UKOT'S BACK TO BASICS MINISTRACTOR OF THE PROPERTY OF THE PROP

PHARMACOLOGY AND
THERAPEUTICS, PARASITOLOGY,
AND INTERNAL MEDICINE

Inyang Ukot

Ukot's Back to Basics MCQs: Pharmacology and Therapeutics, Parasitology, and Internal Medicine

(*Volume 2*)

Authored by

Inyang Ukot

Impact Clinics Ltd.
Plot 11, Road 1, Federal Housing Estate Off Abak Road
Uyo, Akwa Ibom State, Nigeria

Ukot's Back to Basics MCQs: Pharmacology and Therapeutics, Parasitology and Internal Medicine

(Volume 2)

Author: Inyang Ukot

ISBN (Online): 979-8-89881-102-0

ISBN (Print): 979-8-89881-103-7

ISBN (Paperback): 979-8-89881-104-4

© 2025, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore, in collaboration with Eureka Conferences, USA. All Rights Reserved.

First published in 2025.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.org.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

- 1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
- 2. Your rights under this License Agreement will automatically terminate without notice and without the

- need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.
- 3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.

No. 9 Raffles Place Office No. 26-01 Singapore 048619 Singapore

Email: subscriptions@benthamscience.net

CONTENTS

FOREWORD	i
PREFACE	iv
DEDICATION	v
ACKNOWLEDGEMENTS	vi
INTRODUCTION	vii
CHAPTER 1 MCQS ON PHARMACOLOGY AND THERAPEUTICS	1
CHAPTER 2 PARASITOLOGY MCQS	46
CHAPTER 3 INTERNAL MEDICINE MCQS	75
CHAPTER 4 ANSWERS AND NOTES FOR PHARMACOLOGY AND THERAPEUTICS	121
CHAPTER 5 ANSWERS AND NOTES FOR PARASITOLOGY	155
CHAPTER 6 ANSWERS AND NOTES FOR MCQS IN INTERNAL MEDICINE	181
CHAPTER 7 DIFFERENTIAL DIAGNOSES	217
REFERENCES	255
SUBJECT INDEX	271

FOREWORD

This MCQ book contains material that reasonably covers the three specialties indicated in its subtitle, yet is of a reasonable size. It is unique for at least the fact that it is a shift from the paradigm for most textbooks in the field of medicine.

The book covers three hundred and ninety-five multiple-choice questions (MCQs) in the single best answer format. Each MCQ has an unambiguous stem, which is further enhanced by making the font bold. The book makes a reasonable attempt to apply Bloom's taxonomy offering a balanced distribution of multiple-choice questions across both the lower and higher cognitive levels, therefore making the book suitable for medical students and clinicians. Every MCQ in this book provides the reader with four options, of which only one is the best, qualifying it to be the Answer. No matter how close any of the other options are, just one is the correct Answer; the reader should choose that one correct answer.

This book claims answers that are backed by some sound notes. Some of the notes are satisfactorily referenced using the Vancouver style. This book further includes a comprehensive Index, thus providing the reader with what is an uncommon feature of existing competing MCQ books.

Chapters 1 and 4 of this book are on **Pharmacology and Therapeutics**. Chapter 1 is devoted to the MCQs, and Chapter 4 contains the Answers and Notes for the MCQs. Chapter 1 has MCQs on the following topics: Anthelminthics, antiprotozoals, scabicides, pediculicides, anti-trypanosome drugs, benzodiazepines, antipsychotics, antidepressants, anti-seizure medications, cardiac medications, antihypertensives, bronchodilators, nasal decongestants, acetylsalicylic acid, acetaminophen, non-steroidal anti-inflammatory drugs, narcotic analgesics, antacids, histamine-h2 receptor blocking agents, laxatives, antidiarrheal medications, topical dermatological agents, and antibiotics.

Chapter 2 and Chapter 5 contain MCQs on **Parasitology**. There are ninety-five questions that the author selected carefully. These two chapters give the reader a clear idea of the globally relevant parasitic diseases and the parasitic agents that cause them. The chapters are important because the prevalence of the parasitic conditions is not uniform; another reason is that these diseases are usually

communicable. Moreover, certain parasitic diseases are virtually indistinguishable from other diseases that are caused by bacteria and viruses. In these days of frequent travel, some parasitic diseases that are prevalent in one part of the world can easily be found in another part of the world where such diseases were rare. It is important for a doctor to be conversant with them right from when they were in medical school. The following parasitic diseases and the parasites that cause them are discussed: Dracunculiasis, Ascariasis, Hookworm disease, Cutaneous larva migrans, Trichuriasis, Enterobiasis, Taeniasis, Cysticercosis, Echinococcosis, Hymenolepiasis, Dipylidiasis, Paragonimiasis, Schistosomiasis, Fasciolopsiasis, Fascioliasis, Amebicali liver abscess, Giardiasis, Trichomoniasis, Dientamoebiasis, Balantidiasis, Cystoisosporiasis, Leishmaniasis, Toxoplasmosis, and Malaria. These clinical conditions come under infections that nematodes, cestodes, trematodes, and protozoa cause. In Chapter 2, the questions are mixed.

Chapters 3 and 6 include selected topics related to Internal medicine. These important topics come under bacterial infections, viral infections, cardiorespiratory diseases, neurological conditions, gastrointestinal diseases, hematological conditions, genetic disorders, renal diseases, thyroid and pituitary diseases, alcohol-related illness, snake bites, and diabetes mellitus. Bacterial infections in this book are meningococcal infections, tetanus, pneumonia, lung abscess, bronchiectasis, empyema thoracis, pulmonary tuberculosis, chronic bronchitis, extrapulmonary tuberculosis, typhoid fever, infections by the Enterobacteriaceae, Bacteroides and anaerobic infections, pyelonephritis, and septicemia. These chapters also treat viral infections like viral hepatitis, influenza, mumps, Burkitt's lymphoma, HIV/AIDS, COVID-19, Picornavirus infections, Rhabdovirus infections, Slow-virus diseases, RNA tumor virus diseases, and Lassa fever. Chapter 3 also covers questions on non-communicable diseases like pulmonary embolism, pneumothorax, bronchial carcinoma, angina pectoris, myocardial infarction, cardiac arrhythmias, hypertension, cardiomyopathy, heart failure, cardiac arrest, frontal lobe syndrome, Parkinsonism, pontine lesions, cerebellar disease, tropical ataxic neuropathy, subarachnoid hemorrhage, Horner's syndrome, liver cirrhosis, nephrotic syndrome, Meig's syndrome, malabsorption syndrome, anemia, leukemia, thrombocytopenia, autosomal abnormalities, recessive genetic abnormalities, acute kidney injury, hyperthyroidism, Graves' disease, hypopituitarism, alcoholism, snake bites, and diabetes mellitus.

I commend the author of this work for being painstaking to combine these specialties in one book. This book will definitely serve its target audience a good purpose. The book should be invaluable to medical students, general medical practitioners, and residents in the early part of any of the medical specialties—for the latter, Chapters 1 and 4, which cover **Pharmacology and Therapeutics**, would be the most relevant.

Saturday Etuk

Provost of College of Medical Sciences (2010–2014)
University of Calabar
Calabar, Nigeria

&

Chief Consultant Obstetrician and Gynecologist University of Calabar Teaching Hospital Calabar, Nigeria

PREFACE

Ukot's Back to Basics MCQs: Pharmacology and Therapeutics, Parasitology, and Internal Medicine should be a welcome addition to the plethora of books on the various subjects and specialties in medicine. In medicine, questions of the multiple-choice format have been a great resource for medical students to do self-assessments on numerous subjects at the undergraduate level. At the postgraduate level, residents also need to assess themselves in their areas of specialization. Regular self-testing enables the student or doctor to know how much acquired and retained medical information in the subjects can be reproduced, applied, analyzed, or used to create novelty. Testing oneself becomes a critical exercise as one prepares for any of the numerous professional examinations that medical students and postgraduate doctors must contend with.

This book attends to select areas/topics in **Pharmacology and Therapeutics**, **Parasitology**, and **Internal Medicine** that every medical student anywhere ought to be familiar with. This means that the reader should take these well-chosen topics to be the ones that an examiner in a medical school in any part of the world would not pardon a gross ignorance in.

Ukot's Back to Basics MCQs: Pharmacology and Therapeutics, Parasitology, and Internal Medicine is also designed to enable general doctors who are usually very busy in their day-to-day practices to return to the basics of medical practice without having to purchase and read the books all of us read in our pre-clinical and clinical years. The book therefore has three hundred and ninety-five MCQs of the Single Best Answer (SBA) format, with each question having four Answer options, the Answer, and robust Notes – only a few of the Notes are less than three lines long.

Inyang Ukot
Impact Clinics Ltd.
Plot 11, Road 1, Federal Housing Estate Off Abak Road
Uyo, Akwa Ibom State, Nigeria

v

DEDICATION

This book is dedicated to my last daughter Joy Inyang Ukot.

ACKNOWLEDGEMENTS

Although it is unknown to them, the patients who I have attended to over the years, have played a monumental role in the conceptualization, contents, and actualization of this work. The patients are numerous and while none can be pinpointed, the experience of their consulting me in the outpatient setting, ward, emergency room, and operating room settings has egged me on to attempt and actualize this project.

INTRODUCTION

Ukot's Back to Basics MCQs: Pharmacology and Therapeutics, Parasitology, and Internal Medicine is Volume 2 of the three-volume book series on multiple-choice questions. It was difficult to select, set, and cover the topics in the three MCQ Chapters of this book. This is because each of the Chapters is on a clear and standard, specific, medical specialty. The fact is that most academics in medicine recognize and treat the various broad specialties and their sub-specialties as standalone – which explains why the majority of textbooks on medicine deal only with a specialty or sub-specialty. This paradigm exists for multiple-choice books too.

This author chose to deviate from the archetype. What this author has attempted to do (and successfully done) in this work is to show the relationship between **Pharmacology and Therapeutics, Parasitology, and Internal Medicine.** This deliberate exploratory move is despite the fact that each of these three specialties has enough topics and conditions to provide material for another textbook or another multiple-choice questions book. The author of this book did not attempt to cover these specialties in the 395 multiple-choice questions because that would have been an impossibility. What the author has done with the contents of this book is to simply whet the appetite of the reader for further reading; this has been achieved by returning to and simplifying the subject principles, and concomitantly prying into the reader's analytical abilities when they encounter the clinical scenarios that some of the MCQs create and present.

The reader should note that some topics have just one, two, or three questions while others have more than ten. Using Pharmacology and Therapeutics (Chapters 1 and 4), good examples of a few questions are Scabicides and Pediculicides, which have one question each, and the one with many questions is Antibiotics that has more than twenty MCQs. The author chose to create a balance by providing relatively robust Notes for Scabicides (297 words), and Pediculicides (286 words) and short Notes on Antibiotics (some of which are just an average of thirty words). So, the reader receives enough information from the Notes on the scanty MCQs but obtains adequate information from the many multiple-choice questions that are set under Antibiotics. There are two answers to this apparent eccentricity.

The first answer is in the fact that diabetes mellitus had to give way to other diseases so that many topics could be squeezed into the remaining questions and hopefully provide, at the least, a bird's eye view of Internal Medicine. The second answer is that the author compensated diabetes mellitus in the Chapter on Answers and Notes (Chapter 6) where the Notes on this disease entity occupy 15% of the contents of that Chapter, thus adequately addressing the multi-faceted features of diabetes mellitus. This pattern of providing a compensatory mechanism runs through this book and makes the book have an overall recognizable contents balance despite its size.

Other exciting features of this MCQ book are as follows:

- o References for each Chapter at the end of the Chapter.
- O Differential diagnoses that make up an entire Chapter—Chapter 7; some of the differential diagnoses are referenced, with the references appearing at the bottom of Chapter 7. The differential diagnoses are arranged according to the Chapters, with the entries starting from Chapter 3.
- O Comprehensive references to which the chapter preceding the Index (*i.e.*, Chapter 8) is devoted. Chapter 8 therefore incorporates Chapter 1 to Chapter 7 References.
- o A detailed Index.

The organization of Ukot's Back to Basics MCQs: Pharmacology and Therapeutics, Parasitology, and Internal Medicine makes the reader's reading experience a pleasant one.

CHAPTER 1

MCQs on Pharmacology and Therapeutics

Abstract: Chapters 1 and 4 of this book are on Pharmacology and Therapeutics. While Chapter 1 is devoted to the Multiple-Choice Questions (MCQs), Chapter 4 contains the Answers and Notes for the MCQs. Chapter 1 has multiple-choice questions on the following twenty-three drug classes and specific drugs: Anthelminthics, Antiprotozoals, Scabicides, Pediculicides, Anti-trypanosome drugs, Benzodiazepines, Antipsychotics, Antidepressants, Anti-seizure medications, Cardiac medications, Antihypertensives, Bronchodilators, Nasal decongestants, Acetylsalicylic acid, Acetaminophen, Nonsteroidal anti-inflammatory drugs, Narcotic analgesics, Antacids, Histamine-H2 receptor blocking agents, Laxatives, Antidiarrheal medications, Topical dermatological agents, and Antibiotics.

Keywords: Anti-infectives, Antihypertensives, Analgesics, Topical dermatological agents.

INTRODUCTION

This chapter contains one hundred and fifty carefully selected multiple-choice questions. The questions are crafted to be attractive to every reader; the author has achieved this by making over 90% of the questions stay at the level of the fundamentals of pharmacology and therapeutics. The chapter hardly contains questions that are at the higher levels of Bloom's taxonomy. It is only in the notes that accompany the answers of some MCQs that the author provides some important details with respect to the clinical care of patients. Occasionally mechanisms of action of some of the drug classes are attended to. Every reader should attempt all the multiple-choice questions as they not only test the reader's knowledge in terms of understanding and remembering but the questions are also designed to be of relevance to the reader in the rest of the book. The reader will discover the link as they go to Chapters 2 and 5, and Chapters 3 and 6. Most of the questions are therefore targeted at medical students and practicing physicians who are eager to "going back to their roots."

The MCQs in this book are of the Single Best Answer format (SBA). For every question, choose the best of the four options as the Answer.

Inyang Ukot All rights reserved-© 2025 Bentham Science Publishers

Antiparasitic Drugs: Anthelminthics

1. Which of the following statements about mebendazole is correct?

- A. It is available as 25mg tablets.
- B. It is a benzimidazole derivative.
- C. It acts by inhibiting DNA synthesis in helminths.
- D. It is given to adults at a dose of 100mg twice daily for two days for hookworm disease.

2. Which of the following organisms would mebendazole be ineffective in treating the disease it causes?

- A. Taenia saginata.
- B. Ascaris lumbricoides.
- C. Trichuris trichiura.
- D. Strongyloides stercoralis.

3. Which of the following statements pertaining to piperazine is inaccurate?

- A. It is effective for the treatment of roundworm infestation.
- B. It should not be used in patients with seizure disorder.
- C. In the treatment of ascariasis, it should be given to a 15-year-old child or an adult at a dose of 500mg/day for two days.
- D. It acts by paralyzing helminths.

4. Regarding piperazine, which of the following statements is correct?

- A. It does not treat pinworm infestation.
- B. It should be taken after breakfast.
- C. It has no gastrointestinal side effects.
- D. It should be given to children at a dose of 75mg/kg/day for two days in ascariasis.

5. Which of the following statements about thiabendazole is incorrect?

- A. It is structurally related to mebendazole.
- В. It should be given to a 60kg patient at a dose of 1.5g/day for two days.
- C. It is contraindicated in children confirmed to have helminthic infestations.
- D. It may cause anorexia and vomiting.

6. Which of the following diseases is thiabendazole effective for treating?

- Schistosomiasis. A.
- В. Trichuriasis.
- C. Hookworm disease.
- D. Cutaneous larva migrans.

7. Which of the following drugs is not useful in the treatment of enterobiasis?

- A. Metronidazole.
- В. Mebendazole.
- C. Pyrantel pamoate.
- D. Albendazole.

Parasitology MCQs

Abstract: Chapter 2 and Chapter 5 of this book are designed to give the reader a lucid idea of the most common parasitic diseases globally and the parasitic agents that cause them. The chapter is important because although parasitic diseases are global, their distribution around the world is not uniform; another reason for its importance is that these diseases are frequently communicable. Some parasitic diseases also tend to mimic other diseases that are caused by bacteria and viruses. The third reason is that in these days of frequent traveling, some parasitic diseases that are prevalent in one part of the world can easily be found in another part of the world where such diseases were hitherto uncommon. It is important for a doctor to know about them (and even become familiar with their presentation) right from medical school years.

Keywords: Cestode infections, Nematode infections, Protozoal infections, Trematode infections.

INTRODUCTION

This chapter contains Multiple-Choice Questions (MCQs) on parasitology. There are ninety-five questions which the author selected carefully; thus they form a good representation of the most common parasitic diseases on the global scene. The following parasitic diseases and the parasites that caused them are discussed: Dracunculiasis, Ascariasis, Hookworm disease, Cutaneous larva migrans, Trichuriasis, Enterobiasis, Taeniasis, Cysticercosis, Echinococcosis, Hymenolepiasis, Dipylidiasis, Paragonimiasis, Schistosomiasis, Fasciolopsiasis, Fascioliasis, Amebic liver abscess, Giardiasis, Trichomoniasis, Dientamoebiasis, Balantidiasis, Cystoisosporiasis, Leishmaniasis, Toxoplasmosis, and Malaria. These clinical conditions come under infections caused by Nematodes, Cestodes, Trematodes, and Protozoa. In this Chapter, the questions are mixed.

The MCQs in this book are in the Single Best Answer (SBA) format. Choose the best of the four options as the answer for every question.

151. Dracontiasis: Which of the statements below is correct?

- A. It usually affects the face.
- B. It is spread by the gravid adult female worm discharging larvae when the affected part touches water.
- C. It does not cause arthritis.
- D. It is a cause of low morbidity in endemic areas [1].

152. Which of the following is correct for guinea worm infestation?

- A. It involves ingestion of water infested by a crustacean.
- B. It is caused by the bite of Cyclops on the exposed part of the body in contact with water.
- C. Extraction of the larvae is part of the treatment.
- Ivermectin is used for treatment. D.

153. Ascariasis: Which of the statements below is correct?

- A. It is a trematode disease.
- B. It is transmitted by the fecal-oral route.
- C. It is caused by an adult worm that is not visible to the naked eye.
- D. It can only be diagnosed by stool microscopy.

154. Ascaris lumbricoides: Which of the statements below is correct?

- A. Eggs survive in hot, dry soil.
- B. It is infective at the embryonated egg stage.
- C. It is found in human feces that contains segmented eggs of the worm.
- D. It is a tiny intestinal roundworm.

155. Which of the following statements about ascariasis is incorrect?

- A. It is a known cause of lymphocytosis.
- B. It may cause cough and abdominal pain.
- C. It causes intestinal obstruction, especially in small children.
- D. It can be treated satisfactorily with pyrantel pamoate.

156. Hookworm disease: Which of the statements below is correct?

- A. Necator americanus and Ancylostoma duodenale are causative organisms.
- B. It starts with penetration of intact skin by the infective egg.
- C. It causes a swimmer's itch.
- D. It can be diagnosed by macroscopic examination of stools.

157. Hookworm disease: Which of the statements below is correct?

- A. It is a known cause of macrocytic anemia.
- B. It usually causes malabsorption syndrome.
- C. It may coexist with ascariasis.
- D. It causes anemia that is treated with folic acid.

158. Cutaneous larva migrans: Which of the statements below is incorrect?

- A. It is caused by dog hookworms.
- B. It manifests as serpiginous cutaneous lesions.
- C. It rarely causes pruritus[89].
- D. It may be complicated by bacterial infection.

CHAPTER 3

Internal Medicine MCQs

Abstract: Chapters 3 and 6 are on selected topics in Internal medicine. These essential topics come under bacterial infections, viral infections, cardio-respiratory diseases, neurological conditions, gastrointestinal diseases, hematological conditions, genetic disorders, renal diseases, thyroid and pituitary diseases, alcohol-related illnesses, snake bites, and diabetes mellitus.

Keywords: Bacterial infections, Viral infections, Non-communicable diseases.

INTRODUCTION

When considered in detail, the specific topics on which multiple-choice questions are set in Chapter 3 (and Answers and Notes are provided for the corresponding topics in Chapter 6) are bacterial infections like meningococcal infections, tetanus, pneumonia, lung abscess, bronchiectasis, empyema thoracis, pulmonary tuberculosis, chronic bronchitis, extrapulmonary tuberculosis, typhoid fever, infections by the Enterobacteriaceae, Bacteroides and anaerobic infections, pyelonephritis, and septicemia. The chapter also includes viral infections like viral hepatitis, influenza, mumps, Burkitt's lymphoma, HIV/AIDS, COVID-19, Picornavirus infections, Rhabdovirus infections, slow-virus diseases, RNA tumor virus diseases, and Lassa fever. The chapter also has questions on noncommunicable diseases like pulmonary embolism, pneumothorax, bronchial carcinoma, angina pectoris, myocardial infarction, cardiac arrhythmias, hypertension, cardiomyopathy, heart failure, cardiac arrest, frontal lobe syndrome, Parkinsonism, pontine lesions, cerebellar disease, tropical ataxic neuropathy, subarachnoid hemorrhage, Horner's syndrome, liver cirrhosis, nephrotic syndrome, Meig's syndrome, malabsorption syndrome, anemia, leukemia, thrombocytopenia, autosomal abnormalities, recessive genetic abnormalities, acute kidney injury, hyperthyroidism, Graves' disease, hypopituitarism, alcoholism, snake bites, and diabetes mellitus.

The MCQs in this book are of the Single Best Answer (SBA) format. Choose the best of the four options as the Answer for every question.

Inyang Ukot All rights reserved-© 2025 Bentham Science Publishers

Bacterial Infections

246. Regarding meningococci, which of the following statements is correct?

- A. They are Gram-positive cocci.
- B. They normally occur in pairs when cultured.
- C. They are morphologically like the organism that causes typhoid.
- D. Isolation of the organisms is enhanced if the culture medium contains blood or serum.

247. Which of the following organisms is not an etiological agent of acute meningitis?

- A. The pneumococcus.
- B. Haemophilus influenzae.
- C. Escherichia coli.
- D. Neisseria gonorrhoeae.

248. Which of the following statements about meningococcal septicemia is correct?

- A. It is a common presentation of meningococcal infection.
- B. Petechial hemorrhages are readily identified in dark-skinned patients.
- C. Severe hypertension is a complication of the infection.
- D. Disseminated Intravascular Coagulation (DIC) is a complication.

249. Which of the following statements about pyogenic meningitis is correct?

- A. The meningococcus is an uncommon cause of epidemic meningitis.
- B. Meningitis following chronic bone or paranasal sinus infection is most likely due to *Haemophilus influenzae*.
- C. The features usually unfold over a period of two weeks.
- D. An adult may present with just fever and confusion.

250. Which of the following is a positive indicator of pyogenic meningitis in an adult?

- A. Cerebrospinal fluid under pressure during lumbar puncture.
- B. Clear cerebrospinal fluid.
- C. Reduced cerebrospinal fluid protein concentration.
- D. Raised levels of glucose in the cerebrospinal fluid.

251. Which of the following does not constitute a part of the treatment of acute pyogenic meningitis?

- A. Intravenous fluids.
- B. Intravenous antibiotic.
- C. Diazepam.
- D. Sulfonamides.

CHAPTER 4

Answers and Notes for Pharmacology and Therapeutics

Abstract: Chapters 1 and 4 of this book are on pharmacology and therapeutics. While Chapter 1 is devoted to the Multiple-Choice Questions (MCQs), Chapter 4 contains the answers and notes for the MCQs. Chapter 1 has multiple-choice questions on the following twenty-three drug classes and specific drugs: anthelminthics, antiprotozoals, scabicides, pediculicides, anti-trypanosome drugs, benzodiazepines, antipsychotics, antidepressants, anti-seizure medications, cardiac medications, antihypertensives, bronchodilators, nasal decongestants, acetylsalicylic acid, acetaminophen, non-steroidal anti-inflammatory drugs, narcotic analgesics, antacids, histamine-h2 receptor blocking agents, laxatives, antidiarrheal medications, topical dermatological agents, and antibiotics.

Keywords: Anti-infectives, Antihypertensives, Analgesics, Topical dermatological agents.

INTRODUCTION

This chapter contains answers and notes to the one hundred and fifty carefully selected multiple-choice questions in Chapter 1. The questions in Chapter 1 are crafted to be attractive to every reader; the author has achieved this by making over 90% of the questions stay at the level of the fundamentals of pharmacology and therapeutics. That Chapter hardly contains questions that are at the higher levels of Bloom's taxonomy. It is only in these notes that accompany the answers to some MCQs that the author provides some details that are of importance in the clinical care of patients. Occasionally mechanisms of action of some of the drug classes are attended to. Every reader should attempt all the multiple-choice questions before coming to Chapter 4, for they not only test the reader's knowledge in terms of understanding and remembering but the questions are also designed to be of relevance to the reader in the rest of the book. The reader will discover the link as they go to Chapters 2 and 5, and Chapters 3 and 6. Most of the questions are therefore targeted at medical students and practicing physicians who are desirous of "going back to their roots".

Antiparasitic Drugs: Anthelminthics

- **1. B** Mebendazole is a synthetic benzimidazole derivative. It is available as 100mg tablets that are taken twice daily for three days. Its side effects include abdominal pain, diarrhea, headache, and dizziness - these are mild and transient [1]. By binding irreversibly to colchicine-sensitive sites on tubulin, mebendazole blocks the assembly of microtubules in the worm. The results are inhibition of the uptake of glucose by the worm and inhibition of cell division. Inhibition of the uptake of glucose, however, does not affect serum glucose levels in the human host. The inhibition of the uptake of glucose in the worm results in glycogen stored in the nematode being used more rapidly; this is the main source of energy for the worm that is being depleted to the disadvantage of the parasite [1]. The absorption of mebendazole from the gastrointestinal tract is low (less than 10%) and this poor penetration into tissue makes it a poor alternative to albendazole. Albendazole is not only available globally but it is also easier to take as a single dose. Cure rates with albendazole are also better [2]. Metabolism of mebendazole takes place in the human liver and this is by amide hydrolysis and ketone reduction. There are options for taking mebendazole tablets: chewing, swallowing whole, or crushing with food. It is recommended to wait for a minimum of seven days after completing the treatment regimen prior to retesting the patient for a cure of the helminthic disease.
- **2.** A Mebendazole is effective in treating the nematodes (roundworms) *Ascaris lumbricoides*, *Trichuris trichiura*, and *Strongyloides stercoralis* not *Taenia saginata* that is a cestode. Cestodes are tapeworms. The class name of cestodes is Cestoidea (cestoda) and the class belongs to the phylum Platyhelminthes.
- **3.** C The dose of piperazine is 3.5g/day. Piperazine acts by paralyzing nematodes. The mode of action of piperazine is hyperpolarization and a reduction in spike frequency in the worm [3]. It is unsafe in patients with renal impairment and should not be used in patients with seizure disorder.
- **4. D** Piperazine should be taken before breakfast. Its side effects include nausea, vomiting, and diarrhea.
- **5. B** Thiabendazole dose is 1.5g/dose twice daily for two days. The drug is structurally related to mebendazole. It is contraindicated in children confirmed to have helminthic infestations. It may cause anorexia and vomiting. It is a drug of choice for strongyloidiasis.

- **6.** A Schistosomiasis is caused by a trematode, not a nematode. Thiabendazole effectively treats hookworm disease, trichuriasis, cutaneous larva migrans, and visceral larva migrans.
- 7. A Drugs that may be used for treating enterobiasis include mebendazole, pyrantel pamoate, and albendazole.
- **8.** C Pyrantel pamoate and piperazine paralyze worms. Pyrantel pamoate blocks the enzyme acetylcholinesterase in the worm and therefore causes a depolarizing neuromuscular blockade; this spastic paralysis and muscle contracture in the worm makes it possible to readily expel the worm during defecation[3]. While pyrantel pamoate is ineffective against T. trichiura, oxantel pamoate, in a single dose, is effective against *T. trichiura* and other species of Trichuris [3].

Thiabendazole inhibits fumarate reductase. Pyrvinium pamoate and mebendazole interfere with glucose absorption by the worm.

- **9.** B Niclosamide effectively treats tapeworm infestation; it is given to adults as a 2g single oral dose. Its administration should be followed by purgation as this helps to expel the worm.
- 10. C Pyrantel also comes as an embonate preparation. Thiabendazole is given as 1.5g b.i.d. usually for two days. It is no longer in use in the United States. The mebendazole dose is 100mg b.i.d. for three days. The dose of Albendazole is two tablets i.e. 400mg as a single dose. Levamisole (Ketrax[®]), 120mg as a single dose.
- 11. B The correct dose of pyrantel pamoate is 10mg/kg as a single dose. For niclosamide, the dose is 1g as a single dose. For levamisole, the dose is 2.5mg/kg as a single dose. Levamisole 10ml syrup as a single dose is appropriate for a 10year-old child.
- 12. A Praziquantel is a pyrazinoisoquinoline derivative. It is ineffective in nematode (roundworm) infections. Praziquantel enhances an influx of calcium into the parasite resulting in muscle contractions and the formation of vacuoles and bleb in the target worm's tegument (outer body covering). The overall result is that the host (human) is able to activate defenses against the worm [4]. Praziquantel is a drug that is taken orally. Praziquantel as a single dose of 20-40 mg/kg treats trematodes satisfactorily. At a dose of 5-10 mg/kg, it is efficacious in treating human cestode infections [5]. Praziquantel has a broad spectrum of activity against trematodes (flukes) and cestodes (tapeworms) and is highly effective against infections that these helminths cause [4-6]. There is rapid absorption of this drug

CHAPTER 5

Answers and Notes for Parasitology

Abstract: Chapter 2 and Chapter 5 of this book are designed to give the reader a lucid idea of the most common parasitic diseases globally and the parasitic agents that cause them. The Chapter is important because although parasitic diseases are global, their distribution around the world is not uniform; another reason for its importance is that these diseases are frequently communicable. Some parasitic diseases also tend to mimic other diseases that are caused by bacteria and viruses. The third reason is that in these days of frequent travel, some parasitic diseases that are prevalent in one part of the world can easily be found in another part of the world where such diseases were hitherto uncommon. It is important for a doctor to know about them (and even become familiar with their presentation) right from medical school years.

Keywords: Cestode infections, Nematode infections, Protozoal infections, Trematode infections.

INTRODUCTION

This chapter contains Multiple-Choice Questions (MCQs) on parasitology. There are ninety-five questions, which the author selected carefully; thus they form a good representation of the most common parasitic diseases on the global scene. The following parasitic diseases and the parasites that caused them are discussed: Dracunculiasis, Ascariasis, Hookworm disease, Cutaneous larva migrans, Trichuriasis, Enterobiasis, Taeniasis, Cysticercosis, Echinococcosis, Hymenolepiasis, Dipylidiasis, Paragonimiasis, Schistosomiasis, Fasciolopsiasis, Fascioliasis, Amebic liver abscess, Giardiasis, Trichomoniasis, Dientamoebiasis, Balantidiasis, Cystoisosporiasis, Leishmaniasis, Toxoplasmosis, and Malaria. These clinical conditions come under infections caused by nematodes, cestodes, trematodes, and protozoa.

151. B Dracontiasis (Dracunculiasis) is caused by *Dracunculus medinensis*, a nematode. The female is one of the longest nematodes that cause human disease. Guinea worm disease is spread by the gravid adult female worm discharging larvae when the affected part touches water. It is a neglected tropical disease that commonly affects the lower limbs. It is one of the causes of arthritis. Dracontiasis is a cause of high morbidity in endemic areas. Dracunculiasis is a debilitating disease but it is on the verge of eradication globally [1]. Menon, in the article published in 2011, reported the case of a 50-year-old "female laborer" on whom a

Inyang Ukot All rights reserved-© 2025 Bentham Science Publishers plain lumbar spine radiograph was taken based on her clinical presentation; the radiographic finding was a long, linear-beaded and fragmented soft tissue calcification. There were two calcifications with sites in the paraspinal muscles between the second and fifth vertebrae. Dracunculus medinensis lesions are usually in the lower limbs but the clinician should not be fixated on this as a diagnosis of guinea worm calcification at this site indicates [2].

- 152. A Dracunculus medinensis (Guinea worm) causes a disease that involves drinking water from a source that is infested with a crustacean. In endemic areas, a person drinks water that contains the tiny crustacean, Cyclops; the crustacean itself is infected by larvae of this nematode. In the human GIT the cyclops die and the larvae in them are released; the larvae penetrate the wall of the stomach and intestines, gain access into the abdominal cavity and grow. Mature males and females mate and the male counterparts die. The pregnant female travels toward the legs and feet of the infected person where it eventually penetrates subdermal tissues and creates uncomfortable and painful blisters on the skin. These break open when in contact with water to relieve the burning sensation and the larvae are released into water, get ingested by cyclops which becomes infected and another person drinks water containing the cyclops thus spreading the infection. Extraction of the adult worm is part of the treatment. The prevalence of dracontiasis is reduced by the provision of potable water regularly and in satisfactory amounts.
- **153. B** Ascariasis, a nematode infestation, is transmitted by the feco-oral route. It can be acquired by eating improperly washed vegetables. It can also be diagnosed by identifying worms vomited or passed in feces.
- **154.** B Ascaris lumbricoides eggs survive in warm, moist soil. Ascaris lumbricoides is infective at the embryonated egg stage. Larvae penetrate the duodenum and eventually gain access to the respiratory tract. Ascaris lumbricoides is a large roundworm.
- **155.** A Ascariasis is a known cause of eosinophilia. Ascariasis causes cough and abdominal pain; in children, a heavy worm load may lead to intestinal obstruction. Ascariasis is caused by worms which can be passed in stools as well as being vomited. Ascariasis is treated satisfactorily with pyrantel pamoate; it is also treated with piperazine citrate or thiabendazole.
- **156.** A The infective stage of *Necator americanus* or *Ankylostoma duodenale* is the filariform larva. Hookworm disease causes the ground itch. It can be diagnosed by microscopic examination of stool. When there is a cough, it is usually mild.

Swimmer's itch is a pruritic skin rash from allergy to larval forms of schistosomes; it is also called cercarial dermatitis or schistosome dermatitis.

- **157.** C Hookworm disease is a known cause of microcytic anemia. It is satisfactorily treated with mebendazole. It usually causes iron deficiency anemia if the worm load is heavy. It may coexist with ascariasis. Hookworm disease is relatively uncommon in developed countries but it is a common diagnosis in developing countries. Hookworm disease may cause obscure presentations in patients [3-5].
- **158.** C Cutaneous larva migrans is caused by dog hookworms and manifest as serpiginous cutaneous lesions. In cutaneous larva migrans, pruritus is a prominent feature. Bacterial infection usually follows skin excoriation secondary to scratching of the lesion. Cutaneous larva migrans can be treated with a five-day course of thiabendazole.
- **159.** A *Trichuris trichiura* is synonymous with whipworm. Its eggs are well-demonstrated by the zinc sulfate flotation method.
- **160. B** Enterobiasis is caused by worms, which usually deposit eggs at night. The infection usually involves the cecum and around the cecum. Pruritus ani is a common feature of enterobiasis. Enterobiasis is easily diagnosed by a Graham cellophane tape swab.
- **161.** A Tapeworm is a cestode. The most mature part of tapeworm strobila is furthest from the scolex. The adult tapeworm is attached by the scolex but to the mucosa of the small intestine. Identification in stools, following treatment, is important; the scolex and the proglottids should be looked for; finding the scolex is more significant as proglottids grow from the scolex. A fluke, like *Fasciolopsis buski*, may be identified during upper gastrointestinal endoscopy [6]. More advanced techniques (enzyme-linked immunoassay and polymerase chain reaction) are available in standard laboratories for making a diagnosis of this disease with precision and distinguishing it from its differential diagnoses [7-9].
- **162. B** Taeniasis requires one intermediate host; this is either a cow or a pig. The gravid uterus of the mature proglottid of *Taenia saginata* has more side branches than *Taenia solium*. *Taenia saginata asiatica* is a subspecies of *Taenia saginata*. Taeniasis has been satisfactorily treated with either niclosamide or quinacrine. Taeniasis and cysticercosis are eradicable [10]. Although it is possible, eradication

CHAPTER 6

Answers and Notes for MCQs in Internal Medicine

Abstract: Chapters 3 and 6 are on selected topics in internal medicine. These essential topics come under bacterial infections, viral infections, cardio-respiratory diseases, neurological conditions, gastrointestinal diseases, hematological conditions, genetic disorders, renal diseases, thyroid and pituitary diseases, alcohol-related illnesses, snake bites, and diabetes mellitus.

Keywords: Bacterial infections, Cardio-respiratory diseases, Internal medicine, Non-communicable diseases, Viral infections.

INTRODUCTION

When considered in detail, the specific topics on which multiple-choice questions are set in Chapter 3, and Answers and Notes are provided for the corresponding topics in Chapter 6, are bacterial infections like meningococcal infections, tetanus, pneumonia, lung abscess, bronchiectasis, empyema thoracis, pulmonary tuberculosis, chronic bronchitis, extrapulmonary tuberculosis, typhoid fever, infections by the Enterobacteriaceae, Bacteroides and anaerobic infections, pyelonephritis, and septicemia. The Chapter also treats viral infections like viral hepatitis, influenza, mumps, Burkitt's lymphoma, HIV/AIDS, COVID-19, Picornavirus infections, Rhabdovirus infections, Slow-virus diseases, RNA tumor virus diseases, and Lassa fever. The Chapter also has questions on noncommunicable diseases like pulmonary embolism, pneumothorax, bronchial carcinoma, angina pectoris, myocardial infarction, cardiac arrhythmias, hypertension, cardiomyopathy, heart failure, cardiac arrest, frontal lobe syndrome, Parkinsonism, pontine lesions, cerebellar disease, tropical ataxic neuropathy, subarachnoid hemorrhage, Horner's syndrome, liver cirrhosis, nephrotic syndrome, Meig's syndrome, malabsorption syndrome, anemia, leukemia, thrombocytopenia, autosomal abnormalities, recessive genetic abnormalities, acute kidney injury, hyperthyroidism, Graves' disease, hypopituitarism, alcoholism, snake bites, and diabetes mellitus.

Bacterial infections

246. B Meningococci are D-shaped diplococci with flattened sides in contact. They are classified as serogroups. They are Gram-negative diplococci. The

Inyang Ukot All rights reserved-© 2025 Bentham Science Publishers meningococcus, *Neisseria meningitidis*, is morphologically like the organism that causes gonorrhea. Isolation of the organisms is enhanced if the culture medium contains blood or serum *e.g.* chocolate agar; anaerobic conditions are also required.

- **247. D** *Neisseria gonorrhoeae* causes gonorrhea, conjunctivitis, arthritis, *etc.* Pneumococcus is *Streptococcus pneumoniae*. *Escherichia coli* causes acute meningitis, especially in the neonatal period. *Neisseria meningitidis* and *Pseudomonas aeruginosa* are etiological agents of acute meningitis.
- **248. D** The following conditions place individuals at an increased risk of developing meningococcal disease. Smoking or exposure to secondary smoke, recent influenza or another viral upper respiratory tract infection, being in close contact with a patient or patients who have a meningococcal infection, poverty that is severe enough to cause overcrowding in the household, or reduced immunity from malnutrition, infection with the Human Immunodeficiency Virus (HIV), functional asplenia or anatomic asplenia (like post-splenectomy), and eculizumab therapy. Eculizumab is a recombinant humanized monoclonal antibody used for treating conditions like paroxysmal nocturnal hemoglobinuria, generalized myasthenia gravis, and atypical hemolytic uremic syndrome. People who have abnormal complement factor H or those who are deficient in complement components [1-4].

Disseminated intravascular coagulation (DIC) and myocarditis are complications of meningococcal septicemia. Meningococcal septicemia is an uncommon presentation of meningococcal infection. In the dark-skinned, petechial hemorrhages are not readily discernible; such petechiae may be in the conjunctiva or other mucous membranes *e.g.* pharynx. Hypertension is not a complication; rather, endotoxin shock in the so-called Waterhouse-Friderichsen syndrome. Endotoxin shock is a life-threatening manifestation of meningococcal infection.

- **249. D** A high index of suspicion for pyogenic meningitis is required in cases where an adult presents with just fever and confusion. The meningococcus is the most likely cause of epidemic meningitis. *Staphylococcus aureus* is the usual cause of meningitis following chronic bone or paranasal sinus infection. The usual time for features of pyogenic meningitis to unfold is under three days. Kernig's sign and Brudzinski's sign are positive in patients with meningitis.
- **250.A** In pyogenic meningitis, cloudy or turbid cerebrospinal fluid is expected. Raised cerebrospinal fluid protein concentration is usual. The other finding is

reduced levels of glucose in the cerebrospinal fluid. A rise in white blood cell count in the cerebrospinal fluid is a significant finding.

- **251. D** The likelihood of resistance to sulfonamides by the organisms is high; so in resource-poor practice settings chloramphenicol, which is affordable and Available, and to which the meningococcus, pneumococcus, and Haemophilus are sensitive is preferred. Vancomycin is recommended by WHO at all ages except in the first month of life; other drugs are used in combination with it. Analgesics are also part of the treatment.
- **252.** C There is no meningeal inflammation in meningism though the symptoms and signs of meningitis are present; meningism is a feature of meningitis. Mumps virus is a cause of lymphocytic meningitis. Meningitis is a feature of leptospirosis and anthrax.
- 253. C Clostridium tetani is a Gram-positive bacillus. It forms spores. Clostridia are anaerobic bacilli. It exists as one type only.
- **254.** A Clostridium welchii is the old name for Clostridium perfringens. Many clostridia can cause gas gangrene.
- 255. A Clostridium tetani is motile. Tetanospasmin is an exotoxin. Clostridium perfringens causes myonecrosis; it produces lecithinase, a hemolysin, and an enterotoxin. Clostridium botulinum elaborates as a neurotoxin.
- **256. D** The incubation period of tetanus is one week to many months. A patient who has had tetanus may have another episode if exposed. Tetanus is not the only condition that presents with neck stiffness; meningitis, cervical spondylosis, etc. also cause neck stiffness. Opisthotonos, one of the features of tetanus, is from the rigidity of the nuchal and spinal muscles.
- 257. D The cerebrospinal fluid in tetanus is normal both macroscopically and microscopically. In patients with tetanus, diazepam helps relax the muscles and cause sedation. Patients should preferably be nursed in a quiet dark room as this reduces external stimuli of light and noise; when significant in the patient's immediate environment, they may trigger spasms. Tetanus may lead to respiratory failure if the diaphragm is involved in frequent severe spasms; laryngospasm is a significant cause of death in tetanus patients. Tetanus can be diagnosed clinically, especially when the clinical features fully unfold.

CHAPTER 7

Differential Diagnoses

CHAPTER 2 AND CHAPTER 5

Parasitology

Nematode Infections

Dracunculiasis

- o Filariasis
- o Chronic venous insufficiency
- o Burns
- o Dermatomyositis

Ascariasis

- o Eosinophilic pneumonitis
- Community-acquired pneumonia
- o Biliary tract obstruction with biliary colic
- Malabsorption
- Intestinal obstruction
- Acute pancreatitis

Cutaneous larva migrans

- Larva currens
- Scabies

Inyang Ukot All rights reserved-© 2025 Bentham Science Publishers

- Contact dermatitis
- Schistosomiasis
- o Myiasis
- Tinea corporis
- o Phytophotodermatitis

Trichuriasis (Whipworm Disease)

- o Appendicitis
- o Cholecystitis
- o Intestinal perforation
- Colitis
- o Inflammatory bowel disease

Enterobiasis (Pinworm Infection)

- Atopic dermatitis
- Contact dermatitis
- Pruritus ani
- Anal fissure
- o Anusitis
- o Proctitis
- Cellulitis
- o Pruritus vulvae
- Perirectal abscess

Cestode Infections

Taeniasis

- Bacterial meningitis in pediatrics
- Aseptic meningitis in pediatric patients
- Encephalitis
- Idiopathic epilepsy
- Temporal arteritis
- Cysticercosis
- Appendicitis
- Cholecystitis
- Irritable bowel syndrome
- **Enteritis**
- Gastroenteritis
- Empyema thoracis
- Gnathostomiasis
- Anaphylaxis

Echinococcosis (Hydatidosis)

Pertaining to the liver, the differential diagnoses include the following:

- Biliary colic
- Biliary cirrhosis
- Liver abscess

REFERENCES

CHAPTER 1 AND CHAPTER 4

PHARMACOLOGY AND THERAPEUTICS

- [1] Brooker SJ, Bundy DAP. Mebendazole. Soil-transmitted Helminths (Geohelminths). In: Manson's Tropical Infectious Diseases (Twenty-third Edition) 2014. Available from: https://www.sciencedirect.com/topics/neuroscience/mebendazole
- [2] Wilson CM. Laboratory Diagnosis and Therapy of Infectious Diseases. In: Principles and Practice of Pediatric Infectious Diseases (Fourth Edition) 2012. Available from: https://www.sciencedirect.com/topics/neuroscience/mebendazole
- [3] Kuhlmann FM, James M, Fleckenstein JM. Pyrantel pamoate. Antiparasitic Agents In: Infectious Diseases (Fourth Edition) 2017. Available from: https://www.sciencedirect.com/topics/neuroscience/pyrantel-pamoate#:~:text=Pyrantel%20pamoate% 20and%20its%20analogs,allow%20expulsion%20of%20the%20worms
- [4] Kuhlmann FM, Fleckenstein JM. Antiparasitic Agents. Infectious Diseases (Fourth Edition) 2017. Available from: https://www.sciencedirect.com/topics/immunology-andmicrobiology/praziquantel http://dx.doi.org/10.1016/B978-0-7020-6285-8.00157-X
- [5] El-Subbagh HI, Al-Badr AA. Analytical Profiles of Drug Substances and Excipients 1998. Available from: https://www.sciencedirect.com/topics/immunology-and-microbiology/praziquantel
- [6] Padberg S. Anti-infective Agents. Drugs During Pregnancy and Lactation (Third Edition) 2015. Available from: https://www.sciencedirect.com/topics/immunology-and-microbiology/praziquantel
- [7] Deep A, Sharma PC. Therapeutic uses and adverse reactions. Niridazole. Vermifuge and vermicide drugs. Medicinal Chemistry of Chemotherapeutic Agents 2023. Available from: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/niridazole#:~:text=In% 20the% 20treatment% 20of% 20schistosomiasis% 20adverse % 20effects% 20were% 20seen% 20in,in% 20patients% 20with% 20liver% 20disease
- [8] Ravdin JI, Skilogiannis J. *In vitro* susceptibilities of Entamoeba histolytica to azithromycin, CP-63,956, erythromycin, and metronidazole. Antimicrob Agents Chemother 1989; 33(6): 960-2.
 - http://dx.doi.org/10.1128/AAC.33.6.960 PMID: 2548442
- [9] Weir CB, Le JK. Metronidazole In: StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539728/

Inyang Ukot All rights reserved-© 2025 Bentham Science Publishers

- [10] Nix DE, Tyrrell R, Müller M. Pharmacodynamics of metronidazole determined by a timekill assay for Trichomonas vaginalis. Antimicrob Agents Chemother 1995; 39(8): 1848-52.
 - http://dx.doi.org/10.1128/AAC.39.8.1848 PMID: 7486930
- [11] Löfmark S, Edlund C, Nord CE. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis 2010; 50(s1): S16-23.(Suppl. 1)
 - http://dx.doi.org/10.1086/647939 PMID: 20067388
- [12] Yousefi H, Mashouri L, Okpechi SC, Alahari N, Alahari SK, Alahari SK. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochem Pharmacol 2021; 183(January): 114296. Available from: https://www.sciencedirect.com/science/article/pii/S0006295220305323
 - http://dx.doi.org/10.1016/j.bcp.2020.114296 PMID: 33191206
- [13] Yang S, Xu M, Lee EM. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry Cell Discov, 4 (1). Google Scholar 2018; pp. 1-14. Available from: https://www.sciencedirect.com/science/article/pii/S0006295220305323
- [14] Escobedo AA, Almirall P, Cimerman S. Chloroquine: an old drug with new perspective against giardiasis. Recent Pat Antiinfect Drug Discov 2015; 10(2): 134-41. Available from: https://pubmed.ncbi.nlm.nih.gov/26365362/
 - http://dx.doi.org/10.2174/1574891X10666150914122118
- [15] Cañete R, Rivas DE, Escobedo AA, González ME, Almirall P, Brito K. A randomized, controlled, open-label trial evaluating the efficacy and safety of chloroquine in the treatment of giardiasis in children. West Indian Med J 2010; 59(6): 607-11. Available from: https://pubmed.ncbi.nlm.nih.gov/21702232/
 - PMID: 21702232
- [16] Nnoruka EN, Agu CE. Successful treatment of scabies with oral ivermectin in Nigeria. Trop Doct 2001; 31(1): 15-8. Available from: https://pubmed.ncbi.nlm.nih.gov/11205591/http://dx.doi.org/10.1177/004947550103100105 PMID: 11205591
- [17] American Academy of Dermatology Association. Scabies: Diagnosis and Treatment Available from: https://www.aad.org/public/diseases/a-z/scabies-treatment
- [18] Ko CJ, Elston DM. Pediculosis. J Am Acad Dermatol 2004; 50(1): 1-12.
 http://dx.doi.org/10.1016/S0190-9622(03)02729-4 PMID: 14699358
- [19] American Academy of Dermatology Association. Head lice: Diagnosis and Treatment Available from: https://www.aad.org/public/diseases/a-z/head-lice-treatment
- [20] Early J, MacNaughton H. Ivermectin lotion (sklice) for head lice. Am Fam Physician 2014; 89(12): 984-6.
 - PMID: 25162168

- [21] Mesu VKBK, Kalonji WM, Bardonneau C, et al. Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: a pivotal multicentre, randomised, non-inferiority trial. Lancet 2018; 391(10116): 144-54.
 http://dx.doi.org/10.1016/S0140-6736(17)32758-7 PMID: 29113731
- [22] Committee for Medicinal Products for Human Use (CHMP). Fexinidazole Winthrop 2018. Available from: https://www.ema.europa.eu/documents/smop-initial/chmp-summary-opinion-fexinidazole-winthrop_en.pdf
- [23] Kienitz R, Kay L, Isabelle Beuchat I. Benzodiazepines in the management of seizures and status epilepticus: a review of routes of delivery, pharmacokinetics, efficacy, and tolerability. CNS Drugs 2022; 36(9): 951-75. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9477921/http://dx.doi.org/10.1007/s40263-022-00940-2
- [24] Brigo F, Lattanzi S. Anticonvulsant Agents: Benzodiazepines (Clobazam, Clonazepam, Diazepam, Lorazepam, Midazolam). Living reference work entry. In: NeuroPsychopharmacotherapy. Springer 2020. Available from: https://link.springer.com/referenceworkentry/10.1007/978-3-319-56015-1_440-1
- [25] Mann SK, Marwaha R. Chlorpromazine. StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553079/#:~:text=Chlorpromazine%20is%20a %20medication%20used,known%20as%20first%2Dgeneration%20antipsychotics
- [26] Haloperidol (Rx). Dosing and Uses. Drugs and Diseases Medscape Available from: https://reference.medscape.com/drug/haldol-decanoate-haloperidol-342974#0
- [27] The Biogenic Amines. Neuroscience 2nd edition 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11035/
- [28] Wang D, Guo Q, Wu Z. Molecular mechanism of antihistamines recognition and regulation of the histamine H1 receptor. Nature communications Nature 2024. Available from: https://www.nature.com/articles/s41467-023-44477-4
- [29] Jutel M, Akdis M, Akdis CA. Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy 2009; 39(12): 1786-800. http://dx.doi.org/10.1111/j.1365-2222.2009.03374.x PMID: 20085595
- [30] Hill SJ. Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol Rev 1990; 42(1): 45-83. http://dx.doi.org/10.1016/S0031-6997(25)00039-0 PMID: 2164693
- [31] Moriguchi T, Takai J. Histamine and histidine decarboxylase: Immunomodulatory functions and regulatory mechanisms. Genes Cells 2020; 25(7): 443-9. http://dx.doi.org/10.1111/gtc.12774 PMID: 32394600
- [32] Jones DN, Raghanti MA. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. Journal of Chemical Neuroanatomy 2021. Available from: https://www.sciencedirect.com/topics/neuroscience/monoamine-oxidase#:~:text=Monoamine%20oxidase%20enzymes%20are%20responsible,altered%20 in%20various%20disease%20states http://dx.doi.org/10.1016/j.jchemneu.2021.101957

- [33] Kompoliti K, Horn SS. Monoamine Oxidase Inhibitors. Drug-Induced and Iatrogenic Neurological Disorders. Textbook of Clinical Neurology (Third Edition) 2007. Available from: https://www.sciencedirect.com/topics/neuroscience/monoamine-oxidase#:~:text= Monoamine%20oxidase%20enzymes%20are%20responsible,altered%20in%20various% 20disease%20states
- [34] Antidepressant T. Pharmacology and Physiology for Anesthesia 2013. Available from: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/tricyclic-antidepressant
- [35] Thour A, Marwaha R. Amitriptyline In: StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537225/
- [36] Interactions A. Amitriptyline Interactions Available from: https://www.drugs.com/drug-interactions/amitriptyline.html
- [37] Dykewicz MS. Rhinitis Medicamentosa. In: Holgate ST, Church MK, editors. Allergy and Clinical Immunology: Principles and Practice. 8th ed. Philadelphia: Elsevier; 2023. p. 345–52.
- [38] Wallace D, Dykewicz M, Bernstein D, *et al.* The diagnosis and management of rhinitis: An updated practice parameter. J Allergy Clin Immunol 2008; 122(2): S1-S84.(Suppl.) http://dx.doi.org/10.1016/j.jaci.2008.06.003 PMID: 18662584
- [39] Black MJ, Remsen KA. Rhinitis medicamentosa. Can Med Assoc J. 1980;122(8):881–4. PMID: 6154514
- [40] De Corso E, Mastrapasqua RF, Tricarico L, *et al.* Predisposing factors of rhinitis medicamentosa: what can influence drug discontinuation?. Rhinology 2020; 58(3): 233-40. http://dx.doi.org/10.4193/Rhin19.295 PMID: 31904029
- [41] Doshi J. Rhinitis medicamentosa: what an otolaryngologist needs to know. Eur Arch Otorhinolaryngol 2009; 266(5): 623-5.
 http://dx.doi.org/10.1007/s00405-008-0896-1 PMID: 19096862
- [42] Ministry of Legal Affairs. Dangerous Drugs Act. Country Resources. Trinidad and Tobago 1991. Available from: https://extranet.who.int/mindbank/item/2848
- [43] Holstege CP. Pentazocine In: Encyclopedia of Toxicology (Second Edition) 2005. Available from: https://www.sciencedirect.com/topics/medicine-and-dentistry/pentazocine#:~:text=Pentazocine% 20is% 20an% 20opioid% 20agonist, antagonism% 20by% 20in hibiting% 20mu% 20receptors
- [44] Bethesda. Nalmefene. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548295/
- [45] Kreek MJ, Schlussman SD, Reed B, *et al.* Bidirectional translational research: Progress in understanding addictive diseases. Neuropharmacology 2009; 56(Suppl 1): 32-43. (Suppl. 1) Available from: https://www.sciencedirect.com/science/article/abs/pii/S002839080800 3262
 - http://dx.doi.org/10.1016/j.neuropharm.2008.07.042 PMID: 18725235

- [46] Neal Shah N, Gossman W. Omeprazole In: StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539786/
- [47] Kudaravalli P, Patel P, John S. Sucralfate In: StatPearls 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551527/#:~:text=Sucralfate%20is%20a%20uni que%20anti,weeks%20(short%2Dterm)
- [48] Montoliu J, Carrera M, Darnell A, Revert L. Lactic acidosis and Fanconi's syndrome due to degraded tetracycline. BMJ 1981; 283(6306): 1576-7.
 http://dx.doi.org/10.1136/bmj.283.6306.1576-a PMID: 6796174
- Zietse R, Zoutendijk R, Hoorn EJ. Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nat Rev Nephrol 2009; 5(4): 193-202.
 http://dx.doi.org/10.1038/nrneph.2009.17 PMID: 19322184
- [50] Izzedine H, Launay-Vacher V, Isnard-Bagnis C, Deray G. Drug-induced Fanconi's syndrome. Am J Kidney Dis 2003; 41(2): 292-309. http://dx.doi.org/10.1053/ajkd.2003.50037 PMID: 12552490
- [51] Bihorac A, Özener Ç, Akoglu E, Kullu S. Tetracycline-induced acute interstitial nephritis as a cause of acute renal failure. Nephron J 1999; 81(1): 72-5. Available from: https://pubmed.ncbi.nlm.nih.gov/9884423/
 http://dx.doi.org/10.1159/000045249 PMID: 9884423
- [52] Sharma K, Geagan N, Tengsupakul S. Severe acute interstitial nephritis secondary to minocycline use in an adolescent girl.SAGE Open Medical Case Reports. 2020; 8. http://dx.doi.org/10.1177/2050313X20943069
- [53] Raisa O. Urinary Tract Infections in Pregnancy Treatment & Management. 2023. Available from: https://emedicine.medscape.com/article/452604-treatment?form=fpf
- [54] Ford N, Shubber Z, Jao J, Abrams EJ, Frigati L, Mofenson L. Safety of cotrimoxazole in pregnancy: a systematic review and meta-analysis. J Acquir Immune Defic Syndr 2014; 66(5): 512-21.
 - http://dx.doi.org/10.1097/QAI.0000000000000211
- [55] Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991; 338(8760): 131-7.http://dx.doi.org/10.1016/0140-6736(91)90133-A PMID: 1677062
- [56] Reid DW, Caille G, Kaufmann NR. Maternal and transplacental kinetics of trimethoprim and sulfamethoxazole, separately and in combination. Can Med Assoc J 1975; 112(13 Spec): 67-72.
- [57] Forna F, McConnell M, Kitabire FN, *et al.* Systematic review of the safety of trimethoprim-sulfamethoxazole for prophylaxis in HIV-infected pregnant women: implications for resource-limited settings. AIDS Rev 2006; 8(1): 24-36.

PMID: 16736949

CHAPTER 2 AND CHAPTER 5

PARASITOLOGY MCQS

- [1] Dracunculiasis (guinea-worm disease) 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/dracunculiasis-(guinea-worm-disease)
- [2] Proctor EM. Identification of tapeworms. S Afr Med J 1972; 46(9): 234-8.PMID: 5062852
- [3] ten Hove RJ, Verweij JJ, Vereecken K, Polman K, Dieye L, van Lieshout L. Multiplex real-time PCR for the detection and quantification of *Schistosoma mansoni* and *S. haematobium* infection in stool samples collected in northern Senegal. Trans R Soc Trop Med Hyg 2008; 102(2): 179-85.
 - http://dx.doi.org/10.1016/j.trstmh.2007.10.011 PMID: 18177680
- [4] Bialek SR, Fox LM, Fasciolopsiasis. Intestinal Trematodes. In: Principles and Practice of Pediatric Infectious Diseases (Sixth Edition), 2023.
- [5] Karthikeyan G, Ramkumar V, Kumar SP, et al. Intestinal infestation with Fasciolopsis buski leading to acute kidney injury. J Assoc Physicians India 2013; 61(12): 936-8.
 PMID: 24968560
- [6] Lee TH, Huang CT, Chung CS. Gastrointestinal: Fasciolopsis buski infestation diagnosed by upper gastrointestinal endoscopy. J Gastroenterol Hepatol 2011; 26(9): 1464. http://dx.doi.org/10.1111/j.1440-1746.2011.06697.x PMID: 21884251
- [7] Cao YH, Ma YM, Qiu F, Zhang XQ. Rare cause of appendicitis: Mechanical obstruction due to *Fasciolopsis buski* infestation. World J Gastroenterol 2015; 21(10): 3146-9.
 http://dx.doi.org/10.3748/wjg.v21.i10.3146 PMID: 25780318
- [8] Kannathasan S, Murugananthan A, Kumanan T, *et al.* Amoebic liver abscess in northern Sri Lanka: first report of immunological and molecular confirmation of aetiology. Parasit Vectors 2017; 10(1): 14.
 - http://dx.doi.org/10.1186/s13071-016-1950-2 PMID: 28061872
- [9] Kannathasan S, Murugananthan A, Kumanan T, et al. Epidemiology and factors associated with amoebic liver abscess in northern Sri Lanka. BMC Public Health 2018; 18(1): 118. http://dx.doi.org/10.1186/s12889-018-5036-2 PMID: 29316900
- [10] Spencer MJ, Garcia LS, Chapin MR. *Dientamoeba fragilis*. Am J Dis Child 1979; 133(4): 390-3.
 - http://dx.doi.org/10.1001/archpedi.1979.02130040044010 PMID: 373418
- [11] Preiß U, Ockert G, Brömme S, Otto A. *Dientamoeba fragilis* infection, a cause of gastrointestinal symptoms in childhood. Klin Padiatr 1990; 202(2): 120-3. http://dx.doi.org/10.1055/s-2007-1025503 PMID: 2325352

- [12] Preiss U, Ockert G, Broemme S, Otto A. On the clinical importance of *Dientamoeba fragilis* infections in childhood. J Hyg Epidemiol Microbiol Immunol 1991; 35(1): 27-34. PMID: 1880405
- [13] Shein R, Gelb A. Colitis due to *Dientamoeba fragilis*. Am J Gastroenterol 1983; 78(10): 634-6.

PMID: 6624737

- [14] Goodgame RW. Understanding intestinal spore-forming protozoa: cryptosporidia, microsporidia, isospora, and cyclospora. Ann Intern Med 1996; 124(4): 429-41.
 http://dx.doi.org/10.7326/0003-4819-124-4-199602150-00008 PMID: 8554253
- [15] Dubey JP, Almeria S. *Cystoisospora belli* infections in humans: the past 100 years. Parasitology 2019; 146(12): 1490-527.
 - http://dx.doi.org/10.1017/S0031182019000957 PMID: 31303182
- [16] Bonadonna L, Briancesco R, Ottaviani M, Veschetti E. Occurrence of Cryptosporidium oocysts in sewage effluents and correlation with microbial, chemical and physical water variables. Environ Monit Assess 2002; 75(3): 241-52.
 - http://dx.doi.org/10.1023/A:1014852201424 PMID: 12004978
- [17] Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep 2009; 58(RR-4): 1-207.

PMID: 19357635

PARASITOLOGY ANSWERS AND NOTES

- [1] Dracunculiasis (guinea-worm disease). 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/dracunculiasis-(guinea-worm-disease)
- [2] Menon B. Serpentine calcification: A radiological stigma. J Neurosci Rural Pract 2011; 2(2): 203-4.
 - http://dx.doi.org/10.4103/0976-3147.83599 PMID: 21897696
- [3] Yan S, Chu Y. Hookworm infestation of the small intestine: an unusual cause of obscure gastrointestinal bleeding. Endoscopy 2007; 39(S 1): E162-3.(Suppl. 1) http://dx.doi.org/10.1055/s-2007-966545 PMID: 17614036
- [4] Rácz I, Szabó A, Goda M, Magyar É. Embedded mummified hookworm as a cause of bleeding from the duodenal bulb. Endoscopy 2007; 39(S 1): E159.(Suppl. 1) http://dx.doi.org/10.1055/s-2006-944652 PMID: 17570099
- [5] Haßelmann J, Dornbusch J. A rare cause of a chronic bleeding in the upper gastrointestinal tract. Chirurg 2013; 84(4): 322-4. doi: 10.1007/s00104-013-2469-0. PMID: 23460376.

- http://dx.doi.org/10.1007/s00104-013-2469-0 PMID: 23460376
- [6] Proctor EM. Identification of tapeworms. S Afr Med J 1972; 46(9): 234-8.PMID: 5062852
- [7] Harrison LJS, Delgado J, Parkhouse RME. Differential diagnosis of *Taenia saginata* and *Taenia solium* with DNA probes. Parasitology 1990; 100(3): 459-61.
 http://dx.doi.org/10.1017/S0031182000078768 PMID: 2141926
- [8] Gottstein B, Deplazes P, Tanner I, Skaggs JS. Diagnostic identification of *Taenia saginata* with the polymerase chain reaction. Trans R Soc Trop Med Hyg 1991; 85(2): 248-9. http://dx.doi.org/10.1016/0035-9203(91)90042-W PMID: 1887484
- [9] Deplazes P, Eckert J, Pawlowski ZS, Machowska L, Gottstein B. An enzyme-linked immunosorbent assay for diagnostic detection of *Taenia saginata* copro-antigens in humans. Trans R Soc Trop Med Hyg 1991; 85(3): 391-6.
 http://dx.doi.org/10.1016/0035-9203(91)90302-F PMID: 1719664
- [10] Schantz PM. *Taenia solium* cysticercosis/taeniasis is a potentially eradicable disease: developing a strategy for action and obstacles to overcome. In: García HH, Martínez M, Eds. Teniasis/cisticercosis por T solium. Lima, Peru: I.C.N. 1996; pp. 227-30.
- [11] Sebastián Domingo JJ. Irritable Bowel Syndrome with predominant diarrhea and giardiasis: is it one or the other?. Gastroenterol Hepatol 2018; 41(10): 647-8.
 PMID: 29500067
- Zhen Y, Liao L, Zhang H. Intestinal Giardiasis Disguised as Ulcerative Colitis. Case Rep Gastrointest Med 2018; 2018: 1-3.
 http://dx.doi.org/10.1155/2018/8968976 PMID: 29854495
- [13] ten Hove RJ, Verweij JJ, Vereecken K, Polman K, Dieye L, van Lieshout L. Multiplex real-time PCR for the detection and quantification of *Schistosoma mansoni* and *S. haematobium* infection in stool samples collected in northern Senegal. Trans R Soc Trop Med Hyg 2008; 102(2): 179-85.
 - http://dx.doi.org/10.1016/j.trstmh.2007.10.011 PMID: 18177680
- [14] Danso-Appiah A, Olliaro PL, Donegan S, Sinclair D, Utzinger J. Drugs for treating Schistosoma mansoni infection. Cochrane Database Syst Rev 2013; 2013(2): CD000528.
 PMID: 23450530
- [15] Richter J, Poggensee G, Kjetland EF, *et al.* Reversibility of lower reproductive tract abnormalities in women with *Schistosoma haematobium* infection after treatment with praziquantel An interim report. Acta Trop 1996; 62(4): 289-301. http://dx.doi.org/10.1016/S0001-706X(96)00030-7 PMID: 9028413
- [16] Bialek SR, Fox LM, Fasciolopsiasis. Intestinal Trematodes. In: Principles and Practice of Pediatric Infectious Diseases (Sixth Edition), 2023.

PMID: 6624737

- [17] Karthikeyan G, Ramkumar V, Kumar SP, et al. Intestinal infestation with Fasciolopsis buski leading to acute kidney injury. J Assoc Physicians India 2013; 61(12): 936-8.
 PMID: 24968560
- [18] Lee TH, Huang CT, Chung CS. Gastrointestinal: Fasciolopsis buski infestation diagnosed by upper gastrointestinal endoscopy. J Gastroenterol Hepatol 2011; 26(9): 1464. http://dx.doi.org/10.1111/j.1440-1746.2011.06697.x PMID: 21884251
- [19] Cao YH, Ma YM, Qiu F, Zhang XQ. Rare cause of appendicitis: Mechanical obstruction due to *Fasciolopsis buski* infestation. World J Gastroenterol 2015; 21(10): 3146-9.
 http://dx.doi.org/10.3748/wjg.v21.i10.3146 PMID: 25780318
- [20] Liu Q, Wei F, Liu W, Yang S, Zhang X. Paragonimiasis: an important food-borne zoonosis in China. Trends Parasitol 2008; 24(7): 318-23.
 http://dx.doi.org/10.1016/j.pt.2008.03.014 PMID: 18514575
- [21] Centers for Disease Control and Prevention. Paragonimiasis. Clinical Overview of Paragonimiasis-Treatment and recovery. Available from: https://www.cdc.gov/paragonimus/hcp/clinical-overview/index.html#cdc_clinical_overview_treat_pattreatment-and-recovery
- [22] Silberman JD, Clark CG, Sogin ML. *Dientamoeba fragilis* shares a recent common evolutionary history with the trichomonads. Mol Biochem Parasitol 1996; 76(1-2): 311-4. http://dx.doi.org/10.1016/0166-6851(95)02516-2 PMID: 8920018
- [23] Shein R, Gelb A. Colitis due to *Dientamoeba fragilis*. Am J Gastroenterol 1983; 78(10): 634-6.
- Yoeli M. A report on intestinal disorders accompanied by large numbers of *Dientamoeba fragilis*. J Trop Med Hyg 1955; 58(2): 38-41.
 PMID: 14354783
- [25] Spencer MJ, Garcia LS, Chapin MR. *Dientamoeba fragilis*. Am J Dis Child 1979; 133(4): 390-3.
 http://dx.doi.org/10.1001/archpedi.1979.02130040044010 PMID: 373418
- [26] Preiß U, Ockert G, Brömme S, Otto A. *Dientamoeba fragilis* infection, a cause of gastrointestinal symptoms in childhood. Klin Padiatr 1990; 202(2): 120-3. http://dx.doi.org/10.1055/s-2007-1025503 PMID: 2325352
- Preiss U, Ockert G, Broemme S, Otto A. On the clinical importance of *Dientamoeba fragilis* infections in childhood. J Hyg Epidemiol Microbiol Immunol 1991; 35(1): 27-34.
 PMID: 1880405
- [28] Goodgame RW. Understanding intestinal spore-forming protozoa: cryptosporidia, microsporidia, isospora, and cyclospora. Ann Intern Med 1996; 124(4): 429-41.

- http://dx.doi.org/10.7326/0003-4819-124-4-199602150-00008 PMID: 8554253
- [29] Dubey JP, Almeria S. *Cystoisospora belli* infections in humans: the past 100 years. Parasitology 2019; 146(12): 1490-527.
 - http://dx.doi.org/10.1017/S0031182019000957 PMID: 31303182
- [30] Bonadonna L, Briancesco R, Ottaviani M, Veschetti E. Occurrence of Cryptosporidium oocysts in sewage effluents and correlation with microbial, chemical and physical water variables. Environ Monit Assess 2002; 75(3): 241-52.
 - http://dx.doi.org/10.1023/A:1014852201424 PMID: 12004978
- [31] Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep 2009; 58(RR-4): 1-207.
 - PMID: 19357635
- [32] Kim MJ, Kim WH, Jung HC, Chai JW, Chai JY. Isospora belli Infection with Chronic Diarrhea in an Alcoholic Patient. Korean J Parasitol 2013; 51(2): 207-12.
 - http://dx.doi.org/10.3347/kjp.2013.51.2.207 PMID: 23710089
- [33] Pace D. Leishmaniasis. J Infect 2014; 69: S10-8.
 http://dx.doi.org/10.1016/j.jinf.2014.07.016 PMID: 25238669
- [34] Aronson N, Herwaldt BL, Libman M, *et al.* Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin Infect Dis 2016; 63(12): 1539-57.
 - http://dx.doi.org/10.1093/cid/ciw742 PMID: 27941143
- [35] Herwaldt BL. Leishmaniasis HBL. Lancet 1999; 354: 1191-9.
 http://dx.doi.org/10.1016/S0140-6736(98)10178-2 PMID: 10513726
- [36] GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392(10159):1859–922. doi:10.1016/S0140-6736(18)32335-3.
- [37] Wang H, Naghavi M, Allen C, *et al.* Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1459-544.
 - http://dx.doi.org/10.1016/S0140-6736(16)31012-1 PMID: 27733281
- [38] Skinner J, Yankey B, Shelton BK. Hemophagocytic Lymphohistiocytosis. AACN Adv Crit Care 2019; 30(2): 151-64.

- http://dx.doi.org/10.4037/aacnacc2019463 PMID: 31151946
- [39] Rajagopala S, Dutta U, Chandra KSP, Bhatia P, Varma N, Kochhar R. Visceral leishmaniasis associated hemophagocytic lymphohistiocytosis Case report and systematic review. J Infect 2008; 56(5): 381-8.
 - http://dx.doi.org/10.1016/j.jinf.2008.02.013 PMID: 18405976
- [40] de Santana Ferreira E, de Souza Júnior VR, de Oliveira JFS, Costa MFH, da Conceição de Barros Correia M, de Sá AF. Rare association of consumptive coagulopathy in visceral leishmaniasis: A case report. Trop Doct 2021; 51(1): 120-2.
 - http://dx.doi.org/10.1177/0049475520967239 PMID: 33108965
- [41] Levi M, Sivapalaratnam S. Disseminated intravascular coagulation: an update on pathogenesis and diagnosis. Expert Rev Hematol 2018; 11(8): 663-72. http://dx.doi.org/10.1080/17474086.2018.1500173 PMID: 29999440
- [42] Thwaites GE, Day NPJ. Approach to Fever in the Returning Traveler. N Engl J Med 2017; 376(6): 548-60.
 - http://dx.doi.org/10.1056/NEJMra1508435 PMID: 28177860
- [43] Fletcher TE, Beeching NJ. Malaria. J R Army Med Corps 2013; 159(3): 158-66. http://dx.doi.org/10.1136/jramc-2013-000112 PMID: 24109136
- [44] Garcia LS. Malaria. Clin Lab Med 2010; 30(1): 93-129.
 http://dx.doi.org/10.1016/j.cll.2009.10.001 PMID: 20513543

PARASITOLOGY DIFFERENTIAL DIAGNOSES

- [1] Arora HS, Steele RW, Ang JY. Hymenolepiasis Differential Diagnoses. Available from: https://emedicine.medscape.com/article/998498-differential
- [2] D'Acremont V, Kilowoko M, Kyungu E, *et al.* Dg{qpf "o cretkc//ecwugu"qh'hgxgt "kp"qwr cwlgpv Tanzanian children. N Engl J Med. 2014 Feb 27; 370(9)<": 2; /390

CHAPTER 3 AND CHAPTER 6

INTERNAL MEDICINE

- [1] Javid MH. Meningococcemia. Infectious Diseases In: Medscape 2022. Available from: https://emedicine.medscape.com/article/221473-overview#a4
- [2] Jansen AGSC, Sanders EAM, Van Der Ende A, Van Loon AM, Hoes AW, Hak E. Invasive pneumococcal and meningococcal disease: association with influenza virus and respiratory syncytial virus activity?. Epidemiol Infect 2008; 136(11): 1448-54. http://dx.doi.org/10.1017/S0950268807000271 PMID: 18211724

- [3] Fijen CAP, Kuijper EJ, Bulte MT, Daha MR, Dankert J. Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin Infect Dis 1999; 28(1): 98-105.
 - http://dx.doi.org/10.1086/515075 PMID: 10028078
- [4] Ladhani SN, Campbell H, Lucidarme J, *et al.* Invasive meningococcal disease in patients with complement deficiencies: a case series (2008–2017). BMC Infect Dis 2019; 19(1): 522.
 - http://dx.doi.org/10.1186/s12879-019-4146-5 PMID: 31200658
- Jain S, Self WH, Wunderink RG, et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med 2015; 373(5): 415-27.
 http://dx.doi.org/10.1056/NEJMoa1500245 PMID: 26172429
- [6] Mandell LA, Wunderink RG, Anzueto A. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44(Suppl 2): S27-72.
- [7] Kalil AC, Metersky ML, Klompas M, *et al.* Executive Summary: Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63(5): 575-82.
 - http://dx.doi.org/10.1093/cid/ciw504 PMID: 27521441
- [8] The Canadian Critical Care Trials Group. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 2006; 355(25): 2619-30. http://dx.doi.org/10.1056/NEJMoa052904 PMID: 17182987
- [9] Bhattacharyya S. Vincent's Angina. Interventions in Pediatric Dentistry Open Access Journal 2022. Available from: https://lupinepublishers.com/pediatric-dentistry-journal/pdf/IPDOAJ.MS.ID.000268.pdf
- [10] Khademi F, Aryan E. Vincent's Angina in a 17-Year Old Girl With Emotional Stress: A Case Report. Arch Clin Infect Dis 2015; 10(3): e23292.
 http://dx.doi.org/10.5812/archcid.23292
- [11] Britannica T. Editors of Encyclopaedia. Vincent gingivitis. Encyclopedia Britannica 2008. Available from: https://www.britannica.com/science/Vincent-gingivitis
- Windfuhr JP, Remmert S. Trends and complications in the management of peritonsillar abscess with emphasis on children. HNO 2005; 53(1): 46-57.
 http://dx.doi.org/10.1007/s00106-003-1036-2 PMID: 15448926
- [13] Fanous M, King KC. Cholera. StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470232/
- Johnson JR, Russo TA. Acute Pyelonephritis in Adults. N Engl J Med 2018; 378(1): 48-59.
 - http://dx.doi.org/10.1056/NEJMcp1702758 PMID: 29298155

- [15] Bullock B, Benham MD. Bacterial Sepsis StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537054/
- [16] Morgan J, Roberts S. Maternal sepsis. Obstet Gynecol Clin 2013; 40(1p): 69-87. Available from: https://www.obgyn.theclinics.com/article/S0889-8545(12)00105-2/abstract http://dx.doi.org/10.1016/j.ogc.2012.11.007
- [17] Hodgetts-Morton V, Hewitt CA, Wilson A. Vaginal preparation with chlorhexidine at cesarean section to reduce endometritis and prevent sepsis: a randomized pilot trial (PREPS). Original research article In: Acta Obstetricia et Gynecologica Scandinavica 2019.
 - http://dx.doi.org/10.1111/aogs.13737
- [18] Faro S. Postpartum Endometritis. Clin Perinatol 2005; 32(3): 803-14. Available from: https://www.perinatology.theclinics.com/article/S0095-5108(05)00033-3/abstract http://dx.doi.org/10.1016/j.clp.2005.04.005 PMID: 16085035
- [19] Dharia S, Shah S, Kissinger M, Sanders A, Singh G. Group A Streptococcal Endometritis and Toxic Shock causing Septic Pelvic Thrombophlebitis and Septic Pulmonary Emboli. Case Reports: Unusual presentation of more common disease/injury. BMJ Case Reports 16(11). Available from: https://casereports.bmj.com/content/16/11/e255455 http://dx.doi.org/10.1136/bcr-2023-255455
- [20] David C. Cirrhosis In: Gastroenterology Medscape 2020. Available from: https://emedicine.medscape.com/article/185856-overview
- [21] World Health Organization. Hepatitis. Available from: https://www.who.int/health-topics/hepatitis
- Peteranderl C, Schmoldt C, Herold S. Human influenza virus infections. Semin Respir Crit Care Med 2016; 37(4): 487-500.
 http://dx.doi.org/10.1055/s-0036-1584801 PMID: 27486731
- [23] Sellers SA, Hagan RS, Hayden FG, Fischer WA. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses 2017; 11(5): 372-93.
 http://dx.doi.org/10.1111/irv.12470 PMID: 28745014
- [24] Von Ranke FM, Zanetti G, Hochhegger B, Marchiori E. Infectious diseases causing diffuse alveolar hemorrhage in immunocompetent patients: a state-of-the-art review. Lung 2013; 191(1): 9-18.
 - http://dx.doi.org/10.1007/s00408-012-9431-7 PMID: 23128913
- [25] Centers for disease control and prevention. Influenza (flu): guide for considering influenza testing 2019. Available from: https://www.cdc.gov/flu/professionals/diagnosis/considerinfluenza-testing.htm
- [26] Centers for disease control and prevention. Influenza (flu): clinical signs and symptoms of influenza 2019. Available from: https://www.cdc.gov/flu/professionals/acip/clinical.htm

- [27] Updated recommendations for isolation of persons with mumps. MMWR Morb Mortal Wkly Rep 2008; 57(40): 1103-5.
 - PMID: 18846033
- [28] Wu H, Wang F, Tang D, Han D. Mumps Orchitis: Clinical Aspects and Mechanisms. Front Immunol 2021; 12: 582946.
 - http://dx.doi.org/10.3389/fimmu.2021.582946 PMID: 33815357
- [29] Hviid A, Rubin S, Mühlemann K. Mumps. Lancet 2008; 371(9616): 932-44. http://dx.doi.org/10.1016/S0140-6736(08)60419-5 PMID: 18342688
- [30] World Health Organization. WHO recommends HIV self-testing evidence update and considerations for success. Policy Brief. 2019;27. Available from: https://www.who.int/publications/i/item/WHO-CDS-HIV-19.36
- [31] World Health Organization. HIV and AIDS. Fact Sheets Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids#
- [32] WHO Africa. Health topics. HIV/AIDS. Available from: https://www.afro.who.int/health-topics/hivaids
- [33] CDC. Ebola Disease Basics. Available from: https://www.cdc.gov/ebola/about/index. html#:~:text=Orthoebolaviruses%20can%20cause%20serious%20and,virus%20(species %20Zaire%20orthoebolavirus)
- [34] World Health Organization. Ebola virus disease. Available from: https://www.who.int/health-topics/ebola#tab=tab_1
- [35] Jefferson T, Dooley L, Ferroni E, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev 2023; 1(1): CD006207.
 PMID: 36715243
- [36] BMJ Best Practice. Coronavirus disease 2019 (COVID-19). Available from: https://bestpractice.bmj.com/topics/en-us/3000168/prevention
- [37] Khan ZZ. Kuru Clinical Presentation. Infectious Diseases 2019. Available from: https://emedicine.medscape.com/article/220043-clinical#:~:text=Neurological%20signs %20of%20kuru%20include,%2Dtoe%20walking%2C%20and%20dysdiadochokinesis
- [38] Caine D, Tinelli RJ, Hyare H, et al. The cognitive profile of prion disease: a prospective clinical and imaging study. Ann Clin Transl Neurol 2015; 2(5): 548-58.
 http://dx.doi.org/10.1002/acn3.195 PMID: 26000326
- [39] Sitammagari KK, Masood W. Creutzfeldt Jakob Disease 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507860/
- [40] John M, Freeman JM. The clinical spectrum and early diagnosis of Dawson's encephalitis: with preliminary notes on treatment. J Pediatr 1969; 75(4): 590-603. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0022347669804543#:~:text=Dawson's%20encephalitis%20is%20a%20progressive,progress%20rapidly%20over%20sever al%20weeks

- [41] Ouellette DR. Pulmonary Embolism (PE) Pulmonology Medscape 2024. Available from: https://emedicine.medscape.com/article/300901-overview
- [42] McKnight CL, Burns B. Pneumothorax In: StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441885/#:~:text=Clinical%20presentation%20 of%20a%20pneumothorax,distended%20neck%20veins%20and%20hypotension
- [43] Sabbula BR, Gasalberti SP, Mukkamalla SKR, Anjum F. Squamous Cell Lung Cancer In: StatPearls 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK56451 0/#:~: text=Squamous%20cell%20carcinoma%20of%20the,of%20cellular%20transformation%20is%20smoking
- [44] Alaeddini J. Angina Pectoris Clinical Presentation. Cardiology In: Medscape 2018. Available from: https://emedicine.medscape.com/article/150215-clinical
- [45] Basit H, Huecker MR. Myocardial Infarction Serum Markers In: StatPearls 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532966/
- [46] Gursahani K. Cardiac Markers. Emergency Medicine. The Heartorg Medscape 2021. Available from: https://emedicine.medscape.com/article/811905-overview
- [47] Jacob R, Khan M. Cardiac biomarkers: what is and what can be. Indian J Cardiovasc Dis Women WINCARS 2018; 3(4): 240-4.
 http://dx.doi.org/10.1055/s-0039-1679104 PMID: 31934672
- [48] Louis R. Caplan LR. 4th ed. Hypertension. Stroke Prevention. In Caplan's Stroke 2009. Available from: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/complications-of-hypertension
- [49] Canadian Hypertension Education Program. The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: Part I blood pressure measurement, diagnosis and assessment of risk. Can Med Assoc J. 2010;182(9):E330–E340. Available from: https://www.cmaj.ca/content/182/9/E330
- [50] Whelton PK, Carey RM, Aronow WS, *et al.* 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018; 71(6): e13-e115. Guideline
 - PMID: 29133356
- [51] Chobanian AV, Bakris GL, Black HR, *et al.* Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42(6): 1206-52.
 - http://dx.doi.org/10.1161/01.HYP.0000107251.49515.c2 PMID: 14656957
- [52] Redon J, Campos C, Narciso ML, Rodicio JL, Pascual JM, Ruilope LM. Prognostic value of ambulatory blood pressure monitoring in refractory hypertension: a prospective study. Hypertension 1998; 31(2): 712-8.

- http://dx.doi.org/10.1161/01.HYP.31.2.712 PMID: 9461245
- Pickering TG, James GD, Boddie C, Harshfield GA, Blank S, Laragh JH. How common is white coat hypertension?. JAMA 1988; 259(2): 225-8.
 http://dx.doi.org/10.1001/jama.1988.03720020027031 PMID: 3336140
- [54] Pace Hospitals. Hypertension Symptoms, Causes, Types, Complications and Prevention. Available from: https://www.pacehospital.com/hypertension-symptoms-causes-types-complications-prevention
- [55] WHO. Hypertension. Key Facts. Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension
- [56] Jian Hu J. Dilated Cardiomyopathy (DCM) Workup. Cardiology. In: the heart.org Medscape. Available from: https://emedicine.medscape.com/article/152696-workup
- [57] American Heart Association. In: Causes of Cardiac Arrest. 2023. Available from: https://www.heart.org/en/health-topics/cardiac-arrest/causes-of-cardiac-arrest
- [58] Bayulkem K, Lopez G. Clinical approach to nonmotor sensory fluctuations in Parkinson's disease. J Neurol Sci 2011; 310(1-2): 82-5.
 http://dx.doi.org/10.1016/j.jns.2011.07.056 PMID: 21872276
- [59] Hauser RA. Parkinson Disease Treatment and Management. Neurology 2020. Available from: https://emedicine.medscape.com/article/1831191-treatment
- [60] Taly AB, Netto A, Netto CM, Mahadevan A, Agadi JB. Tropical ataxic neuropathy A century old enigma. Neurol India 2016; 64(6): 1151-9. Available from: https://pubmed.ncbi.nlm.nih.gov/27841178/#:~:text=The%20syndrome%2C%20first%20 described%20in,tract%20myelopathy%2C%20with%20ataxic%20polyneuropathy http://dx.doi.org/10.4103/0028-3886.193755 PMID: 27841178
- [61] Kim YS, Kim SH, Jung SH, Kim TS, Joo SP. Brain stem herniation secondary to cerebrospinal fluid drainage in ruptured aneurysm surgery: a case report. Springerplus 2016; 5(1): 247. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771686/
 - http://dx.doi.org/10.1186/s40064-016-1875-4 PMID: 27026940
- [62] Shetty AK, Desselle BC, Craver RD, Steele RW. Fatal cerebral herniation after lumbar puncture in a patient with a normal computed tomography scan. Pediatrics 1999; 103(6): 1284-6. Available from: https://publications.aap.org/pediatrics/article-abstract/103/6/1284/62299/Fatal-Cerebral-Herniation-After-Lumbar-Puncture-in?redirectedFrom=fulltext
 - http://dx.doi.org/10.1542/peds.103.6.1284 PMID: 10353943
- [63] Mandiga P, Kommu S, Bollu PC. Hepatic Encephalopathy In: StatPearls 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430869/
- [64] Bardorf CM. Horner Syndrome Ophthalmology In: Medscape 2022. Available from: https://emedicine.medscape.com/article/1220091-overview

SUBJECT INDEX

A	Allergic 41, 132, 146, 169
A	conjunctivitis 132
A -: J 41 44 49 100 141 144 147 197	dermatitis 169
Acid 41, 44, 48, 102, 141, 144, 147, 187	rhinitis 132
folic 44, 48, 147	Amebiasis 11, 12, 46, 51, 52, 126, 127, 155,
gastric 102	158, 220, 222, 223, 225, 236, 238
glucuronic 41	hepatic 12, 127
nucleus 144	intestinal 11, 126
peptic 141	Amebic 72, 221
ACTH deficiency 118, 210	
Actinomycosis 38, 235, 236	dysentery symptoms 72
Activity 123, 131, 133, 138, 140, 145	meningoencephalitis 221
antibacterial 41, 142, 146	Amoxicillin-Clavulanic acid combination 144
anticonvulsant 130	Anemia 48, 58, 75, 114, 115, 116, 147, 157,
pharmacologic 138	163, 165, 181, 184, 204, 208, 209
Acute 75, 85, 96, 98, 99, 116, 117, 127, 144,	aplastic 147
146, 165, 181, 192, 193, 194, 195, 184,	diseases features 114
195, 199, 209, 217, 221, 230, 237, 238,	iron deficiency 157, 164
239, 243, 248, 249	macrocytic 48
coronary syndrome 248, 249	microcytic 157
disseminated encephalomyelitis 195, 230	sickle cell 115, 184, 208, 209
dystonia 199	Anesthesia 28, 111, 139, 206
interstitial nephritis (AIN) 146	facial 111, 206
kidney injury (AKI) 75, 117, 146, 165, 181,	Anesthetic gas 194
192, 193, 195, 209	Antibiotics 35, 36, 38, 42, 43, 67, 68, 121,
leukemia 237	126, 143, 144, 145, 146
lung parenchyma infection 85	aminoglycoside 144
lymphoblastic leukemia 116, 209	broad-spectrum 38, 126, 144
pancreatitis 217	Antipsychotics 1, 17, 18, 121, 131, 132, 133
pericarditis 248, 249	Antipyretic properties 25, 190
pharyngitis 238	Antituberculous therapy 189
poisoning 127	Antiviral properties 127
pyelonephritis 96, 192, 239	Aortic stenosis 109, 204
respiratory distress syndrome (ARDS) 193,	Apoptosis 170, 174
194, 221, 243	Arthritis, rheumatoid 161
tonsillitis 144	Asthma 104, 108, 136, 204
tubule-interstitial nephritis 195	cardiac 108, 204
viral hepatitis 98, 99, 193, 194	Autoimmune hepatitis 241, 242
Adenocarcinoma 200	
Adenovirus infection 243	
Adenylate cyclase 191	
Adrenocorticotropic hormone 210	
African trypanosomiasis 227, 235	

Inyang Ukot All rights reserved-© 2025 Bentham Science Publishers

В	Carcinoma 100, 104, 141, 195, 200, 227, 235 bronchioalveolar 200
Bacitracin 39, 143, 145	gastric 141
Bacterial 35, 37, 48, 75, 76, 109, 142, 143,	nasopharyngeal 100, 195, 227
144, 157, 162, 181, 191, 192, 219, 228,	squamous cell 200, 235
237, 238, 240, 244, 247	Cardio 75, 104, 109, 181, 199, 204
infections 35, 48, 75, 76, 142, 143, 157,	-pulmonary resuscitation 109, 204
162, 181, 191, 192	-respiratory diseases 75, 104, 181, 199
meningitis 109, 219, 228, 237, 238, 240	Cardiomyopathy 75, 107, 108, 181, 203, 204
pharyngitis 237	restrictive 204
respiratory infections 247	Cardiovascular system 104, 193, 195
sepsis 244	Cellular glycoprotein 199
skin infections 37, 144	Cephalosporins 41, 146, 185, 190
Bacterial pneumonia 82, 184, 249, 250	Cerebral 63, 228
acute 82	infections 63
Beta-lactam 184, 186	tuberculosis 228
resistance 184	Cervical spondylosis 183
inhibitors 186	Cestode 46, 66, 155
Bilateral retinochoroiditis 173	diseases 66
Blastomycosis 235	infections 46, 155
Blood 72, 173, 204	Chest radiography 203
transfusion 72, 173	Cholelithiasis 242
vessel abnormalities 204	Chromoblastomycosis 226
Bone 31, 77, 182, 236	Chronic 113, 207, 211, 233, 234, 237, 252
chronic 77, 182	kidney disease 252
metastasis 236	obstructive pulmonary disease 233, 237
sclerosis 31	obstructive pulmonary lung disease 234
Bone marrow 42, 114, 116, 124, 147, 172,	pancreatitis 113, 207, 211
190, 193, 208	Clonorchiasis 222
depression 42, 124, 147	Clostridial myonecrosis 244
hypercellular 208	Coccidioidomycosis 222, 246
hypocellularity 116	Colitis, ulcerative 158, 225
Bradycardia 115, 118, 135, 204	Colonoscopy 142
Bradykinesia 111	Combination therapy 145
Bronchial 75, 89, 181, 186	Corticosteroids 63, 125, 143, 166, 167, 168,
carcinoma 75, 89, 181	174
obstruction 186	Costochondritis 239
Bronchiectasis 75, 83, 87, 181, 185, 186, 189,	Cough, dry 81
233, 234, 235, 237	COVID-19 pandemic 102, 197
Budd-Chiari syndrome 220, 241	Creutzfeldt-Jakob disease (CJD) 103, 199,
Burkitt's lymphoma 75, 100, 115, 181, 195,	247, 248
208, 246	Cryptosporidiosis 225, 246
	Cyclosporiasis 225
C	Cystic 224, 234
	echinococcosis 224
Calcium carbonate 31, 140	fibrosis 234
Cancer 32, 33, 160, 200	Cystoisoporiasis 172
aggressive 200	Cystoisosporiasis 46, 155, 172, 225
gastric 32, 33	Cytomegalovirus 226, 228, 241, 243, 246, 247
Candidiasis 171, 246	encephalitis in HIV infection 247

infection 226, 228, 241, 243, 246	chemotherapeutic 126
	-induced liver injury (DILI) 241, 242
D	Dysdiadochokinesia 206
	Dysdiadochokinesis 199
Damage 99, 105, 110, 130, 194, 201, 205, 210	Dysfibrinogenemia 232
hepatocellular 99	Dyspepsia 200
myocardial 105, 201	Dyspnea, paroxysmal nocturnal 204
Deficiency 73, 117, 175, 209, 210, 232, 234,	Dysthymic disorder 245
237, 242	Dystonic drug reaction 244
antitrypsin 234, 237	
gonadotrophin 210	\mathbf{E}
Dengue fever 238	
Dermatitis 34, 53, 144	Electrocardiogram 105
exfoliative 144	Electrocardiography 203
seborrheic 34	Enzyme(s) 105, 133, 138, 139, 140, 157, 191
Dermatomyositis 217	cardiac 105
Diabetic 133, 207, 211, 240	intramitochondrial 133
ketoacidosis 207, 211, 240	-linked immunoassay 157
neuropathy 133	proteolytic 138
Dihydrofolate reductase 44	serum liver 140
Diseases 2, 3, 46, 72, 73, 75, 122, 143, 155,	trypsin 138
156, 157, 158, 171, 172, 173, 174, 175,	urease 191
181, 197, 199, 203, 204, 247	Epigastric distress 41, 146
coronavirus 197, 247	Epstein-Barr virus infection 195, 243
helminthic 122	Erythrocytes 50, 74, 158, 167, 172, 175
inflammatory 143	infected 74, 175
malignant 174	phagocytosed 172
myocardial 204	1 3
neurodegenerative 199	F
non-communicable 75, 181, 203	•
Disodium cromoglycate for acute asthma 24	Fasciolopsiasis 46, 155, 165, 223
Disseminated intravascular coagulation (DIC)	Fatal 199, 247
76, 173, 182, 232, 250	degenerative brain disorder 199
DNA 81, 184, 199	familial insomnia (FFI) 247
transfer 81, 184	Fatty liver disease 242
viruses 199	Fever in acute pyelonephritis 192
Dracontiasis 5, 47, 61, 124, 155, 156, 161	Fibromyalgia 133
Dracunculiasis 46, 59, 61, 155, 221, 222	Follicle-stimulating hormone (FSH) 210
Dracunculus medinensis 155, 156, 163	Fumarate reductase 123
lesions 156	Fungal pneumonia 233, 250
Drug(s) 1, 27, 13, 28, 30, 39, 40, 121, 123,	i ungai pileumoma 233, 230
125, 126, 127, 129, 134, 136, 137, 138,	\mathbf{G}
139, 140, 141, 142, 144, 145, 148, 241,	G
242	C
aluminum-containing 40	Gas gangrene 78, 183, 244
anti-inflammatory 1, 27, 121, 138, 161	Gastroenteritis 94, 191, 219
antipsychotic 131	Gastroesophageal reflux disease 32, 141, 223,
antiretroviral 100, 196	234, 245
anti-trypanosome 1, 14, 121, 129	Gastrointestinal 75, 113, 137, 181, 189, 207
antituberculous 144	diseases 75, 113, 181, 189, 207
	irritation 137

	,8
Graves' disease 75, 118, 181, 210	Infectious mononucleosis 238, 251 Infective encephalitis 248
Н	Inflammation, meningeal 78, 183 Inflammatory bowel disease 218, 223, 224,
Hansen's disease 42	225
Heart 72, 75, 108, 109, 181, 202, 203, 204, 210, 234	Iron deficiency 114
failure 72, 75, 108, 109, 181, 202, 203, 204, 210, 234	K
rhythm 204	Kawasaki disease 231
Heart disease 112, 124, 204, 206	Klinefelter syndrome 209
atherosclerotic 204	
rheumatic 112, 206	\mathbf{L}
Hemoglobin electrophoresis 208	_
Hemoglobinopathies 208, 209	Legionnaires disease 243
Hemolysis 167	Leukocytosis 51, 96, 209
Hemolytic uremic syndrome 195	Loffler syndrome 221
Hemophagocytic lymphohistiocytosis 173	
Hemorrhagic fever 197, 228, 250, 251	Lung 162, 185, 235, 250
Hepatic sarcoidosis 242	cancer 250
Hepatocellular carcinoma 98, 199, 224, 241,	fluke disease 162
242	malignancy 235
	parenchyma 185
Herpes simplex infection 246	Luteinizing hormone (LH) 210
Human immunodeficiency virus (HIV) 172,	Lyme's disease 66, 168
182, 196	Lymphadenitis 90, 125, 161, 188, 235
Hyperglycemia 119, 130, 135	cervical 161
Hyperkalemia 22, 209	tuberculous 90, 188, 235
Hyperphosphatemia 209	Lymphadenopathy 116, 173, 208
Hyperprolactinemia 135	Lymphatic system 159
Hypersensitivity reactions 37, 144	Lymphocytosis 48
Hypertensive 201, 112 crisis 201	Lysis, enzymatic 5
encephalopathy 112	\mathbf{M}
Hyperthyroidism 75, 118, 181, 210, 235	
Hypertriglyceridemia 209	Macrogamete, fertilized 162
Hypotension, orthostatic 23, 135, 205	Macrogametocyte 175
	Magnetic resonance imaging (MRI) 115, 173,
I	192, 203, 208
	Mantle cell lymphoma (MCL) 246
Immune 232, 246	Mantoux test 90, 188
disorders 246	Meig's 75, 113, 181, 207
thrombocytopenia 232	disease 207
Infections 10, 72, 75, 76, 80, 86, 87, 98, 123,	syndrome 75, 113, 181, 207
144, 168, 169, 172, 173, 174, 181, 182,	Melarsoprol 129, 159
187, 192, 193, 228	Meningitis 77, 80, 91, 182, 183, 184, 189,
aerobic 87	195, 198, 219, 230, 237
coronavirus 228	aseptic 195, 198, 219, 230
meningococcal 75, 76, 181, 182	
mycobacterial 144	epidemic 77, 182
picornavirus 75, 181	lymphocytic 183
proofilating 15, 101	pyogenic 77, 80, 182, 184

Subject Index

tuberculous 91, 189, 237 Metabolic acidosis 26, 137 Methicillin-resistant Staphylococcus aureus (MRSA) 144 Middle East respiratory syndrome (MERS) 228, 247 Migraine 133, 138 Monoamine oxidase 133 Multiple 205, 251 -organ dysfunction syndrome in sepsis 251 sclerosis 205 Mycobacteriosis 226 Mycobacterium tuberculosis 82, 88, 187, 188 Myeloproliferative disorders 208 Myocardial infarction 75, 105, 108, 135, 181, 201, 203, 240, 249 Myonecrosis 78, 183

N

Neurocysticercosis 168, 222
Neurofibromatosis 117, 209
Neurohypophysis 210
Neurological 206, 112, 195
complications 195
deficit 112, 206
diseases 112
Neurosarcoidosis 248
Neuroschistosomiasis 222
Neurotoxic effects 210
Nifurtimox-Eflornithine combination therapy
(NECT) 130
Non-steroidal anti-inflammatory drugs
(NSAIDs) 27, 137, 138
Noncommunicable diseases 75, 181

0

Osteoarthritis 138 Osteoporosis 236

P

Paget's disease 204
Parasitic diseases 46, 74, 155, 176
Pediatric acute respiratory distress syndrome 249
Peptic ulcer disease 141, 226, 241, 245
Phagocytosis 170

Polymerase chain reaction (PCR) 157, 160, 169, 173

R

Relapsing fever 57, 251
Renal 40, 75, 107, 112, 117, 145, 148, 181, 192, 202, 209
diseases 75, 117, 181, 209
failure 40, 107, 112, 145, 148, 192, 202
Respiratory 197, 198, 229, 247
infection 229
syncytial virus (RSV) 247
viral infection 197, 198
Reye syndrome 194
Rhabdomyolysis 195
Rhabdovirus infections 75, 181
Rheumatic fever 251
RNA tumor virus diseases 75, 181

S

Selective serotonin reuptake inhibitors (SSRIs) 134, 145 Septic 191, 193, 232, 237, 244 arthritis 237 encephalopathy 193 shock 191, 193, 232, 244 Severe 101, 247 acute respiratory syndrome (SARS) 101 combined immune deficiency (SCID) 247 Skin 35, 37, 66, 67, 125, 144, 156, 159, 162, 164, 165, 169, 194 rashes 169 Skin lesions 59, 163, 165 of onchocerciasis 165 Sleeplessness 131 Systolic blood pressure (SBP) 202, 210

T

Thrombocytopenia 75, 97, 116, 173, 181
Thrombotic microangiopathy 232
Thyroid-stimulating hormone (TSH) 210
Transmitted disease 69
Trichomonad protozoal disease 171
Trypanosoma brucei gambiense infection 159
Turner syndrome 116, 209
Typhoid fever 73, 75, 86, 92, 93, 181, 189, 190, 238, 239, 251

\mathbf{U}

Urolithiasis 239

\mathbf{V}

Viral respiratory infections 247

W

Wernicke-Korsakoff syndrome 210 Whipworm disease 218 Wilson disease 241, 242 Wuchereria bancrofti infection 223

Y

Yellow fever 103, 199, 228, 250, 251

Inyang Ukot

Inyang Ukot is a chief consultant in family medicine and the medical director of Impact Clinics Ltd., Uyo, Nigeria. He holds a diploma in occupational medicine from the Royal College of Physicians of London in 2005. He also holds two fellowships in family medicine with the West African College of Physicians (WACP), 1995, and the National Postgraduate Medical College of Nigeria (NPMCN), 1991. He graduated from College of Medicine of the University of Lagos, Nigeria, in 1981. Inyang's medical books are available on Amazon.com and three others physically in Nigeria. He has been involved in medical education since 1995.