>	223
CHARACTERIZATION OF NANOPARTICLES	223
KEY HERBS IN NANOFORMULATIONS FOR DIABETES	224
INTEGRATING HERBAL NANO SOLUTIONS INTO DIABETES CARE PLANS	225
Individualized Treatment Plans	225
Enhanced Efficacy through Targeted Delivery	225
Improved Bioavailability	226
Monitoring and Adjusting Treatment	226
MULTIDISCIPLINARY APPROACHES TO DIABETES MANAGEMENT	226
FUTURE PERSPECTIVES AND CHALLENGES	227
Regulatory and Ethical Considerations	227
CONCLUSION	228
REFERENCES	229
CHAPTER 9 FUTURE PERSPECTIVES: ADVANCEMENTS AND CHALLENGES IN HERBAL NANO THERAPY	233
<i>Mukesh Kumar Singh, Ritesh Kumar Tiwari, Ritika Saxena, Sunil Kumar Tiwari and Lalit Singh</i>	
INTRODUCTION	234
IMPORTANCE OF NANO CARRIERS IN NATURAL TREATMENTS	235
NANOTECHNOLOGY APPROACHES AS ADVANCED THERAPEUTIC DELIVERY SOLUTIONS	236
METHODS	237
Method of High-Pressure Homogenization	237
Method of Coacervate Formation	237
Coprecipitation Technique	237
Saltingout Technique	237
Nanoprecipitation Technique or Liquid Extraction Technique	237
Emulsification Solvent Displacement Method	237
CLASSIFICATION OF NANO-PHARMACEUTICALS	238
NANOFORMULATIONS OF HERBAL MEDICINES AND NATURAL COMPOUNDS	238
Polymer Nanogels/Nanosuspensions	239
Carbon Nanotubes/Nanofibers	239
Polymeric Nanomicelles	239
Polymeric Nanoliposomes	239
EVALUATION OF NANOPARTICLES	240
Thermogravimetric Analysis	240
Particle Dimensions, Polydispersity Index	240
Transmission Electron Microscopy (TEM)	240
Dynamic Light Scattering	240
Nuclear Magnetic Resonance (NMR)	241
Investigation of Recovery and Encapsulation Performance	241
Stability Investigations	241
<i>Ultraviolet-visible Spectroscopy</i>	241
<i>Surface Plasmon Resonance</i>	241
<i>Zeta Potential</i>	242
<i>Transmission Electron Microscopy</i>	242
RECENT DEVELOPMENT	242
DEVELOPMENT CHALLENGES	243

Formulation Difficulties	243
Large-Scale Production Issues	243
Regulatory Hurdles	243
Toxicity Issues	243
Stability Challenges	244
CONCLUSION	244
FUTURE PERSPECTIVES	244
ACKNOWLEDGMENTS	245
REFERENCES	245
SUBJECT INDEX	285

FOREWORD

Diabetes, a complex and multifactorial disease, has become a major public health concern worldwide. The increasing prevalence of diabetes, coupled with the limitations and side effects of conventional treatments, has necessitated the exploration of innovative and complementary approaches to diabetes management.

Herbal medicine, with its rich history and diverse array of bioactive compounds, has emerged as a promising adjunctive therapy for diabetes. However, the poor bioavailability and limited solubility of herbal extracts have hindered their therapeutic efficacy.

The integration of herbal medicine with nanotechnology has revolutionized the field of drug delivery research focusing on diabetes, enabling the development of herbal nanoparticles with improved bioavailability, targeted delivery, and controlled release. Herbal nanotherapy has shown tremendous promise in enhancing the therapeutic efficacy of herbal extracts while minimizing their side effects.

This book provides a comprehensive and authoritative overview of herbal nanotherapy for diabetes, covering the principles, design, and development of herbal nanoparticles, as well as their preclinical and clinical evaluation. The contributors, renowned experts in their fields, have meticulously compiled the latest research and developments in this rapidly evolving area.

I am confident that this book will serve as a valuable resource for researchers, clinicians, and students interested in the field of herbal nanotherapy and its applications in diabetes management. It is my hope that this work will inspire further research and innovation, ultimately leading to the development of more effective and safer treatments for diabetes.

Sincerely,

Jayachandra Babu Ramapuram
Harrison College of Pharmacy
Auburn University
Auburn, AL 36849, USA

PREFACE

This book aims to provide a comprehensive overview of herbal nanotherapy for diabetes, covering the principles, design, and development of herbal nanoparticles, as well as their preclinical and clinical evaluation. Diabetes, a chronic and debilitating metabolic disorder, has become a global health concern, affecting millions of people worldwide. Despite significant advances in conventional treatments, diabetes management remains a challenging task, with many patients experiencing inadequate glycemic control, side effects, and compromised quality of life.

In recent years, herbal medicine has gained significant attention as a complementary or alternative approach to managing diabetes. The rich biodiversity of medicinal plants offers a vast array of bioactive compounds with potential antidiabetic properties. However, the poor bioavailability, limited solubility, and lack of targeting of these herbal extracts have hindered their therapeutic efficacy.

Nanotechnology has emerged as a powerful tool to overcome these limitations, enabling the development of herbal nanoparticles with improved bioavailability, targeted delivery, and controlled release. Herbal nanotherapy, a fusion of herbal medicine and nanotechnology, has shown tremendous promise in enhancing the therapeutic efficacy of herbal extracts while minimizing their side effects.

We hope that this work will serve as a valuable resource for researchers, clinicians, and students interested in the field of herbal nanotherapy and its applications in diabetes management. This book also explains the burning metabolic disorder, diabetes, and its curative aspects. The use of phytochemicals in diabetes care is well documented in this book. The nanotherapeutic approach in the efficient delivery of phytochemicals has been overviewed and the mechanism of study is also explained. So, this book paved the way for overcoming challenges and advancements of nano therapy in diabetes.

Prashant Upadhyay
Department of Pharmaceutics
School of Pharmaceutical Sciences
Faculty of Pharmacy, IFTM University
Moradabad, Uttar Pradesh, India

&

Sukirti Upadhyay
Department of Pharmacognosy
School of Pharmaceutical Sciences
Faculty of Pharmacy, IFTM University
Moradabad, Uttar Pradesh, India

List of Contributors

Arti Gupta	Department of Pharmacy, Shri Ram Murti Smarak College of Engineering and Technology, Bareilly, India
Arvind Raghav	Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
Ashish Singh Chauhan	Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
Arif Nur Muhammad Ansori	Postgraduate School, Universitas Airlangga, Surabaya, Indonesia
Durga Prasad	School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
Divya Sharma	Department of Pharmacy, Shri Ram Murti Smarak College of Engineering and Technology, Bareilly, India
Deepali D. Bhandari	Department of Pharmaceutical Chemistry, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India
Dattatraya M. Shinkar	Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra, India
Komal S. Hatkar	Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra, India
Km. Anjali	Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India
Lalit Singh	JPM College of Pharmacy, Bareilly, India
Mandeep Kumar Gupta	Department of Pharmaceutical Chemistry, Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad, Uttar Pradesh, India
Mithun Bhowmick	Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
Mukesh Kumar Singh	Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India
Nikhil Hatwar	Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy (DBCOP), Besa, Nagpur, MS, India
Nilesh Mahajan	Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy (DBCOP), Besa, Nagpur, MS, India Department of Pharmaceutics, Datta Meghe College of Pharmacy, Sawangi, Wardha, MS, India
Nishant B. Chopade	Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist – Buldhana-443101. (M.S.), India
Neeraj Dwivedi	Council of Industrial Innovation and Research, Sector-6, Noida, Uttar Pradesh, India
Prashant Upadhyay	Department of Pharmaceutics, School of Pharmaceutical Science, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India
Pradeep Singh	Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debra Tabor, Ethiopia

Pratibha Bhowmick	Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
Prashant K. Deshmukh	Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist – Buldhana-443101. (M.S.), India
Reetika Rawat	Department of Pharmacy, Shri Ram Murti Smarak College of Engineering and Technology, Bareilly, India
Ramesh Kumar Gupta	Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh, India
Rajkishor Pandey	Department of Surgery, University of Connecticut Health Center, Farmington, CT-06030, USA
Rohini Kharwade	Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy (DBCOP), Besa, Nagpur, MS, India
Ramanlal R. Kachave	Department of Pharmaceutical Chemistry, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India
Raju R. Thengle	Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist – Buldhana-443101. (M.S.), India
Ritesh Kumar Tiwari	Department of Pharmacy, Shri Ram Murti Smarak, College of Engineering and Technology, Bareilly, India
Ritika Saxena	Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India
Shipra Sharma	Department of Pharmacy, Shri Ram Murti Smarak College of Engineering and Technology, Bareilly, India
Sukirti Upadhyay	Department of Pharmacognosy, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India
Sharayu P. Rathod	Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra, India
Sunil V. Amrutkar	Department of Pharmaceutical Chemistry, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India
Sourajyoti Goswami	Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
Shouvik Kumar Nandy	Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
Sandeep Kumar Sonkar	Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
Surya Prakash Dwivedi	Council of Industrial Innovation and Research, Sector-6, Noida, Uttar Pradesh, India
Shweta Singh	Council of Industrial Innovation and Research, Sector-6, Noida, Uttar Pradesh, India
Sunil Kumar Tiwari	Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India
Tapasvi Gupta	School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
Vijay Sharma	Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India

CHAPTER 1

Introduction to Herbal Nano Therapy: Understanding the Science

**Prashant Upadhyay^{1,*}, Shipra Sharma², Reetika Rawat², Tapasvi Gupta³,
Durga Prasad³, Divya Sharma², Sukirti Upadhyay⁴ and Arti Gupta²**

¹ *Department of Pharmaceutics, School of Pharmaceutical Science, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India*

² *Department of Pharmacy, Shri Ram Murti Smarak, College of Engineering and Technology, Bareilly, India*

³ *School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India*

⁴ *Department of Pharmacognosy, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India*

Abstract: Herbal medicines have served humanity for numerous generations all across the world. Current methods in phytochemical and phytopharmacological sciences base the clinical applicability of numerous medicinal plants on the composition of active compounds and how much of these compounds are present in samples. Numerous therapeutic compounds such as flavonoids, tannins along terpenoids exist as water-soluble substances yet they have limited potential for absorption. Multiple barriers prevent these compounds from penetrating cell membranes or taking absorption or crossing cell membrane barriers because of their large molecular size and poor absorption and inability to cross cell membranes. This causes them to have low bioavailability and reduced efficacy. Plant extracts fail to enter clinical practice due to these circumscribing factors. Researchers have extensively recommended using nanotechnology to overcome the obstacles related to herbal medicine delivery. Nanoscale technology increases the efficacy of plant extracts by reducing the amount of administration required while reducing side effects and producing therapeutic advantages. Nanocarriers maintain active components at their best concentrations during therapy while guiding them to specific destinations. Treatment methods that exist in the conservative healthcare system typically do not achieve these standards. This section evaluates both nanotechnology principles and their use in herbal drug delivery systems. The drug delivery system using herbal nanotechnology remains essential for diabetes management because polymeric and lipid nanoparticles, liposomes, dendrimers, and niosomes show superior performance than traditional oral hypoglycaemic agent treatments.

*** Corresponding author Prashant Upadhyay:** Department of Pharmaceutics, School of Pharmaceutical Science, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India; E-mail: p23upadhyay@yahoo.com

Keywords: Diabetes mellitus, Herbal nanocarrier system, Liposomes, Polymeric nanoparticles, Solid lipid nanoparticles.

INTRODUCTION

Medicinal plants have been leveraged for their therapeutic benefits since the beginning of human civilization; potential uses for several plant parts have been widely recognized, and they are also considered to have fewer undesirable effects relative to chemically synthesized drugs, therefore holding a crucial position in healthcare [1]. The introduction of modern scientific methods like nanotechnology in recent years has altered the delivery and potentiality of phytopharmaceuticals. Nanotechnology, the design of materials at the nanoscale level has opened new frontiers to elevate the bioavailability, stability, and target specificity of plant-based medicine [2]

A prime example of how useful this symbiosis is in the context of a chronic condition like diabetes mellitus, where an imbalance in the blood glucose levels is prevalent owing to a lack of insulin synthesis or utilize it optimally. India, often referred to as the “diabetes capital of the world” with >61 million affected individuals underscores the necessity for a better alternative [3]. Biologically active components such as flavonoids, alkaloids, phenolics, and tannins are known for their antidiabetic properties and medicinal plants have traditionally been used to help control diabetes. They work by stimulating the secretion of insulin from pancreatic cells, blocking intestinal absorption of glucose, and modulating metabolic pathways. Nonetheless, conventional plant-based therapies have limitations such as poor solubility and absorption, which limit their therapeutic activity [4].

The nanotechnology-based delivery system has been developed for the beneficial action of these bioactive compounds by providing maximum absorption and stability which in turn increases their effectiveness in maintaining glucose levels and better sensitivity towards insulin. Herbal nano therapy is a potential treatment that reduces complications of diabetes therapies and it offers a new optimized addition to conventional therapies by trapping those compounds into nanoparticles [5, 6]. Nanotechnology application in phytopharmaceuticals extends beyond diabetes to the behavior and treatment of many diseases including cancer, cardiovascular, neurodegenerative, and autoimmune diseases. However, diabetes is only one avenue, the application of nanotechnology in phytopharmaceuticals covers other diseases as well. The targeted delivery is a particularly different therapy as different strategies of nano-based drug delivery systems have been already approved by regulatory authorities like the FDA. This guarantees that the active compound of the plant extract is stable during transport in the body and

controlled release from nanocarriers at the action site, improving the treatment efficiency [7].

Herbal nanotherapy continues to face multiple obstacles that prevent it from reaching its complete potential. Achieving consistent therapeutic results is complicated by the complex nature of plant-based compounds and variable raw material quality. Active phytoconstituents found in herbal medicines may interfere with the metabolism or therapeutic effectiveness of synthetic drugs and thus create potential risks during treatment [8]. Resolving quality control and regulatory concerns about herbal medicine contamination from heavy metals and synthetic drugs is essential for ensuring these products remain safe and effective. The field of herbal nanotherapy depends on the standardization of herbal medicines through proper identification and collection practices to resolve current challenges [9].

Herbal nanotherapy unites traditional medicine practice and contemporary scientific methods to boost medicinal plant treatment capabilities. Nanotechnology enables herbal compounds to achieve better bioavailability and stability while ensuring controlled release and safeguarding them against gastrointestinal damage. Nanotechnology-based herbal therapy shows potential for treating long-term conditions such as diabetes which requires continuous management. Through Nano encapsulation techniques such as liposomes, dendrimers, and polymeric nanoparticles active plant compounds achieve increased solubility and absorption rates which enhance their pharmacological effects and minimize toxicity levels. This innovation resolves herbal medicine issues by delivering safer treatment options while establishing standardized phytopharmaceutical products that blend traditional methods with modern scientific advancements [10].

TRANSFORMING DIABETIC CARE WITH NANOTECHNOLOGY

Medicinal plants provide phytopharmaceuticals that have served global healthcare needs for centuries since healthcare providers and patients value their therapeutic advantages and reduced side effects over traditional medications. Modern drug delivery technology such as nanotechnology can greatly enhance the efficacy of phytopharmaceuticals when these are developed through scientific and methodical methods. This approach leads to improved patient adherence while simultaneously increasing bioavailability and guaranteeing precise delivery of the active compound [11].

CHAPTER 2

The Epidemic of Diabetes: Challenges and Current Treatments

**Ramesh Kumar Gupta^{1,*}, Mandeep Kumar Gupta², Pradeep Singh³,
Rajkishor Pandey⁴, Sukirti Upadhyay⁵ and Prashant Upadhyay⁶**

¹ Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh, India

² Department of Pharmaceutical Chemistry, Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh, India

³ Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debra Tabor, Ethiopia

⁴ Department of Surgery, University of Connecticut Health Center Farmington CT-06030 USA

⁵ Department of Pharmacognosy, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India

⁶ Department of Pharmaceutics, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India

Abstract: Diabetes is a crucial health issue affecting people all over the world due to its increasing rates and huge socio-economic impact. This chapter discusses the epidemiology of diabetes by indicating that both Type-I and Type-II diabetes cases are on a sharp rise globally. The multifactorial nature of the epidemics and their susceptibility is presented in terms of genetic, behavioral, and environmental factors that have contributed to the pervasive nature of the illness. Further, in this chapter, some of the major limitations in the management of Diabetes Mellitus, such as factors related to early detection of the disease, compliance to treatment, and management of complications are presented. This is further demonstrated through the necessity of different approaches and therapies in various regions, due to differences in access to healthcare services and their outcomes. The chapter also analyzes the modern treatment strategies, which include recent advancements in drug treatment where new oral and injectable drugs have been introduced and innovations in insulin delivery devices such as continuous glucose monitoring and insulin pump systems. Also, the paper discusses in detail the role of lifestyle changes and education of the patient on diabetes control. As such, these new treatments will be grouped into ranges that include gene manipulation strategies, regenerative technologies, and healthcare information and communication technologies. These cutting-edge treatment modalities are expected to enhance disease management and treatment possibilities. The concluding section of the chapter provides an overview of potential treatments and research opportunities within

* Corresponding author Ramesh Kumar Gupta: Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh, India; Email: ram5880@gmail.com

the public health system to mitigate the burden of diabetes in the population. The significance of collaboration in addressing this intricate, demanding, and dynamic issue is also emphasized.

Keywords: Diabetes, Digital health technologies, Epidemic, Gene therapy, Hyperglycemia, Pharmacotherapy, Polyuria, Polydipsia, Polyphagia, Pancreatic beta cells, Regenerative medicine, Obesity.

INTRODUCTION

The metabolic disorder termed diabetes mellitus is characterized by long-term high blood sugar levels caused by complications with the body's ability to produce or respond to insulin. Because insulin is so important as an anabolic hormone, it can cause metabolic issues with fats, carbohydrates, and proteins [1, 2]. The insufficiency of insulin or its resistance by target tissues, primarily the liver, adipose tissue, and skeletal muscles, leads to several metabolic disorders. This could happen if there were issues with insulin receptors, the route for signaling, or effector genes or enzymes. The severity of the symptoms depends on the features of the condition and how long it has been present. Some people with diabetes, especially those with type 2 diabetes in its early stages, may not have any signs at all. Some people have serious hyperglycemia, and minors who don't have any insulin are more likely to have symptoms like frequent urination, frequent vomiting, frequent eating, weight loss, and blurred vision. Nonketotic hyperosmolar syndrome, stupor, coma, and death from ketoacidosis can happen if diabetes is not under control [3 - 5].

Diabetes impacts anyone regardless of age, gender, or geographical location. Genetic and environmental factors contribute to the etiopathogenesis of T2DM, which constitutes over 90% of all cases [6]. Broadly, diabetes mellitus can be classified into two: type I and type II, each of which has its criteria for diagnosis. Type 1 diabetes occurs when the immune system attacks the beta cells of the pancreas. Type 2 is generally de-linked from such strong genetic bases and related to obesity as well as psychological or physical inactivity. Women have a greater risk of experiencing complications during delivery and postnatal life if diagnosed with gestational diabetes during their pregnancy [4, 7].

EPIDEMIOLOGY OF DIABETES

Global and Regional Prevalence

According to the WHO, the number of people with diabetes increased from 200 million in 1990 to 830 million in 2022. The prevalence has been rising faster in low- and middle-income nations than in high-income nations. The lowest rates of

diabetes treatment coverage are found in low- and middle-income countries. In 2021, renal disease associated with diabetes claimed the lives of about 2 million people. Additionally, around 11% of cardiovascular deaths were caused by high blood glucose [8].

The research gap in type 1 diabetes is substantial, with merely 1.52 million of the 8.75 million individuals worldwide in 2022 being under the age of 20. Timely diagnosis and intervention are essential to avoid diabetic ketoacidosis and mortality, highlighting the necessity for enhanced awareness and education. Diabetes-related foot problems fluctuate worldwide due to varying definitions, diagnostic techniques, demographic variables, and data management practices. The IDF Africa Region and the South and Central America Region exhibit elevated incidences of diabetic peripheral neuropathy. Incidences of lower-limb amputations resulting from diabetes are declining in most countries; nevertheless, rigorous reviews of these consequences are few. Indigenous people, representing 6.2% of the global population, experience a disproportionately elevated incidence of diabetes, with 70% of analyzed studies indicating a prevalence exceeding 10% among their adult populations, despite their existence among more than 5,000 diverse groups globally [9].

In 2021, the prevalence of diabetes among adults aged 20 to 79 was 10.5%, increasing to 12.2% by 2045. The highest prevalence was observed in individuals aged 75 to 79. In contrast to rural areas (8.3%), urban areas (12.1%) showed a higher prevalence, while high-income countries (11.1%) outperformed low-income countries (5.5%). In middle-income nations, the predicted largest increase in the prevalence of diabetes (21.1%) will occur. Global estimates place the cost of diabetes-related healthcare at 966 billion USD in 2021; projections indicate that the amount will rise to 1,054 billion USD by 2045 [10].

Risk Factors and Demographic Trends

Diabetes mellitus (DM) is proliferating swiftly due to calorically dense meals, sedentary habits, and urbanization. Obesity is a major risk factor for diabetes mellitus, with those possessing lower educational attainment and socioeconomic status contributing to elevated obesity rates. Complications such as retinopathy are associated with the length of diabetes mellitus, and gender and racial disparities render specific groups more vulnerable. Educational attainment, urban residency, employment status, and marital conditions also influence diabetes mellitus-related outcomes. Diabetes mellitus carries significant costs, particularly when it comes to its complications. To combat diabetes mellitus and its complications, a comprehensive strategy should be implemented, including public health awareness, improved screening services, increased diabetes education for

CHAPTER 3

Exploring Herbal Remedies: Traditional Wisdom Meets Modern Science

Deepali D. Bhandari¹, Komal S. Hatkar², Sharayu P. Rathod², Ramanlal R. Kachave¹, Sunil V. Amrutkar¹ and Dattatraya M. Shinkar^{2,*}

¹ Department of Pharmaceutical Chemistry, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India

² Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra, India

Abstract: This review examines how traditional medicine and recent science can coexist in the branch of herbal drugs, emphasizing the safety and effectiveness of natural therapies in modern healthcare. The long history of herbal remedies, which are ingrained in cultural customs, is experiencing a revival in tandem with the growing demand for customized and all-encompassing healthcare. Diabetes mellitus (DM) is a severe long-term metabolic condition that is linked to hyperglycemia and several side effects, such as chronic kidney disease and cardiovascular disease. A long-standing practice that has been handed down through the years, herbal medicine is gaining popularity again as its potential advantages become more widely recognized. The anti-hypoglycaemic properties of the phytochemicals found in medicinal plants (*Allium sativum*, *Momordica charantia*, *Hibiscus sabdariffa* L., and *Zingiber officinalis*) can overcome and/or prevent diabetes mellitus. The results also showed that vitamin C, D, E, or their mixture lowers blood pressure, lipid peroxidation, blood glucose, and inflammation in diabetic individuals. The health advantages of vitamins and medicinal plants as chemotherapeutic/preventive medicines for the control of diabetes, however, have not been well studied. It explores the safety profiles of herbal treatments and applies a rigorous scientific examination to them. This review aims to investigate and analyze DM and to close the information gap by examining diabetes mellitus (DM) and emphasizing the hypoglycaemic qualities of the most effective medicinal herbs and vitamins that can avoid and/or lower DM. This review contributes to the ongoing conversation in a world where combining modern science and ancient wisdom holds promise for improving healthcare. The intention is to improve global well-being by combining the best aspects of both worlds.

Keywords: Diabetes mellitus, Herbal remedies, Medicinal plants, Phytochemicals, Vitamins.

*** Corresponding author Dattatraya M. Shinkar:** Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra, India; E-mail: dattashinkar@gmail.com

INTRODUCTION

Diabetes mellitus is an endocrine condition that is not contagious, associated with hypoglycemia, and marked by abnormalities in the metabolism of carbohydrates [1, 2]. Numerous severe conditions, including microvascular (nephropathy, retinopathy, and nephropathy) and macrovascular (peripheral vascular disease and coronary heart disorders), are associated with it. Diabetes mellitus, commonly referred to as diabetes, has been linked to muscle loss and “sweet urine”-related illnesses.

The pancreas secretes the hormone insulin, which regulates blood glucose levels. The pancreas produces insulin to maintain the blood glucose level as these levels rise. Hyperglycemia in diabetic patients is brought on by either insufficient or missing insulin production. Gestational diabetes, Type 1, and Type 2 are the three types of diabetes mellitus. Diabetes mellitus reliant on insulin, also referred to as type 1 diabetes mellitus, occurs by the complete failure of the β cell in the pancreatic islets of Langerhans.

Insulin-non-dependent diabetes mellitus, sometimes referred to as type 2 diabetes mellitus, is characterized by a transient decrease of β cell mass. It is mostly caused by genetic predisposition, primarily affecting obese individuals, and is linked to elevated blood pressure and cholesterol levels. Reducing insulin resistance and boosting insulin secretion are the goals of type 2 diabetes treatment. Pregnant women with gestational diabetes have hyperglycemia as a presenting feature of their diabetes. It often appears in the 2nd or 3rd trimester of two to four percent of pregnancies [3]. Polydipsia, polyuria, polydipsia polyphagia, exhaustion, nausea, vomiting, male erectile dysfunction, delayed wound healing, and impaired eyesight are signs of diabetes mellitus [4]. The 20-79 age range makes up the majority of the 61.3 million diabetics in India, which is renowned as the diabetes capital of the world. The disease mostly distresses rural and metropolitan populations [5]. In metropolitan India, the prevalence of diabetes is steadily rising. The prevalence of diabetes is almost six times higher in urban than rural areas. In the last 20 years, reduced physical activity, weight increase, stress, dietary modifications, malnourishment, and alcohol consumption have been the primary causes of diabetes mellitus and virus infections. Because women's hormones and inflammatory systems behave differently than men's, female diabetic patients are more than their male counterparts. Less educated individuals are more likely than more educated individuals to have diabetes [6].

Herbal drugs, sometimes mentioned as phytochemical therapy or herbalism, are the utilization of plant-based components for medicinal purposes [7]. Insulin and a range of oral antidiabetic medications, including glinides, biguanides, α -gluco-

sidase inhibitors, and sulfonylureas, are currently the available treatments for diabetes. Products in developing nations are pricey and not very widely accessible [8]. The COVID-19 pandemic has spread over the world in a way that has never been seen before, and as a result, demand for herbal medication has increased beyond prepandemic levels in every corner of the world. People's awareness of the benefits of utilizing herbal medicines instead of allopathic ones and the adverse effects of allopathic pharmaceuticals has increased the demand for herbal medical goods. Another factor driving the market is the growing population and the rise in the prevalence of chronic illnesses [9].

In the last several decades, there has been considerable advancement in the prevention and control of diabetes mellitus. However, serious antagonistic effects from anti-diabetic drugs might include hypoglycemic coma and issues with the kidneys and liver [10]. The World Health Organization (WHO) recommends herbs in products to treat diabetes mellitus. Four billion or more people living in emerging economies have used herbal plants to treat metabolic diseases, including diabetes mellitus. Consequently, vitamins, vital substances with anti-hypoglycemic qualities, and medicinal plants remain crucial for the treatment of diabetes. Studies have demonstrated that the usage of vitamins, vital components, and medicinal herbs can effectively lower blood sugar levels in the form of research, including clinical and pre-clinical. For instance, research found that insulin receptor regulation is mediated by zinc and raises its activity. A research study conducted on adult albino rats revealed that garlic guards against diabetic retinopathy [11]. Many phytochemicals with medicinal herbs' anti-diabetic qualities were discovered, identified, and divided into main groups based on variations in their chemical structures. The main categories of phytonutrients include phytosterols, inhibiting protease, tannins, terpenes, phenols and phenolics, compounds, aromatic acids, carotenoids, flavonoids, glycosides, and organic acids. The anti-diabetic effects of therapeutic plants and minerals, such as having the ability to act similarly to insulin and to be antihyperglycemic, anti-lipidemic, and hypoglycemic, have been demonstrated by recent research in pharmacology [12, 13].

But with rising demand, an increase in adulterated methods, such as adding synthetic substances and replacing natural materials has been observed. As a result, systems for standardization and quality control have become crucial. Furthermore, certain negative effects can also result from a plant's inherent toxicity; they are not always caused by contamination, adulteration, or misidentification of plant species. A comprehensive toxicological evaluation is therefore required to allay any potential safety concern. In addition, exogenous

CHAPTER 4

Nanotechnology as a Medicine: A Brief Overview

Sourajyoti Goswami¹, Pratibha Bhowmick¹, Shouvik Kumar Nandy¹, Sukirti Upadhyay², Prashant Upadhyay³, Sandeep Kumar Sonkar⁴ and Mithun Bhowmick^{1,*}

¹ Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India

² Department of Pharmacognosy, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India

³ Department of Pharmaceutics, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India

⁴ Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India

Abstract: Nanotechnology presents an entirely new era in the area of applied medical science, from diagnosis to treatment or prevention of various diseases. This chapter reviews the principle of nanotechnology and the wide range of its applications within the medical science boundaries. Targeted drug delivery, improved image-formation techniques, and advanced diagnostic tools constitute the most diversified applications in nanomedicines, which include the use of nanoparticles, nanorobots, and nanosensors. One of the applications of nanotechnology in medicine has marked a paradigm shift toward extremely personalized medicine where highly particular treatment plans can become possible. This chapter will therefore describe the type of nanomaterials deployed for medical applications, the functional mechanism of these materials, and potential benefits and risks from their use. The discussion also considers the recent breakthroughs in this area of study and those that are under research with promising prospects for transforming health care through nanotechnology. Only by comprehending the intersection of nanotechnology and medicine will researchers and medical professionals recognize the potential benefits of these breakthroughs for patients with complex issues.

Keywords: Diagnostic tools, Future healthcare, Nanomedicine, Nanoparticles, Targeted drug delivery.

^{*} **Corresponding author Mithun Bhowmick:** Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India; E-mail: drmithunbhowmick@gmail.com

Prashant Upadhyay & Sukirti Upadhyay (Eds.)
All rights reserved-© 2025 Bentham Science Publishers

INTRODUCTION

Nanotechnology in Medicine

Innovation in nanomaterials has increased manifold in the last decade for industrial as well as commercial applications. It is being realized more and more that nanoscale-engineered materials with at least one dimension smaller than 100 nm display properties far different from their corresponding bulk forms. Everything can be done in terms of conductivity, strength, surface area-to-volume ratio, and optical properties. Nanoparticles are a new horizon in medicine: nanomedicine will soon allow for the discovery of new drugs and the manipulation of present drugs so that their efficacy is enhanced, their distribution is tailored, and their side effects are decreased [1].

The terms “nanoparticle” and “nanomaterial” refer to a vast class of really tiny structures. The molecular structure of the nanoparticles determines physical properties of the nanoparticle. They can be formulated into virtually any shape and any dimension. Nanoscale architectures or drug delivery applications are not a new technology. Liposomes and dendrimers were synthesized over 33 years ago, and many nanomedicines prepared using this technique are now approved for use in humans [2]. These are a great landmark in nanomedicine in the 21st century, hence holding the possibility of developing complex structures that will selectively target specific tissues and integrate controlled release mechanisms with the ability to escape speedy clearance. Artificial nanomaterials are of size less than 100 nm, and it is somewhat subjective [3]. For nanomedicine, the size of the nanoparticle in terms of particle size is within 1 μm . Nanomedicine is an increasingly important emerging technology that applies nanotechnology for disease screening and diagnosis as well as treatment, leading to a revolution in personal and public health in recent times. While clinical medicine protects the health of individual patients, public health promotes, protects, and maintains the health of populations or groups [1]. It is therefore especially important that one examines research in nanomedicine in the context of public health to maximize advantages and minimize possible risks as widely as possible [4]. Nanotechnology, which works with materials that range in size from 1 to 100 nanometers, has greatly advanced medicine due to its unique properties, particularly in the development of drug formulations based on nanoparticles that improve efficacy and decrease side effects. It also encourages improvements in medical technology and minimally invasive surgery, which result in improved quality of life, reduced infection risks, and faster recovery times. Despite these benefits, there is still a lack of comprehensive understanding regarding the behavior of engineered nanoparticles in biological systems. Due to the lack of data on long-term exposure to synthetic nanomaterials and the unfinished

regulatory guidelines, especially those issued by the FDA, there are still concerns regarding potential health and environmental risks. Further research is required to adequately assess and handle the safety implications of nanotechnology [5]. For nanotechnology to progress effectively, particularly in nanomedicine, stakeholders must communicate transparently regarding its potential risks and benefits. There are also big problems with rules and institutions that need to be fixed. Regulatory bodies, government agencies, insurers, and researchers will all have to work hard to make nanomedicine a part of everyday medical practice. To solve tough problems and come up with new ideas in the field, it is important to get people to work together. Researchers should make efforts for clinical and community-based studies that focus on collecting data and performing epidemiological evaluations of nano-enabled drugs, while also pushing for more funding [6, 7]. Nanomedicine experts and public health professionals need to work together to make sure that these two areas work well together and make people's health better. This article aims to inform diverse audiences, including laypersons, scientists, policymakers, and scholars, about the fundamental public health principles that should be incorporated into the research, development, and application of nanotechnology (Fig. 1) [8].

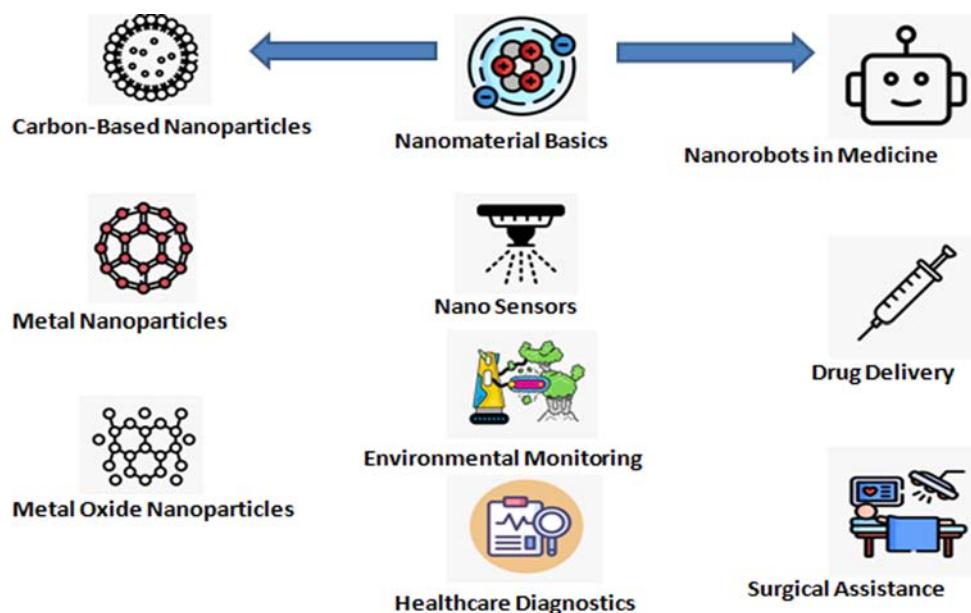


Fig. (1). Nanoparticles used as Nanomedicines [7, 8].

Historical Success

The use of nanoparticles and structures dates back to four hundred years AD. The Lycurgus Cup happens to be one of the best examples of ancient glasswork found

CHAPTER 5

Herbal Nano Therapy: Mechanism of Action

Rohini Kharwade¹, Nikhil Hatwar¹ and Nilesh Mahajan^{1,2,*}

¹ Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy (DBCOP), Besa, Nagpur, MS, India

² Department of Pharmaceutics, Datta Meghe College of Pharmacy, Sawangi, Wardha, MS, India

Abstract: The life-threatening ability of certain diseases including cancer, diabetes, asthma, stroke, heart disease, and others received more attention in modern medicinal advancement. To enhance the solubility, bioavailability, controlled release, and dose reduction of medications, greater attention is given to creating innovative formulations for drug delivery. However, resistance toward conventional synthetic drugs with their toxicity and side effects has sparked demand for herbal medicine. Therefore, herbal medicines are more prone to integrate into nanocarriers as compared to synthetic medicines because of their fewer adverse effects and better therapeutic efficacy. Herbal nano therapy includes nanocarriers containing herbal drug extract, phytoconstituents, and bioactive or biomarker constituents. The phytoconstituent-loaded nanocarrier proposed novel formulations with controlled and targeted drug delivery of herbal components and instantaneously increased their therapeutic efficacy. Herbal nanomedicine is safe concerning diagnostic and therapeutic aspects. The synthesis of herbal nanomedicine, its mechanism, and characterization by various analytical techniques have significant advances in the future impact of nanotechnology on smart herbal medicine.

Keywords: Ayush, Ayurveda, Bhasma, Characterization, Coacervation method, Ethosomes, Functionalized nanocarriers, Green synthesis, Herbal nanomedicines, Herbal therapy, High-pressure homogenization, Metallic nanoparticles.

INTRODUCTION

Nanomaterials are referred to as any constituent having nanometric scale magnitudes. Their exclusive physicochemical characteristics together with size, surface area, surface charge, narrow size distribution, and quantum effects showed their widespread applications in various fields [1]. Their potential applications in health care offer an innovative approach to treating or diagnosing various diseases. These include metallic nanoparticles, tissue implants, nano scaffolds, biosensors, nanofibers, nanorobotics, and ligand-attached drug delivery [2].

* Corresponding author Nilesh Mahajan: Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy (DBCOP), Besa, Nagpur, MS, India; E-mail: nmmahajan78@gmail.com

Therefore, widespread innovation in nanomaterials influences the formulation of drug delivery known as nanoformulations or nanocarriers. They showed high drug entrapment, prolonged drug delivery, less side effects, and toxicity. The nanoformulations/nanocarriers that possess their therapeutic properties are called nanomedicine. They controlled the drug release rate and drug release manner at the site of action. They have also shown to increase the effectiveness, reduce toxic effects or side effects, enhance stability, and improve the pharmacokinetics of the entrapped drug. These formulations are prepared by using various natural as well as synthetic biodegradable and non-biodegradable polymers such as polylactic acid, collagen, PLGA, cellulose, chitosan, gelatine lactoferrin, *etc* [3].

Herbs are a vital component of medicinal plants with an ancient therapeutic history. Herbal medicines with Indian ayurvedic medicines, Chinese medicines, Japanese, and Arabian Aroma therapy are significantly applied for the treatment of various diseases. The World Health Organization (WHO) recognizes the unique efficacy of herbal medicines with minimal toxicity. Therefore, the WHO initiated a program to promote the therapeutic efficacy, safety, and potential of herbal medicines by using nanoformulation [4]. The nanoformulation is comprised of herbal phytoconstituents, which are used to treat various diseases and are known as herbal nanotherapy. Herbal nanotherapy includes nano-sized and nano-delivery medicines containing herbal extract, phytoconstituents, bioactive components, or biomarkers. Its nano-sizing properties can improve the solubility, stability, and therapeutic effectiveness of phytoconstituents. Nano therapy overcoming the off-target drug delivery, therefore helps to reduce the toxicity and side effects associated with herbal medicines [5].

In Ayurveda, the concept of nano therapy is old, where metallic nanoparticles are used in the form of Bhasma. The synthetic process used in the preparation of Bhasma is known as “Bhasmikarana”. This technique is used with slight modifications in current herbal nanoformulation. In this process, metal ions of silver (Rajata), mercury (Parada), zinc (Yasada), iron (Loha), tin (Vanga), lead (Sisaka), copper (Tamra) or gold (Swarna), and herbal medicine are converted into nanoparticles with higher oxidative state as represented in Table 1. The superior properties of these Bhasma/ metallic nanoparticles improved absorption, stability, and biocompatibility and proved their therapeutic efficacy in different disease conditions [6, 7].

Table 1. Application of metallic nanoparticles loaded with different herbal extracts.

Metallic Nanoparticles	Plant Extract	Size	Application	References
Silver nanoparticles	Ethanolic extract of Aloevera extracts	60-150nm	Antibacterial and wound healing	[8]

(Table 1) cont.....

Metallic Nanoparticles	Plant Extract	Size	Application	References
Silver nanoparticles	Genistein	130-150nm	Enhance apoptosis	[9]
Gold nanoparticles	<i>Beta-sitosterol</i>	60-85nm	Antioxidant activity	[3]
Iron oxide magnetic nanoparticles	<i>Argemore mexicanal</i>	10-30nm	Diuretic and purgative	[10]
zinc oxide nanoparticles	-	10-185nm	Antidiabetic activity	[11]
Zinc oxide and titanium dioxide nanoparticles	<i>Psidium guajava</i> extract	25-110nm	Antioxidant and antibacterial properties.	[11]
Gold Nanoparticles	Genistein	80-110nm	Treatment of prostate cancer.	[12]
Iron nanoparticles	Aqueous extract of <i>Saccharum arundinaceum</i>	20-80nm	Cytotoxic effect and antitumor activity.	[13]

Need for Herbal Nanotherapy

As discussed above, the ancient Indian medical discipline of Ayurveda has long recognized the medicinal benefits of herbal remedies. They are more recognized due to their better therapeutic efficacy and fewer adverse effects than synthetic conventional ones as represented in Table 2. However, there are several difficulties in developing herbal medications, such as standardizing bioassays, conducting clinical research, assessing pharmacology, lack of scientific validation, processing issues, and toxicological characteristics. Other major challenges include figuring out absorption sites, evaluating the safety of harmful herbal constituents, and negotiating regulatory systems that refuse to invest in herbal formulation. Therefore, there is a need to isolate bioactive phytoconstituents from herbal medicine, which are responsible for the therapeutic activity [14].

Table 2. Applications of different phytoconstituents as compared to synthetic drugs in different disease conditions.

Sr. No.	Disease State	Drugs	Drawbacks	Phytoconstituents Used	Mechanisms	References
1.	Anticancer	5-fluorouracil, methotrexate, doxorubicin	Low bioavailability, high cytotoxicity, and short half-life.	<i>Curcumin, camptothecin.</i>	It significantly regulates the rate of apoptosis in different types of cancer by inactivation of the PI3K/Akt pathway.	[21]

CHAPTER 6

Formulation and Delivery of Herbal Nanocarriers

Nishant B. Chopade¹, Prashant K. Deshmukh¹, Sukirti Upadhyay², Prashant Upadhyay³ and Raju R. Thenge^{1,*}

¹ Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist – Buldhana-443101. (M.S.) India

² Department of Pharmacognosy School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India

³ Department of Pharmaceutics, School of Pharmaceutical Science, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India

Abstract: Diabetes mellitus, a widespread metabolic disorder, requires innovative treatment strategies to address the limitations of conventional therapies, such as poor bioavailability and side effects. Herbal medicines are promising alternatives due to their natural origin and therapeutic potential. However, their clinical application is hindered by challenges in stability and bioavailability. This chapter explores the use of nanocarrier systems to enhance the delivery and efficacy of herbal compounds in diabetes management and explores the innovative approach of using nanocarrier systems for the delivery of herbal compounds in the treatment of diabetes. Also, the chapter delves into various nanocarrier systems, like liposomes, polymeric nanoparticles, and nanoemulsions, outlining their formulation techniques, encapsulation efficiency, and drug-loading capacities.

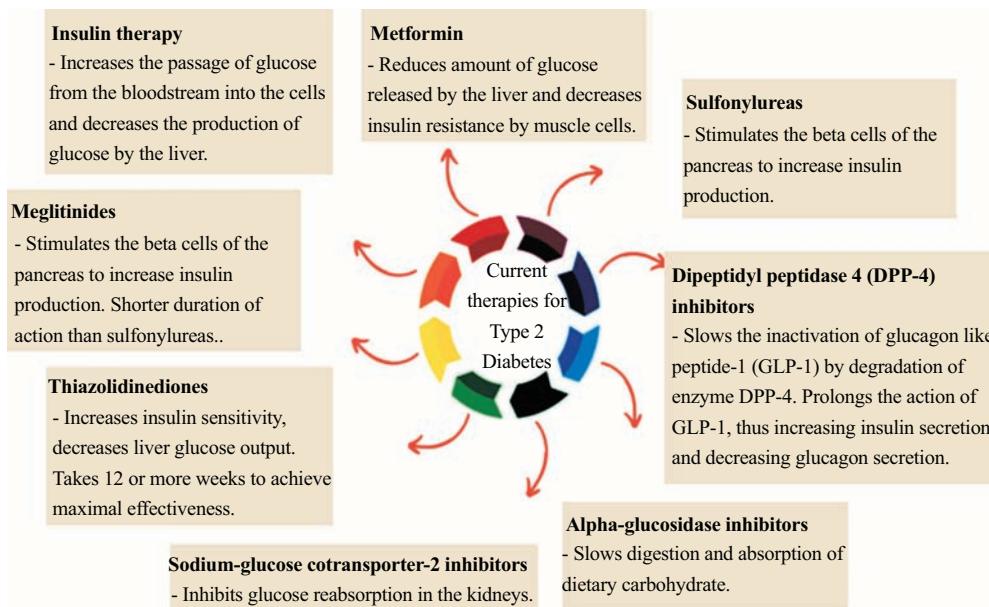
Keywords: Diabetes mellitus, Herbal nanocarrier, Nanotechnology, Plant-based nanoformulations, Phytochemicals.

INTRODUCTION

Overview of Diabetes Mellitus

India, the world's "Diabetes metropolis", has an impact on practically every type of community, whether it is rural or urban [1]. Diabetes mellitus has been ranked as one of the greatest pandemics facing the global community, and abnormal, persistent hyperglycemia, due to defective or inadequate insulin production, is what causes this condition. The prevalence has been growing with more than 460

* Corresponding author Raju R. Thenge: Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist – Buldhana-443101. (M.S.) India; E-mail: rajuthenge11@gmail.com


million individuals being affected by it. In the upcoming decades, the number of cases will rise hundreds of times [2, 3].

The WHO projects that diabetes mellitus (DM) will rank seventh among the leading causes of mortality in 2030 [4]. According to estimates from the International Diabetes Federation (IDF), 536.6 million people worldwide will have diabetes by 2021. By 2045, we anticipate a 46% increase to 783.2 million. Microvascular disorders (stroke, peripheral artery disease, and cardiovascular disease) and macrovascular disorders (neuropathy, nephropathy, and retinopathy) are the two main long-term effects of the condition. There are more microvascular problems. Prioritizing early detection and modifying diabetes care in light of the disease's high prevalence, serious health effects, and growing expense of treatment is imperative [1, 5]. This trend, mainly induced by rising obesity rates, urbanization, and sedentary lifestyles, affects the progress of type 2 diabetes with a special impact on younger populations. About 90% of all diagnosed cases occur [6].

Insulin therapy, oral medications, and lifestyle alterations are the cornerstones of conventional diabetes management. It has been noted that lifestyle changes, including regular physical activity, dietary control, and weight loss, tend to be more effective in managing type 2 diabetes compared to type 1 diabetes [7]. Insulin therapy has been recommended for patients who are unable to reach their glycemic objectives with lifestyle changes and oral hypoglycemic medications [8]. Recently, several innovative approaches have been implemented to manage diabetes, including nanotechnology-based insulin delivery systems designed to enhance patient compliance, accuracy, and efficiency in insulin administration [9].

Current Treatment Strategies and their Limitations

Diabetes can be effectively managed with dietary changes. Consuming complex carbohydrates, proteins, fiber, polyunsaturated fatty acids (PUFA), and low-glycemic foods can all help to keep blood sugar levels within normal ranges. By reducing fatty acids, moderate exercise also lowers blood glucose by enabling the glucose transfer into the muscle in an insulin-independent manner [10]. Diabetes management remains a multifaceted challenge, with current strategies often falling short of delivering long-term control or addressing all aspects of the disease. Behavioral and environmental factors, such as modern sedentary lifestyles and access to unhealthy food choices, create barriers that prevent many individuals from achieving sustained lifestyle changes [11, 12]. Even among those who can adhere, the benefits may be insufficient in more advanced stages of diabetes. Current therapies for type 2 diabetes are shown in Fig. (1).

Fig. (1). Current therapies for type 2 diabetes [13].

Recent advancements in diabetes management reflect a paradigm shift in treatment and monitoring. By giving continuous glucose monitoring (CGM), real-time glucose data systems have greatly improved glycemic management by reducing both hyperglycemic and hypoglycemic episodes and enabling precise insulin changes [14]. Innovations in the delivery of insulin, such as insulin pumps and closed-loop systems, have also advanced the standard of care by automating insulin delivery in response to CGM data, thereby enhancing overall glucose management [15]. Another trend is the drive for personalized medicine to tailor treatment and then improve patient outcomes with diabetes using genetic and environmental data [16]. Public health interventions will need to focus on both early detection and prevention and comprehensive management in an attempt to minimize that burden. These are activities that include awareness worldwide, group involvement programs, and policy initiatives to promote healthy lifestyles and access to care [17].

Pharmacological therapies remain the cornerstone of Type 2 diabetes management, with metformin perhaps being the most prominent example. Metformin is an insulin-sensitizing drug that reduces hepatic glucose production while enhancing peripheral glucose uptake. However, based on current studies, gastrointestinal adverse effects occur in up to 25% of patients, making it such that about 5% of them stop its use [18]. Metformin efficiently decreases blood glucose

CHAPTER 7

Clinical Evidence: Efficacy and Safety of Herbal Nano Therapy

Surya Prakash Dwivedi^{1,*}, Neeraj Dwivedi¹, Shweta Singh¹, Sukirti Upadhyay² and Prashant Upadhyay³

¹ *Council of Industrial Innovation and Research, Sector-6, Noida, Uttar Pradesh, India*

² *Department of Pharmacognosy, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India*

³ *Department of Pharmaceutics, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India*

Abstract: Herbal nanotherapy is an emerging and innovative therapeutic approach that synergistically combines the principles of modern nanotechnology with the time-tested efficacy of traditional herbal medicine to significantly enhance treatment outcomes. This chapter offers an in-depth exploration of the scientific advancements and clinical evidence supporting the development and application of herbal nanotherapies. It discusses the latest progress in nanoformulation techniques that improve the physicochemical stability, enhance bioavailability, and enable precise, targeted delivery of bioactive herbal compounds, thus overcoming many of the limitations associated with conventional herbal treatments. Drawing on a wide range of recent clinical trials, case studies, and experimental research, the chapter illustrates the successful implementation of herbal nanoformulations in the treatment of complex diseases such as cancer, cardiovascular disorders, and metabolic syndromes. It further examines the comparative therapeutic benefits and improved safety profiles of nanoformulated herbal drugs in contrast to their traditional counterparts. In addition, critical attention is given to long-term safety concerns, potential adverse effects, and the evolving regulatory landscape that governs the clinical use and approval of herbal nanotherapies. By presenting a holistic synthesis of cutting-edge scientific findings and technological innovations, the chapter aims to equip researchers, clinicians, and policy-makers with a comprehensive understanding of the transformative potential, current challenges, and future directions of herbal nanotherapy in modern healthcare systems.

Keywords: Clinical trials, Efficacy, Herbal nano therapy, Nanoformulation, Safety.

* **Corresponding author Surya Prakash Dwivedi:** Council of Industrial Innovation and Research, Sector-6, Noida, Uttar Pradesh, India; Tel: +91-9690316293; E-mail: drsuryadwivedy@gmail.com

INTRODUCTION

The herbal nano treatment is a promising advancement at the nexus of natural medicinal medications and nanotechnology. By turning natural compounds into nanoparticles, this technique seeks to enhance drug transport, stability, and bioavailability while addressing persistently difficult issues with conventional herbal treatments [1]. Nanoparticles exhibit unique physicochemical properties; such as an increased surface area-to-volume ratio and enhanced permeability, which significantly improve the absorption, bioavailability, and targeted delivery of therapeutic agents. These attributes enable nanoparticles to cross biological barriers more efficiently, ensuring that active compounds are delivered directly to the intended site of action with greater precision, thereby maximizing therapeutic efficacy while minimizing systemic side effects [2].

For instance, curcumin, a substance that comes from turmeric, has anti-inflammatory as well as anti-cancer properties, yet in its natural state, it has poor bioavailability. Curcumin-loaded nanoparticles, which improve their absorption and therapeutic benefits, have been produced using nanotechnology [3, 4]. Similarly, other herbal bioactive compounds such as quercetin, resveratrol, and silymarin have been successfully nano-formulated to address key challenges associated with their low water solubility, limited stability, and low bioavailability. Through nanocarrier systems, these phytochemicals demonstrate improved solubility profiles, enhanced pharmacokinetic properties, and greater therapeutic potential by enabling sustained release and site-specific delivery, ultimately overcoming the limitations of their conventional formulations [5]. Herbal nanomedicine may not only improve healing effectiveness but also allow for controlled release of active ingredients, which lowers dosage frequency and minimizes side effects [6]. This approach is particularly advantageous for the treatment of chronic diseases, where sustained and long-term clinical management is essential. By enabling controlled and targeted delivery, nanoformulated herbal compounds help maintain therapeutic drug levels over extended periods, reduce dosing frequency, and minimize adverse effects, thereby improving patient compliance and treatment outcomes. The integration of herbal medication with nanotechnology is, therefore, visible as a progressive step toward extra powerful and safer treatments, bridging the distance between conventional know-how and present-day scientific advances [1].

IMPORTANCE OF ASSESSING EFFICACY AND SAFETY

While the benefits of herbal nano therapy are substantial, it is crucial to rigorously evaluate its efficacy and safety through well-designed scientific studies and clinical trials. Comprehensive testing ensures that these advanced formulations

not only deliver therapeutic advantages but also meet established safety standards, minimizing potential risks and building confidence among healthcare providers, patients, and regulatory authorities. Nanoparticles can regulate the pharmacokinetics and pharmacodynamics of herbal compounds. Therefore, efficacy assessments must make certain that nano-formulations offer the desired healing outcomes and that these outcomes are constant and dependable across extraordinary patient populations [7].

The safety assessment of various therapeutic options is equally important, especially when introducing nanoparticles into the body. Unlike traditional herbal remedies, nanoparticle-based formulations may pose potential risks such as toxicity, immunogenicity, and unforeseen long-term health effects. Therefore, a thorough evaluation of these risks is essential to ensure that the benefits of herbal nanotherapies are not overshadowed by adverse outcomes and to establish a clear understanding of their biocompatibility, metabolism, and overall safety profile [8, 9]. Certain nanoparticles, for instance, have been observed to accumulate in vital organs such as the liver and spleen, raising significant concerns about their potential toxicity. Additionally, the interactions of nanoparticles with biological systems at both molecular and cellular levels may lead to unforeseen effects, including altered cellular functions, immune responses, or oxidative stress. These complexities underscore the need for comprehensive safety evaluations, including in vitro and in vivo studies, to thoroughly assess their biocompatibility, biodistribution, metabolism, and potential long-term impacts before clinical application [10].

Regulatory agencies worldwide are increasingly prioritizing the establishment of comprehensive guidelines to ensure the safe and effective integration of nanotechnology into healthcare. These efforts underscore the importance of extensive preclinical and clinical evaluations to assess the safety, efficacy, pharmacokinetics, and long-term effects of nanoparticle-based therapies. By enforcing stringent regulatory frameworks, authorities aim to protect public health while simultaneously encouraging innovation in the field of nanomedicine [11]. However, if safety concerns and regulatory barriers are not adequately addressed, they could significantly impede the widespread adoption of herbal nanotherapy. Therefore, rigorous scientific evaluation and strict adherence to regulatory standards are essential. Such measures are vital for achieving regulatory approval, building public and clinical trust, and ensuring the responsible incorporation of these advanced therapies into mainstream healthcare systems [1].

CHAPTER 8

Integrating Herbal Nano Solutions into Diabetes Care Plans

Arvind Raghav^{1,*}, Vijay Sharma², Km. Anjali², Ashish Singh Chauhan³ and Arif Nur Muhammad Ansori⁴

¹ Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India

² Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India

³ Uttarakanchal Institute of Pharmaceutical Sciences, Uttarakanchal University, Dehradun, Uttarakhand, India

⁴ Postgraduate School, Universitas Airlangga, Surabaya, Indonesia

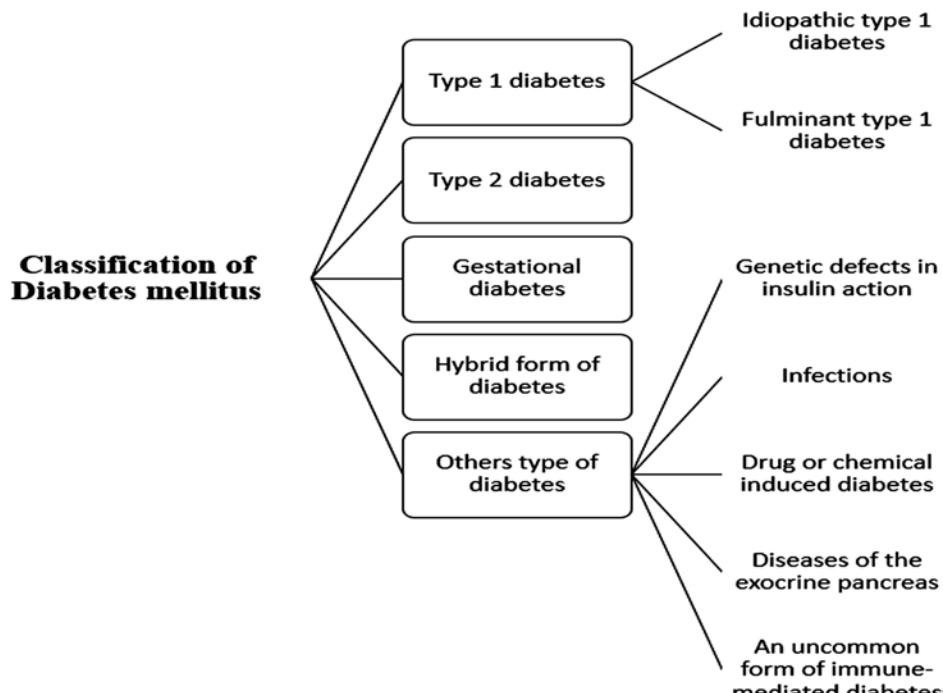
Abstract: Diabetes mellitus, a chronic metabolic condition, poses numerous challenges to global healthcare systems. Traditional pharmaceutical medications function effectively, yet they generate problems together with adverse effects primarily affecting patients who suffer from ongoing conditions. In 2014, World Health Organization data shows that diabetes affects 8.5 percent of adults who are 18 years old and above. The worldwide mortality rate from diabetes reached 1.5 million deaths in 2019, and 48% of these deaths occurred among individuals under seventy years old. Blood glucose levels that were too high were responsible for 20% of cardiovascular disease deaths, whereas the total kidney disease deaths due to diabetes amounted to 460,000. Between 2000 and 2019, the death rates because of diabetes showed a 3% increase in every standard measure. The review investigates three natural herbs, Gymnema Sylvestre, bitter melon (*Momordica charantia*), and turmeric (*Curcuma longa*), for diabetes treatment while evaluating the nanoscale formulation potential of these remedies. Research in nanotechnology enables healthcare providers to enhance herbal solutions at the nano level to achieve better bioavailability with targeted delivery systems and sustained release mechanisms as essential elements for optimizing diabetes care treatment. The chapter analyzes how herbal products integrated with nanoformulations work as part of diabetes care plans through discussions of improved therapeutic results regarding drug absorption rates while addressing stability and toxicity levels. The discussion ends with guidance on implementing herbal nano solutions within complete diabetes care plans and approaches combining personalized treatment with multidisciplinary teamwork for optimal patient results.

* Corresponding author Arvind Raghav: Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India; E-mail: arvindraghav.pharmacy@gmail.com

Keywords: Bioavailability, Diabetes management, Herbal nanomedicine, Nanoformulations, Personalized medicine.

INTRODUCTION

The metabolic disorder known as chronic hyperglycemia arises from improper insulin function, reduced insulin production, or either condition. The crucial hormone insulin controls how the body processes proteins, fats, and carbohydrates. Insulin resistance causes diabetes-related metabolic disorders, primarily affecting liver and muscle tissue and fat storage tissue. The symptoms' extent depends on the specific diabetes type and how long the diabetes duration has been present. People with high blood sugar often develop vision troubles and weight reduction in addition to experiencing frequent thirst and increased hunger together with dysuria. Children and other individuals without sufficient insulin levels experience these symptoms [1, 2]. Some persons with diabetes, particularly those with type 2 diabetes who are still in the early stages of the disease, may not exhibit any symptoms. If untreated, uncontrolled diabetes can lead to several complications, such as coma, confusion, and, in severe cases, death from untreated nonketotic hyperosmolar syndrome or ketoacidosis [1].


A World Health Organization (WHO) survey from 2014 found that 8.5% of persons over the age of 18 have diabetes. Diabetes killed 1.5 million people in 2019; 48% of them were under the age of 70. Furthermore, high blood glucose was linked to 20% of cardiovascular disease deaths, while diabetes was responsible for 460,000 renal disease deaths. Between 2000 and 2019, the standard death rates for diabetes increased by 3%. Diabetes is connected with a 13% increase in mortality in low- and middle-income countries. However, between 2000 and 2019, the likelihood of dying between the ages of 30 and 70 from any of the four primary noncommunicable diseases cancer, chronic respiratory diseases, diabetes, and cardiovascular diseases decreased by 22% worldwide [1, 3].

The present search parameters were determined by screening all reputable and accessible research and review publications within the diabetic literature. The authors examined more than five hundred scientific publications from several databases, including PubMed and Google Scholar (See Fig. 1).

Pathophysiology

Insulin, a hormone generated by the pancreas that facilitates glucose absorption and utilization as power, is the primary cause of both Type 1 and Type 2 diabetes. The destruction of beta cells inside the pancreas causes poor insulin production, leading to hyperglycemia in Type 1 diabetes patients since cells cannot absorb

glucose from the bloodstream. Insulin resistance is the main factor causing Type 2 diabetes, leading to impaired cell reaction to insulin. The pancreas releases more insulin, as a result of which, blood sugar increases, but this process becomes insufficient over time. Uncontrolled persistent high blood sugar leads to eye damage (retinopathy), nerve damage (neuropathy), and kidney damage (nephropathy) alongside heart disease complications [4].

Fig. (1). The most recent classification of diabetes mellitus (DM) encompasses the various forms and subtypes of the disease, such as type 1 diabetes, type 2 diabetes, gestational diabetes, hybrid forms of diabetes (mostly Type 2 Diabetes with ketosis risk), and other special types of diabetes.

Types of diabetes therapy presently include dietary adjustments, oral medicines, and insulin administrations, with selected cases requiring bariatric surgery. The advancement of diabetes management techniques has not eliminated ongoing issues with ideal blood sugar control, together with a reduction of long-term complications alongside the management of medication side effects [5]. These challenges show the need for more personalized and sustainable treatments. Recently, there has been growing interest in using herbal medicine to manage diabetes [6]. Various herbs like *Gymnema Sylvestre*, bitter melon (*Momordica charantia*), and turmeric (*Curcuma longa*) have been studied for their ability to lower blood sugar levels and improve insulin sensitivity [7, 8]. More extensive research is required to evaluate the safety, effectiveness, and mechanism of action

CHAPTER 9

Future Perspectives: Advancements and Challenges in Herbal Nano Therapy

Mukesh Kumar Singh^{1,*}, Ritesh Kumar Tiwari², Ritika Saxena¹, Sunil Kumar Tiwari¹ and Lalit Singh³

¹ Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India

² Department of Pharmacy, Shri Ram Murti Smarak, College of Engineering and Technology, Bareilly, India

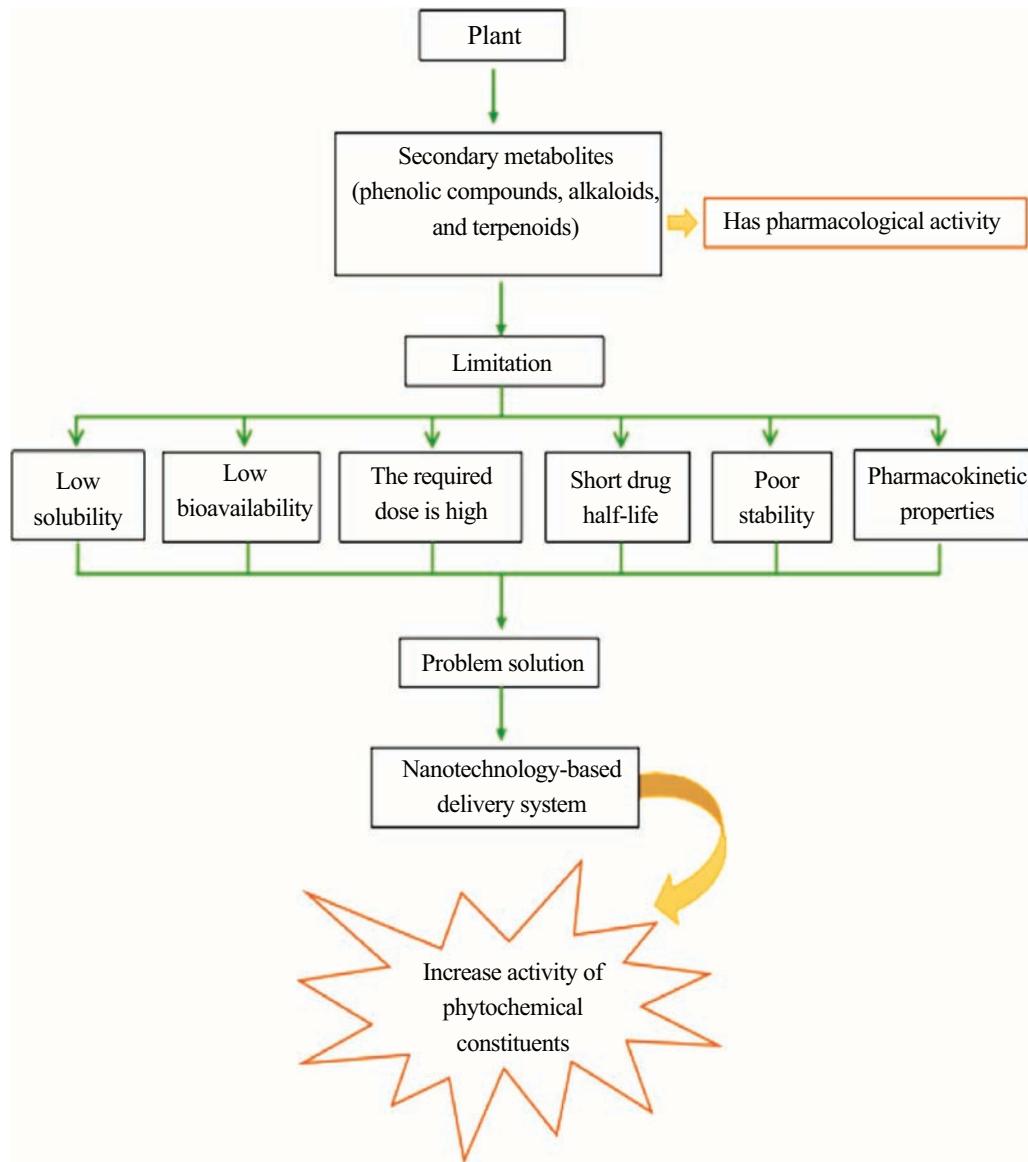
³ JPM College of Pharmacy, Bareilly, India

Abstract: Herbal nanotechnology is a groundbreaking amalgamation of herbal medicine and nanotechnology. This approach has advantages over conventional herbal formulations, such as improved solubility, enhanced bioavailability, and site-specific targeting. Nanocarriers like nanoparticles, nanocapsules, and nanosheets, allow precise delivery of herbal components, which reduce side effects and increase therapeutic efficacy. This chapter highlights the innovation in nanocarrier formulations, integration of therapeutic and diagnostic functionalities, harnessing of artificial intelligence (AI) and machine learning (ML) in the optimization of herbal nanoformulations, and future perspectives of herbal nanocarrier-based therapy. Upcoming advancements are anticipated to emphasize on the design of multifunctional nanocarriers with diagnostic capability, such as biosensing and bioimaging, and deliver therapeutic molecules, laying the foundation for personalized medication. Harnessing AI and ML in formulation and optimization accelerates the development and improves clinical significance in the innovation and formulation of novel herbal-based therapy. Nevertheless, the application of herbal nanocarrier therapy faces limitations, from innovation to clinical trials. Major challenge encompasses potential toxicity, long-term biocompatibility, and environmental impacts of nanomaterials. Developing thorough regulatory guidelines will guarantee the safety, efficacy, and ethical implementation of herbal nanotherapy.

Keywords: Diagnostic techniques, Herbal nanotherapy, Nanocapsule, Nano-sheets.

* Corresponding author Mukesh Kumar Singh: Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India; E-mail: mukeshbiotech09@gmail.com

INTRODUCTION


The therapeutic properties of plants have been extensively recorded in various ancient medicinal systems, including Chinese Medicine, Ayurveda, Siddha, and the Unani System of Medicine. Currently, plant sources or other natural origins are about one-third of the leading sources of medications [1]. However, the majority of pharmaceutical companies are disregarding this field due to multiple limitations, including a lack of understanding of the applications of herbal remedies for modern diseases such as cancer, viral infections, multidrug-resistant microbial infections, diabetes, obesity, and cardiovascular disorders. By introducing novel drug delivery systems (NDDSs) for herbal compounds, we can minimize the frequency of dosing, thereby enhancing patient compliance. Additionally, these systems enhance therapeutic efficacy by lowering toxicity and enhancing bioavailability along with other advantages [2].

Incorporating herbal extracts in innovative formulation systems offers significant merits, like addressing challenges related to large dosage sizes and improving absorption, which are significant challenges, hence attracting the interest of prominent pharmaceutical companies.

Nanotechnology focuses on developing devices and dosage forms that fall within the range of 1 to 100 nanometres. In medicine, nanotechnology is used for treating, diagnosing, monitoring, and regulating biological systems. These nanocarriers are composed of biocompatible ingredients like lipids, polysaccharides, and synthetic biodegradable polymers [3].

The effectiveness of herbal medications relies on the synergistic action of multiple active components, each playing a significant and interconnected role in enhancing therapeutic outcomes. However, many herbal-derived medications are insoluble, resulting in reduced bioavailability and amplified systemic clearance. Such behaviors often necessitate frequent administration, which makes them less suitable for therapeutic applications. The exploration of phytoformulations reveals that the creation of nanotechnology-based dosage forms, including proliposomes, solid lipid nanoparticles, polymeric nanoparticles such as nanospheres and nanocapsules, and nanoemulsions, offers significant advantages for herbal medications, as shown in Fig. (1). These advantages encompass improved solubility, bioavailability, and biocompatibility; augmented pharmacological efficacy; superior stability; targeted administration to tissue macrophages; sustained release; and protection against physical and chemical degradation. Nano-sized drug delivery methods for herbal treatments possess considerable promise to enhance efficacy and tackle problems in phyto therapeutics. The integration of nanocarriers as an innovative drug delivery system in conventional

medicine is essential for the treatment of chronic conditions such as asthma, cancer, and diabetes.

Fig. (1). Schematic representation of herbal nanotechnology.

IMPORTANCE OF NANO CARRIERS IN NATURAL TREATMENTS

Herbal medicine components often face degradation in the stomach's acidic environment or undergo metabolism in the liver, hindering their ability to enter

SUBJECT INDEX

A

Absorption 1, 2, 4, 13, 60, 62, 187, 191, 192, 207, 208, 209, 210, 220, 221, 225, 239
 carbohydrate 220
 cerebral 239
 Acid(s) 12, 58, 70, 73, 117, 118, 126, 130, 134, 153, 159
 aristolochic 58
 ascorbic 73
 boswellic 117, 126
 caffeoic 130
 chloroauric 12
 dehydroascorbic 73
 ellagic 153
 ferulic 70, 118, 134, 159
 ursolic 153
 Activity 4, 31, 54, 60, 61, 70, 117, 127, 128, 146, 150
 antimalarial 117, 127
 antimicrobial 127, 128
 diabetic 4
 gastrointestinal 60
 Agents 20, 102, 170, 195
 anti-inflammatory 195
 chemotherapeutic 102
 herbal antidiabetic 170
 oral hypoglycemic 20
 Alzheimer's disease 206
 Amyloid plaque 207
 Anti-apoptotic effects 160
 Anti-diabetic 38, 54, 67, 76, 151, 165, 174, 224
 effects 54, 67, 76, 151, 165, 224
 medications 38, 174
 Anti-inflammatory 58, 71, 195
 effects 71, 195
 medications 58
 Antibacterial 5, 88, 99, 113, 114, 125, 127, 130, 190
 activity 125, 127
 agents 88

properties 5, 114, 130
 Antibodies 97, 206
 therapeutic 97
 Antidepressants, tricyclic 61
 Antidiabetic 8, 33, 114, 135, 150, 153
 activity 114, 135, 153
 drugs 150
 effects 8
 medications 33
 Antimicrobial effect 128
 Antioxidant 5, 7, 12, 114, 148
 activity 7, 114, 148
 defenses 12
 effects 5, 7
 Antitumor activity 114
 Artemisinin 116, 117, 194, 196, 197, 198
 nano-liposomal 194, 197, 198
 traditional 197, 198
 Arterial sclerosis 66
 Arthritis 116, 208
 Artificial pancreas systems 39
 Asthma 63, 74, 91, 112, 116, 235
 bronchial 63
 morbidity 91
 Atherosclerosis 66, 195
 Atomic force microscopy (AFM) 129, 171
 Autoimmune disorders 195, 199
 Automated insulin systems 38
 Autonomous detection systems 92

B

Bioactive compounds, sensitive herbal 170
 Biodegradable polymers 93, 96, 165
 Biosensors 99
 for cardiac biomarkers 99
 for early detection 99
 Blood glucose 12, 36, 37, 43, 52, 145, 146, 147
 monitoring 43
 regulation 37
 Blood pressure 36, 52, 73

systolic 73
 Bloodstream act 102

C

 Cancer 2, 4, 68, 70, 74, 87, 96, 101, 102, 103, 104, 105, 106, 114, 115, 116, 117, 127, 190, 194, 195, 196, 197, 206, 219, 234, 235, 242
 breast 117, 127
 cervical 96
 colorectal 96
 gastrointestinal 116
 ovarian 104
 pancreatic 102, 103
 therapy 4, 87, 103, 190, 195, 196, 197, 242
 treatment 103, 194, 195, 206, 219

 Cardiac 4, 97
 conditions 4
 diseases 97

 Cardioprotective effects 207

 Cardiovascular 35, 186, 195, 198, 207, 234
 disorders 186, 195, 198, 207, 234
 system 35

 Cardiovascular disease(s) 32, 97, 99, 102, 145, 147, 194, 195, 197, 207, 216, 217
 deaths 216, 217
 treating 97

 Central nervous system (CNS) 15, 59, 115, 238
 depression 15

 Chemical(s) 55, 56, 61, 68, 72, 90, 92, 99, 117, 132, 151, 155, 156, 170, 192, 223, 234, 239
 cancer-causing 61
 compounds 68, 223
 degradation 234
 evaporate volatile 155
 hazardous 170
 life-sustaining 56
 messenger 72
 reduction 117
 vapor deposition 92

 Chronic 4, 194, 216
 inflammatory disorders 194
 metabolic condition 4, 216

 Column chromatography 156

 Coronary heart 53, 97
 disease 97
 disorders 53

 COVID-19 15, 54, 102, 105, 207
 epidemic 207
 pandemic 15, 54, 105
 vaccines 102

 Curcumin nanoparticles 194, 197
 in cancer therapy 197
 in cancer treatment 194

 Cystic fibrosis 65

 Cytotoxicity assays 172

D

 Damage 73, 75, 218
 nerve 75, 218
 oxidative 73

 Devices 40, 89, 90, 91, 92, 95
 fluorescent micro/nanoscale 91
 mobile 40
 nanofibrous delivery 95
 remote-controlled 89
 sensitive 92
 wearable 90

 Diabetes 2, 4, 11, 12, 29, 36, 38, 53, 64, 65, 150, 152, 165, 216, 218, 219, 228
 chemical-induced 65
 gestational 29, 53, 218
 mitochondrial 64
 therapy 2, 36, 38, 218
 treatment 4, 11, 12, 53, 150, 152, 165, 216, 219, 228

 Diabetes management 1, 4, 5, 31, 39, 42, 43, 144, 145, 146, 147, 149, 170, 173, 218, 225, 226
 techniques 218
 tool 225
 transform 173

 Diabetic 39
 cardiomyopathy 39
 foot ulcer 39

 Differential scanning calorimetry (DSC) 161, 171, 225

 Diseases 2, 5, 6, 30, 40, 43, 44, 52, 54, 65, 92, 93, 97, 98, 99, 104, 106, 112, 113, 133, 145, 174, 193, 195, 206
 autoimmune 2, 133
 chronic kidney 52
 coronary artery 97
 fungal 193
 hyperglycemia-based 174
 inflammatory bowel 195

metabolic 54
 neoplastic 133
 neurodegenerative 99, 206
 polymicrobial 98
 renal 30
 Dizziness 115, 198
 DNA 66, 92, 116, 164, 200
 damage 92, 200
 interaction 66
 Drug(s) 7, 62, 93, 95, 134, 146, 221
 development process 134
 formulations, traditional 93
 -herb interactions 62, 221
 insulin-sensitizing 146
 lipophilic 7, 95
 Drug delivery 1, 2, 11, 12, 38, 92, 93, 94, 102,
 105, 106, 124, 125, 126, 135, 157, 163,
 164
 properties 164
 systems (DDS) 1, 2, 11, 12, 38, 92, 93, 94,
 105, 106, 124, 125, 126, 135, 163
 systems, liposomal 124
 technology 102
 vehicles 157

E

Electrochemical methods, advanced 133
 Encapsulation techniques 172
 Endothelial dysfunctions 35
 Energy 128, 155, 240
 microwave 155
 solar 128
 transfer 240
 Environment 88, 90, 91, 92, 106, 148, 152,
 163, 167, 200, 201, 205, 206, 212
 gastrointestinal 148
 sensing 91
 Enzyme(s) 12, 29, 33, 35, 60, 61, 93, 104,
 130, 156
 diabetes-related 12
 inhibiting digestive 130
 inhibition 35
 metabolic 60
 Epithelial endocytosis 38

F

Factors 16, 31
 genetic 16

socioeconomic 31
 Fenugreek seeds 225
 Fibers 60, 61, 145
 soluble 61
 Fluid, interstitial 91
 Food(s) 37, 71
 consumption 37
 green 71
 Forces, mechanical 222
 Fourier transform 129, 171, 225
 infrared spectroscopy 129, 171

G

Gastric acidity 236
 Gastrointestinal 3, 61, 146, 160, 198, 210
 damage 3
 fluids 160
 issues 198
 motility 61
 Genes, pro-inflammatory cytokines 72
 Genetic predisposition 53
 Gluconeogenesis 4, 33, 220
 hepatic 220
 Glucose 1, 2, 5, 11, 12, 35, 37, 38, 72, 73, 91,
 92, 93, 94, 105, 106, 124, 125, 126, 135,
 147, 150, 153, 163, 165, 207, 217, 219,
 220, 224, 225
 absorption 5, 153, 165, 217, 220
 homeostasis 35, 37, 147
 metabolism 5, 72, 73, 150, 153, 207, 219,
 220, 224, 225
 oxidation 73
 sensors 91
 Glutathione transferase 61

H

Heart 35, 63, 97, 116
 disease, metabolic 63
 failure 35, 97
 rhythm 116
 Hematotoxicity effects 132
 Hemoglobin 10, 72, 73
 glycated 72, 73
 glycosylated 10
 Hemolysis assay 172
 Herbal 2, 3, 13, 14, 17, 19, 52, 53, 55, 56, 58,
 59, 60, 62, 63, 67, 68, 75, 76, 112, 118,
 123, 134, 148, 157, 168, 171, 172, 173,

174, 187, 189, 192, 193, 195, 197, 201, 202, 203, 204, 205, 206, 207, 209, 211, 212, 213, 217, 227, 228, 234, 236, 245
components, neuroprotective 206
drugs 13, 17, 19, 52, 53, 55, 60, 75, 76, 148, 168, 171, 172
medicine contamination 3
nano-therapies 134, 195, 197, 201, 202, 203, 204, 205, 211, 212, 213
nanocarrier development 172, 173
nanocarrier system 2, 174
nanomedicine 112, 118, 187, 192, 217, 227, 228
therapeutics 118
therapy 63, 112, 123, 157, 189, 193, 207, 209
treatments 14, 52, 55, 56, 58, 59, 62, 67, 234, 236, 245
Herbal chemicals 169, 207
antiviral 207
Herbal medications 7, 54, 55, 56, 59, 68, 76, 135, 209, 210, 234, 242
antiatherosclerosis 135
Herbal medicines 3, 5, 6, 14, 15, 16, 17, 55, 57, 62, 112, 113, 116, 118, 147, 186, 192, 196, 212, 221, 227, 244, 245
traditional 62, 186, 192, 196, 212, 221, 244, 245
transform 118
Herbs 56, 57, 60, 61, 62, 68, 75, 76, 149, 151, 152, 153, 154, 218, 219, 220, 221
antidiabetic 149, 151
lipid-metabolism-regulating 154
High-pressure homogenization 119, 168, 237
method 168, 237
techniques 119
HPH techniques 118
Hydrophobic 121, 163, 190, 210, 239
encapsulating 239
phytoconstituents 121
Hyperglycemia 4, 29, 31, 52, 53, 65, 68, 73, 147, 160, 174
and glucose metabolism 73
Hyperlipidemia 74
Hypertension treatments 174
Hypoglycemic 72, 75
activity 75
medications 72

I

Illnesses 28, 31, 40, 53, 54, 55, 64, 68, 70, 72, 74, 75, 147, 191, 239
chronic 54, 72, 191
microbiological 70
Immune homeostasis 199
Infections 4, 53, 234
multidrug-resistant microbial 234
pulmonary 4
virus 53
Infectious 94, 97, 98, 99, 104, 106, 207
diseases 94, 97, 98, 99, 104, 106, 207
disorders 207
Inflammation 52, 70, 72, 91, 132, 147, 154, 195, 199, 220
chronic 147, 154
Inflammatory conditions, chronic 195, 197, 199
Insulin 2, 4, 5, 11, 12, 28, 29, 32, 33, 34, 36, 41, 42, 53, 65, 70, 72, 74, 75, 147, 148, 150, 153, 154, 218, 219, 220
oral 41
action 72
activity and glucose metabolism 150
biosynthesis 150
production 5, 65, 153
pump systems 28
sensitivity 5, 11, 12, 33, 34, 36, 72, 147, 150, 153, 154, 218, 219, 220
Insulin delivery 39, 40, 146
automating 146
oral 39

K

Kidney diseases 40

L

LDL cholesterol 5
Lipid 1, 20, 102, 103, 105, 147, 195
metabolism 147, 195
nanoparticles 1, 20, 102, 103, 105
Liquid extraction technique 237
Lung disorders 63, 116
Lysosomal machinery 98

M

- Macrovascular disorders 145
- Magnetic resonance imaging (MRI) 93, 104
- Medications 67, 119, 145
 - oral 67, 145
 - thermosensitive 119
- Medicinal herbs 18, 54, 61, 68, 152, 224
- Medicine, conventional anti-diabetic 225
- Metabolic disorders 29, 144, 207, 217
 - diabetes-related 217
- Metabolic syndromes 186
- Metabolism 3, 15, 53, 60, 61, 75, 92, 148, 151, 172, 188, 199
 - carbohydrate 148
- Microbial disorders 74
- Microvascular 73, 145
 - disorders 145
 - dysfunction 73
- Microwave-assisted extraction (MAE) 155, 192
- Monogenic syndromes 65
- MTT assay 125

N

- Nano encapsulation techniques 3
- Nanoformulation techniques 186
- Nanomaterials 84, 85, 90, 99, 100, 101, 103, 105, 112, 167, 206, 242, 243
 - hybrid 206
- Nanoparticle(s) 11, 38, 85, 87, 88, 102, 104, 127, 128, 130, 131, 132, 134, 165, 168, 169, 187, 188, 190, 199, 200, 206, 223, 241
 - carbon-based 88
 - dry 168
 - fabrication 165
 - green synthesized antidiabetic 11
 - hybrid 223
 - inorganic 87, 128
- Nanoparticle-based vaccines 99
 - for infectious diseases 99
 - for neurological diseases 99
- Nanoprecipitation technique 237
- Nanostructured lipid carriers (NLCs) 9, 10, 160, 163, 237
- Neurodegenerative disorders 14, 97, 115, 206
- Neurological 4, 97, 99, 239
 - degenerative conditions 4

diseases 99

- disorders 97, 99, 239
- Neurons, pathologic 97
- Neuropathy 30, 32, 37, 39, 75, 145, 218
 - diabetic 37, 39
 - diabetic peripheral 30
- Noncommunicable diseases 97
- Nonketotic hyperosmolar syndrome 29
- Novel drug delivery systems (NDDSs) 124, 125, 135, 234
- Nuclear magnetic resonance (NMR) 156, 241

O

- Oxidative stress 5, 65, 66, 72, 73, 132, 133, 147, 148, 150, 154, 158
 - biomarkers 73
 - preventing 148
- Oxide nanoparticles 89, 132, 239
 - aromaticum-loaded copper 132
 - superparamagnetic iron 239

P

- Polydispersity index (PDI) 161, 162, 171, 240
- Properties 7, 12, 14, 19, 52, 68, 76, 94, 120, 127, 128, 150, 162, 165, 170, 174, 187, 208, 223, 227
 - anti-cancer 187
 - anti-diabetic 7, 19, 68, 76, 150
 - anti-hypoglycaemic 52
 - anti-inflammatory 208
 - antimicrobial 127
 - diabetic 68
 - enzyme-inhibiting 170

Q

- Quality 54, 61, 75, 190
 - anti-hypoglycemic 54
 - anti-inflammatory 190
 - anticancer 61
 - antipyretic 75

R

- Reactive oxygen species (ROS) 65, 66, 72, 127, 133
- Rheumatoid arthritis 194, 195

S

- Scanning electron microscopy 10, 129
- Sensitivity, insulin receptor 220
- Sensors, nanotube-based glucose 91
- Skin 5, 198, 209
 - discomfort 209
 - radiance 5
 - rashes 198
- Solid lipid nanoparticles (SLNs) 2, 9, 10, 93, 95, 160, 163, 190, 195, 205, 208, 210
- Supercritical fluid extraction (SFE) 155, 168, 192
 - method 168
- Surface plasmon resonance (SPR) 88, 128, 241
- Synthesis 4, 55, 72, 112, 116, 121, 123, 127, 166, 167, 206, 223
 - cytokine 72
 - glycogen 4
 - green 112, 127, 206, 223

T

- Technique 113, 117, 118, 120, 121, 123, 128, 129, 156, 163, 167, 168, 222, 223, 240
 - calorimetric 240
 - column chromatography 156
 - mechanical 118
- Technologies, communication 28
- Thermal degradation 171
- Thermogravimetric analysis (TGA) 171, 240
- Thin film hydration method 117
- Traditional 14, 15, 67, 148
 - herbal anti-diabetic drugs 67
 - medical systems 14
 - medicinal herbs 67
 - medicine systems 15, 148

U

- Ultrasonic-assisted extraction (UAE) 155
- Ultraviolet-visible spectroscopy 241
- UV-visible spectroscopy 156

W

- Wound healing activity 69

X

- X-ray photoelectron spectroscopy (XPS) 172, 224
- XRD technique 130

Z

- Zebrafish reproductive system 134

Prashant Upadhyay

Prashant Upadhyay is Professor and Head, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, India with 20 years of teaching experience. He is PhD (Pharmacy) from Dr. APJ Abdul Kalam Technical University, India in 2016 and M.Pharm (Industrial Pharmacy) from SGB Amravati University, India in 2006. He supervised 06 PhD and 32 M.Pharm, published 68 Research Papers, 12 Patent Grants, and authored 06 Books and 05 Chapters for Cambridge Scholars Publishing, Taylor and Francis Publishers. He is also Bentham Ambassador, Reviewer of Springer Nature, and his research area includes Gastroretentive, Transdermal, Nanomedicines, Vesicular, and Lipid-based Drug Delivery Systems.

Sukirti Upadhyay

Sukirti Upadhyay is Professor in the Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, India, with 16 years of teaching experience. She is B.Pharm and M.Pharm from Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar (M.P), India, and Ph.D (Pharmacy) in 2016 from Dr APJ Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India. She published 50 research papers, 04 Patent Grants, authored 07 books, and supervised 03 Ph.D and 14 M.Pharm. She is also Bentham Ambassador and her research interests include Ayurveda, Phytochemistry, Phytopharmacology, and Cosmetic science.