

Artificial Intelligence: Unleashing the Future

Authored by

Madhu Bala

Computer Science and Engineering Department, Lovely Professional University, Punjab, India

&

Ritika Sharma

Computer Science and Engineering Department, Maharaja Agrasen University, Himachal Pradesh, India

Ct vkhelcnkpvgnki gpeg<Wprgcuj kpi 'vj g'Hwwt g

Authors: Madhu Bala & Ritika Sharma

ISBN (Online): 979-8-89881-051-1

ISBN (Print): 979-8-89881-052-8

ISBN (Paperback): 979-8-89881-053-5

© 2025, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore, in collaboration with Eureka Conferences, USA. All Rights Reserved.

First published in 2025.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the book/echapter/ejournal ("Work"). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

- 1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).
- 2. Your rights under this License Agreement will automatically terminate without notice and without the

- need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.
- 3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd.

No. 9 Raffles Place Office No. 26-01 Singapore 048619 Singapore

Email: subscriptions@benthamscience.net

CONTENTS

FOREWORD	i
PREFACE	ii
ACKNOWLEDGEMENTS	iii
CHAPTER 1 THE RISE OF ARTIFICIAL INTELLIGENCE	1
1. INTRODUCTION	
1.1. Historical Background	
1.1.1. Groundwork of AI (1943-50)	
1.1.2. Maturation and Birth of AI (1950-56)	3
1.1.3. Golden Age of AI (1957-79)	
1.1.4. AI Winter (1979-1980)	
1.1.5. The Emergence Phase (1980-1993)	3
1.1.6. Intelligent Agents Phase (1993-till Present)	3
1.2. Key AI Technologies	
1.2.1. Overview of Machine Learning (ML)	
1.2.2. Computer Vision	
1.2.3. Natural Language Processing	
1.2.4. Robotics	
1.3. Supervised Machine Learning Models	
1.3.1. K- Nearest Neighbour(KNN)	
1.3.2. Naive Bayes Algorithm	
1.3.3. Decision Tree	
1.3.4. Random Forest (RF) Algorithm	
1.3.5. Support Vector Machine	
1.4. Regression	
1.4.1. Simple Linear Regression	
1.4.2. Multiple Regression	
1.5. Unsupervised Learning	
1.5.1. Clustering	
1.5.2. Association Rules	
1.6. AI's Impact on Different Sectors: Case Studies and Examples	22
1.6.1. Healthcare	
1.6.2. Finance	
1.6.3. Manufacturing and Supply Chain	
1.6.4. Retail and Marketing	
1.6.5. Education	
1.6.6. Agriculture	
CONCLUSION	
REFERENCES	
CHAPTER 2 INVESTIGATING THE INFLUENCE OF ARTIFICIAL INTELLIGENCE	
WITH DEEP LEARNING	30
1. INTRODUCTION	
1.1. Artificial Intelligence and Deep Learning	
1.2. Delving into the realm of Artificial Intelligence and Deep Learning	
1.3. Deep Learning Vs Conventional Machine Learning	
1.4. Significance of Deep Learning	
2. FOUNDATION OF DEEP LEARNING	
2.1 Artificial Naural Naturals (ANN)	

2.2. Neurons	40
2.3. Role of Neurons in ANN	
2.4. Activation Functions	
2.5. Loss Functions	
3. DEEP LEARNING ARCHITECTURES	
3.1. Convolutional Neural Networks (CNNs)	
3.1.1. CNNs Architecture	
3.1.2. Components of CNNs	
3.1.3. Types of CNNs	
3.1.4. Use Cases of CNNs	
3.2. Recurrent Neural Networks (RNNs)	
3.2.1. RNNs Architecture	
3.2.2. Types of RNNs	
3.2.3. Use Cases of RNNs	
3.3. Generative Adversarial Networks (GANs)	
3.4. Autoencoders	
3.5. Reinforcement Learning Networks	52
2.3.6 Transformers	
4. DEEP LEARNING FRAMEWORKS FOR MODEL DEVELOPMENT	
5. APPLICATIONS OF AI AND DEEP LEARNING MODELS	54
6. FUTURE TRENDS AND CHALLENGES OF AI AND DEEP LEARNING	55
CONCLUSION	56
REFERENCES	56
CHAPTER 3 SMART FIELDS: REVOLUTIONIZING AGRICULTURE WITH ARTIFICIAL	
INTELLIGENCE	
1. INTRODUCTION	
1.2. Soil Health Monitoring	
1.3. Plant Disease Detection	
1.3.1. Different Methods of AI Used in the Detection of Plant Diseases.	
1.4. Sowing seeds	
1.5. Weather Prediction	
1.5.1. Monitoring the Weather in Real Time	
1.5.2. Long-Term and Seasonal Forecasting	
1.5.3. Using Predictive Analytics to Manage Risk	
1.6. Smart Irrigation	
1.7. Robotic Farming	
7.1.1. Extraordinary Aspects of Robotic Farming	73
1.8. Examples of AI Applications in Agriculture	
CONCLUSION	75
REFERENCES	76
CHAPTER 4 ENHANCING CYBERSECURITY THROUGH INTELLIGENT DEFENCE	81
1. INTRODUCTION	
1.2. Cyber-attacks and Malware	
1.3. AI in Cybersecurity	
1.3.1. Detection of DoS	
1.3.2. Phishing attack detection	
1.3.3. Real-time network monitoring	
1.4. Machine Learning Algorithms for the Detection of Attacks	
1.4.1. Random Forest	
1.4.2. Naive Bayes (NB)	
*	

1.4.3. Support Vector Machine(SVM)	
1.5. Adversarial Attacks	
1.6. Malware Detection and Mitigation	
1.6.1. Machine Learning and Artificial Intelligence	
1.6.2. Awareness and Education of Users	
1.7. AI Tools for Cybersecurity	
Darktrace Detect:	
Benefits:	
Limitations:	
Splunk:	
Benefits:	
Limitations:	
Trellix:	
Benefits:	
Limitations:	
Tenable:	
Benefits:	
Limitations:	
1.8. Emerging Cybersecurity Ethical Dilemmas	
1.9. Implementation of AI Solutions in Real-World	
CONCLUSION	
REFERENCES	
1. INTRODUCTION TO AI IN HEALTHCARE 1.1. Significance of AI in Healthcare	
2. APPLICATION OF AI IN THE HEALTHCARE SECTOR	•••••
3. AI IN DIAGNOSTICS	
3.1. The Importance of Accurate Diagnostics in Healthcare	
3.2. AI-Powered Medical Imaging: Revolutionizing Radiology and Pathology	
3.3. Predictive Analytics in Diagnostics: Harnessing Big Data for Early Detection	
3.4. AI in Genomics and Personalized Diagnostics	
3.5. AI-Assisted Diagnostic Decision Support Systems	
4. AI IN PERSONALIZED MEDICINE	
4.1. The Role of AI in Personalized Medicine	
a. AI-Driven Genomic Analysis	
b. AI in Cardiovascular Disease Management	
c. AI in Psychiatry and Mental Health	
d. AI in Pain Management	
4.2. AI in Personalized Vaccines and Immunotherapy	
4.2. AI in Personalized Vaccines and Immunotherapy a. AI in Cancer Immunotherapy	
a. AI in Cancer Immunotherapy	
**	
a. AI in Cancer Immunotherapy b. AI in Infectious Disease Vaccination c. AI for Personalized Preventive Healthcare	
a. AI in Cancer Immunotherapy b. AI in Infectious Disease Vaccination c. AI for Personalized Preventive Healthcare d. AI and Predictive Health Risk Assessment	
a. AI in Cancer Immunotherapy b. AI in Infectious Disease Vaccination c. AI for Personalized Preventive Healthcare d. AI and Predictive Health Risk Assessment 5. AI IN SURGERY AND ROBOTICS	
a. AI in Cancer Immunotherapy b. AI in Infectious Disease Vaccination c. AI for Personalized Preventive Healthcare d. AI and Predictive Health Risk Assessment 5. AI IN SURGERY AND ROBOTICS 5.1. The Rise of Robotic-Assisted Surgery	
a. AI in Cancer Immunotherapy b. AI in Infectious Disease Vaccination c. AI for Personalized Preventive Healthcare d. AI and Predictive Health Risk Assessment 5. AI IN SURGERY AND ROBOTICS 5.1. The Rise of Robotic-Assisted Surgery a. AI in Robotic-Assisted Surgeries: Improving Precision and Reducing Recover	ry Times
a. AI in Cancer Immunotherapy b. AI in Infectious Disease Vaccination c. AI for Personalized Preventive Healthcare d. AI and Predictive Health Risk Assessment 5. AI IN SURGERY AND ROBOTICS 5.1. The Rise of Robotic-Assisted Surgery	ry Times

5.2. Autonomous Surgical Robots: Enhancing Surgeon Capabilities	
a. The Evolution of Autonomous Surgical Robots	113
b. AI in Autonomous Endoscopy	113
c. Autonomous Robots in Orthopedic Surgery	
5.3. AI-Driven Real-Time Analytics During Surgical Procedures	
a. AI-Powered Image Recognition and Analysis	
b. Intraoperative Decision Support	
c. AI and Augmented Reality in Surgery	115
6. REMOTE MONITORING AND VIRTUAL HEALTH	
7. WEARABLE DEVICES FOR CONTINUOUS PATIENT MONITORING	
a. AI-Driven Continuous Monitoring	
b. Early Intervention and Emergency Response	
c. Chronic Disease Management	
8. TELEMEDICINE PLATFORMS: REMOTE CONSULTATIONS AND PATIF FOLLOW-UPS	
a. AI-Powered Remote Consultations	
b. Remote Diagnostics and AI-Assisted Image Analysis	
c. AI-Enhanced Patient Follow-Ups	
9. AI IN MOBILE HEALTH APPS	
a. AI for Personalized Wellness and Fitness Tracking	
b. The Role of Data Privacy and Security	
i. Ensuring Data Security	
ii. Patient Consent and Transparency	
iii. Addressing Health Inequities	
c. The Role of Healthcare Providers in AI Integration	
i. Training and Education	
ii. Collaboration Between AI Developers and Clinicians	
10. OPTIMIZING HOSPITAL WORKFLOWS, PATIENT SCHEDULING, AND	
RESOURCE MANAGEMENT	
10.1. AI in Hospital Workflows	
10.2. AI in Patient Scheduling	
10.3. AI in Resource Management	
10.4. Reducing Administrative Burdens through AI-Powered Tools	
10.4.1. AI-Powered EHR Management	
10.4.2. Predictive Analytics for Patient Care Pathways	
11. ETHICAL, REGULATORY, AND DATA PRIVACY CONSIDERATIONS	
11.1. Informed Consent	
11.2. Autonomy and Decision-Making	
11.3. Accountability and Liability	
11.4. Privacy Concerns with Patient Data	
11.4.1. Ethical Consideration in Patient Data Privacy	126
11.4.2 Regulatory Challenges with AI in Healthcare	127
12. CHALLENGES AND OPPORTUNITIES IN AI INTEGRATION	
CONCLUSION	129
REFERENCES	129
CHAPTER 6 ARTIFICIAL INTELLIGENCE IN EDUCATION: THE FUTURE OF	
LEARNING	131
1. INTRODUCTION	
1.1. Importance of AI in Technology	
1.2. Impact of AI	
.	

6.2 APPLICATIONS OF AI IN EDUCATION	133
3. TYPES OF TECHNOLOGIES IN EDUCATION	135
3.1. Natural Language Processing	135
3.2. Machine learning (ML)	136
3.3. Robotics	137
3.4. Predictive Analytics	. 137
4. PERSONALIZED LEARNING	138
5. BENEFITS OF AI IN EDUCATION	. 139
5.1. Benefits to Learners	139
5.2. Benefits to Educators	141
6. IMPLEMENTATION STRATEGIES	. 141
6.7 CHALLENGES WITH AI SOLUTIONS IN EDUCATION	. 142
8. FUTURE TRENDS AND INNOVATIONS	145
CONCLUSION	
REFERENCES	146
BJECT INDEX	149

FOREWORD

The field of Artificial Intelligence (AI) is leading a revolution that is changing how we work, live, and engage with the world. What was formerly the domain of science fiction has permeated every aspect of our daily lives, impacting industries as varied as entertainment, healthcare, education, and transportation. "Artificial Intelligence: Unleashing the Future" is a compelling example of this revolutionary period, providing a forward-thinking perspective on the seemingly endless potential of AI.

This book explores the quickly changing field of artificial intelligence, following its development from theoretical underpinnings to its current function as an innovation accelerator. It tackles important issues about how AI systems learn, make choices, and help address global issues including illness prevention, cyber security, and fair resource distribution. From revolutionizing healthcare and education to powering smart cities and sustainable agriculture, the reach of AI knows no bounds.

Whether you are a student, a professional, or simply a curious mind, this book offers insights that will deepen your understanding of AI and its potential to redefine our world. Let it be your guide as you explore a future where intelligence—both human and artificial—joins forces to shape a better, more inclusive world.

Pradeepta Kumar Sarangi Department of Computer Science and Engineering Chitkara University, Himachal Pradesh, India

PREFACE

The human tale is one of the unrelenting inquiries and discoveries. As we approach the dawn of a new age, Artificial Intelligence (AI) presents itself as a creation unlike anything before. This book is an invitation to explore this amazing world, where robots are discovering, adjusting, and changing at a rate never seen before. AI was mostly found in science fiction for many years when it was used to create sentient robots and self-aware machines. The last several years have seen a rapid advancement in AI technology that has permanently changed the environment, even though the reality is still developing. Applications of AI are quickly encroaching on every aspect of our livese, from self-driving automobiles to facial recognition software. But these are only the beginnings; AI has far more potential. We are on the cusp of a revolution that will drastically alter the way we live, work, and engage with the world.

This book titled "Artificial Intelligence: Unleashing the Future" goes beyond being a technical guide. It serves as a bridge, guiding you from the limits of artificial intelligence to the reaches of possibilities. The fundamental ideas of deep learning, artificial neural networks, and machine learning—the three main technologies behind contemporary AI systems—will be covered in detail. Our investigation, however, extends beyond the algorithms. The evolution of AI will be examined, starting from the earliest days of digital technology and ending in the state-of-the-art research facilities that will shape the field's future.

This book is primarily concerned with recent developments in artificial intelligence (AI), how AI can be applied in many fields, and how using AI computations and models might alter these fields. AI presents fresh strategies for handling challenging issues. It is noteworthy to see that new models and theories undergo a major change due to artificial intelligence. In terms of tools and approaches, advances in instrument technology have resulted in considerable change. Consequently, it has had and will continue to have an equally significant influence on the production and manufacturing sectors through the development of industries.

The main goal of this book is to provide an introduction to the field of artificial intelligence, its systems and architectures, and how this may be used to solve real world problems. The book is mainly intended for students, and researchers of various fields who are interested in artificial intelligence. The structure of this book is organized in five different chapters. We sincerely hope that businesses and developers will find its use in the industry intriguing.

Madhu Bala

Computer Science and Engineering Department Lovely Professional University Punjab, India

&

Ritika Sharma

Computer Science and Engineering Department Maharaja Agrasen University Himachal Pradesh, India

ACKNOWLEDGEMENTS

The journey of writing this book, "Artificial Intelligence: Unleashing the Future", has been a rewarding experience, and it would not have been possible without the support of many individuals and organizations.

First and foremost, we would like to express our deepest gratitude to Maharaja Agrasen University, Himachal Pradesh, India, and Lovely Professional University, Phagwara, Punjab, India, whose unwavering support and resources were instrumental in completing this work. Their commitment to innovation and knowledge sharing has truly been inspiring.

To our family, your love, patience, and encouragement have kept us grounded throughout this journey. Special thanks to our parents for their emotional support and we always knew that you wanted the best for us.

A heartfelt thank you to our dear friends and colleagues, for your understanding and for always being there to provide thoughtful advice, feedback, and companionship during both the challenging and triumphant moments. Finally, we would like to extend my gratitude to all the readers and researchers who continue to push the boundaries of what artificial intelligence can achieve. Your curiosity and passion are what drive innovation forward.

Thank you all for being a part of this journey.

CHAPTER 1

The Rise of Artificial Intelligence

Abstract: The human brain is one of the most important organs that help us think, learn new things, and remember what we have seen. With the advancements in technologies, artificial intelligence (AI) came into the picture which is nothing but the simulation of the human brain. The current chapter will throw light on the evolution, technologies, and transformative changes of AI in various sectors. Beginning with the historical background, it traces the journey of AI from its early stages to the advanced machine learning and deep learning models in the present. This knowledge is important for those who are seeking relevant skills and stay updated in a competitive environment. It is believed that a more well-informed person can engage himself in meaningful discussions, contributing to the democratic shaping of its future. Knowing the history of AI is important to have a clear understanding that where it is now and where it may go in the future.

Keywords: Machine learning, Neurons, Neural networks, Simulation, Transformers.

1. INTRODUCTION

1.1. Historical Background

The human brain consists of 86 billion neurons interconnected by trillions of synapses. This network enables the human brain to perform and process vast amounts of tasks. It is an extremely powerful organ that has finite speed, memory, and ability to work 24x7 without any fatigue. However, these cognitive functions have certain limitations like limited working memory and susceptibility to mental health conditions. Due to this, AI is required to augment human intelligence and address these challenges. It involves the development of various algorithms and software that enable computer systems to perform tasks like problem-solving, experience-based learning, pattern recognition, *etc* that would require human intelligence. In the current scenario, AI has made significant changes in various fields [1, 2]. AI systems are useful tools in a variety of applications, from self-driving cars and virtual assistants [3] to healthcare diagnostics [4] and financial analysis, because they are built to analyse data, adapt to new information, and

Madhu Bala & Ritika Sharma All rights reserved-© 2025 Bentham Science Publishers complete tasks autonomously. The relationship between AI and the human brain is a fascinating subject that bridges the gap between neuroscience, computer science, and cognitive psychology. By exploring how AI mimics the human brain or neural processes, it would be easier to know the potentials of human and artificial intelligence.

Artificial intelligence is a much older technology than anyone would imagine. AI started to evolve in the early 1900s when different scientists began to ask questions like: can an artificial brain be created? The history of AI can be explained in various phases (shown in Fig. 1) which is a very interesting story to know how AI evolved from its birth to till date.

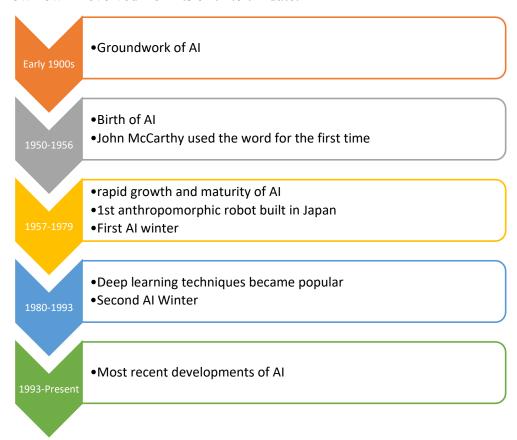


Fig. (1). Evolution of artificial intelligence.

1.1.1. Groundwork of AI (1943-50)

In 1950, Alan Turing, an English mathematician, and computer scientist gave the concept of the "Turing test", which formed the basis for AI. John McCarthy, known as the father of AI held a workshop in 1955 at Dartmouth where he

introduced the word "Artificial Intelligence" for the very first time, and from then, this word came into popular usage by the people.

1.1.2. Maturation and Birth of AI (1950-56)

AI matured during the years 1957-1979. Arthur Samuel introduced the term machine learning in 1952 during his speech that how machines can play chess better than humans whereas in 1955 Simon and Allen Newell developed the first AI-based program that was designed for the proofs of mathematical theorems. In a conference, John McCarthy introduced AI as an academic coin and also developed LISP as the first programming language for AI research in 1958.

1.1.3. Golden Age of AI (1957-79)

In 1966, a chatbot was developed that was able to converse with humans. The American Association of Artificial Intelligence (AAAI) was also founded in 1979. In the era of 1980s, the concept of deep learning came into the picture. The first neural network named 'Neocognitron' was developed by Kunihiko Fukushima in 1979. This network was designed using multiple pooling and convolutional layers to recognize visual patterns.

1.1.4. AI Winter (1979-1980)

The term AI winter was also introduced during these years. It refers to the tough time period when there was a decrease in funding for research and interest in the publicity of AI was also decreased. These years are also termed the 'first AI Winter'. In 1980, AI wastrained again with the introduction of expert systems and deep learning techniques. LISP machines were getting into use commercially and a significant downturn was observed.

1.1.5. The Emergence Phase (1980-1993)

In 1985, the Bayesian network was introduced by Judea Pearls for causal analysis of statistical methods. Further, in 1989, Yan LeCun demonstrated backpropagation at Bells Lab. It was the first practical demonstration where a convolutional neural network was combined with backpropagation to read the handwritten characters. Due to high costs and not getting efficient results, the government and other investors stopped giving funds to the researchers. The time period between 1987 to 1993 was the second AI winter.

1.1.6. Intelligent Agents Phase (1993-till Present)

A significant forward leap was found in 1993 especially in the development of intelligent computer programs. AI professionals started using AI to perform

Investigating the Influence of Artificial Intelligence with Deep Learning

Abstract: Artificial Intelligence (AI) and Deep Learning (DL) have emerged as transformative technologies with the potential to revolutionize various domains. This paper explores the fundamental concepts and advancements in AI and DL, highlighting their significance in solving complex problems and enhancing computational efficiency. AI aims to mimic intelligent behavior by enabling machines to think, observe, learn, and adapt, while DL, a subset of AI and machine learning, focuses on algorithms modeled after the architecture and operation of neural networks in the human brain. The development of AI has been driven by the need to handle complex problems involving uncertainty and vast amounts of data, with techniques such as machine learning, deep learning, and pattern recognition showing promise in structural engineering applications. DL models, inspired by the composition and operations of the human brain, excel at processing large datasets to uncover intricate patterns and insights. DL has become the most prominent technology within the fields of machine learning, AI, data science, and big data analytics due to its ability to learn from datasets. The performance of DL algorithms surpasses that of traditional machine learning techniques as the amount of data increases, enabling the solution of more complex problems even with unstructured, diverse, and networked data. This paper emphasizes the importance of understanding AI and DL concepts to navigate the rapidly evolving technological landscape and appreciate their implications across various aspects of society.

Keywords: Artificial Intelligence, Architecture, CNN, Deep learning, GAN, Machine learning, RNN.

1. INTRODUCTION

Artificial Intelligence is the branch of computer science that has a strong impact on multidisciplinary areas such as mathematics, linguistics, philosophy, and psychology or cognitive science. Generating expert systems that can include or display some intelligence is the main objective of artificial intelligence and it is achieved in two ways either by adopting methods which are more suited for computer processing or by modeling how people perform intelligent requiring tasks [1].

AI, which promises to transform industries, improve human capacities, and influence the course of civilization, is at the front of contemporary technological progress. The fundamental goal of artificial intelligence (AI) is to mimic intelligent behaviour by giving machines the ability to think, observe, learn, and adapt in ways that are similar to those of humans. Over the past few decades, research and development on artificial intelligence (AI) have grown rapidly. Expert systems, natural language processing, speech recognition, computer vision, robotics, and other fields have advanced tremendously, while there are still major issues that need to be resolved. Among other things, the current success of AI stems from the creation of novel system designs that may leverage all the knowledge—including human expertise—available in a particular subject. Thus, in order to enhance their performances, these knowledge-based systems consider human expertise [2]. Artificial Intelligence (AI) facilitates machine knowledge. human-machine communication, and human-machine interaction. Machine learning (ML) is an application of artificial intelligence that allows the systems to automatically learn from their past experiences and get better without being explicitly programmed. On the other hand, Deep Learning (DL) learns from inputs such as pictures, text, and sound and responds accordingly (shown in Fig. 1).

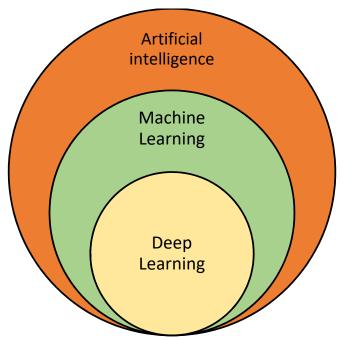


Fig. (1). The circle shows the spheres of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). Machine Learning and deep learning are the subsets of Artificial Intelligence. Machine Learning (ML) automatically predicts the results from the given set of input data and Deep Learning (DL) mimics the working of the human brain to incorporate such intelligence into the system.

The necessity to handle complicated problems—especially the ones involving uncertainty and enormous volumes of data—has propelled the development of artificial intelligence. Artificial Intelligence (AI) techniques in structural engineering, including machine learning, deep learning, and pattern recognition, have shown promise in solving problems that traditional models are unable to, increasing computing efficiency and decreasing human labour [3].

1.1. Artificial Intelligence and Deep Learning

Artificial Intelligence (AI) and Deep Learning (DL) have gained widespread recognition over many years, capturing the attention of people and reshaping the field of technology. It is essentially the human thoughts generated by the computers, with the aim of initializing cognitive functions like learning, problem-solving and decision-making.

As Deep Learning (DL) is a subset of artificial intelligence and machine learning that focus on algorithms that are modeled after the architecture and operation of neural networks found in the human brain. Gaining an understanding of ideas generated by the human brain is essential for navigating the constantly changing technology landscape and appreciating the ramifications for many facets of society. It has become a paradigm shift, taking the discipline to previously unheard-of heights. Deep Learning (DL) models, which have their roots in computational artificial neural networks and are inspired by the composition and operations of the human brain, are particularly good at sifting through enormous amounts of data to find complex patterns and insights. These neural networks have the depth to automatically find hierarchical representations, opening up the possibility of amazing achievements across a range of fields [4].

1.2. Delving into the realm of Artificial Intelligence and Deep Learning

Artificial Intelligence (AI) and Deep Learning (DL) represent the zenith of human inventiveness, with the potential to create machines that can occasionally outperform humans in intelligence. These expressions have gained widespread usage in contemporary society, manipulating not only science fiction but also our relationships with one another, the environment, and our jobs. In addition to being tech-savvy, one should have a rudimentary understanding of AI and deep learning since it might be useful in navigating the complex relationship between humans and rapid technological advancement. The goal of artificial intelligence, or AI, is to build computers that are capable of tasks that typically require human intellect, such as pattern recognition, decision-making, and experience-based learning. Deep Learning, a branch of artificial intelligence, employs neural networkinspired algorithms. Deep Learning was introduced in 2006 by Hinton *et al.* based on the concept of artificial neural network (ANN) [5] and it became a "new

Smart Fields: Revolutionizing Agriculture with Artificial Intelligence

Abstract: Artificial intelligence has embarked on significant changes in various fields and agriculture is one of them. This chapter is focused on the transformative effects of artificial intelligence (AI) on modern agriculture with an emphasis on how it has improved sustainability and completely disrupted farming methods. Precision agriculture is the second name given to modern farming that includes various tools and technologies to monitor and optimize agricultural production processes. It helps farmers to maximise crop yields, and environmental impact, and use resources more efficiently. Soil analysis, crop monitoring, disease and pest detection, and autonomous machinery are some of the major applications that are covered here. AI-powered imaging systems are essential for early disease diagnosis and management in crop management. These technologies enable prompt actions via early detection of disease or pest infestation indicators. In order to ensure improved crop health and increased yields, machine learning algorithms examine trends in plant health and suggest suitable remedies. AI models also help farmers plan more efficiently for storage, marketing, and distribution by predicting crop yields based on a variety of parameters, including weather data, soil conditions, and plant health. Also, Artificial Intelligence (AI) guarantees that crops are transported and sold efficiently, decreasing waste and increasing farmer profitability by anticipating demand and optimising logistics and distribution. Supply chain optimisation powered by AI improves agricultural operations' overall sustainability and efficiency. The chapter explores computer vision, predictive analytics, and machine learning algorithms, showing how these technologies support real-time interventions and data-driven decision-making.

Keywords: Crop monitoring, Plant diseases, Predictive analysis, Robotic farming, Sowing seeds, Smart irrigation.

1. INTRODUCTION

It is expected that by the year 2050, the population of the planet will become 10 billion approximately. It will put tremendous pressure on the agricultural industry so as to boost up yields of the crops and productivity [1 - 4]. There are two possible strategies that can be adopted to find the solution to this problem. Either the land size can be increased or implement large-scale farming to foster the production on current farmland. Both solutions can be used to fulfill the growing

food demand of the increasing population. Artificial Intelligence (AI) has emerged as a new wave of innovation in the past few decades that has the capability to completely transform this sector [5]. It has shown itself to be a transformative force that can address many issues faced by modern agriculture through its ability to process huge amounts of data and streamline processes. It can be applied in various applications of agriculture as shown in Fig. (1).

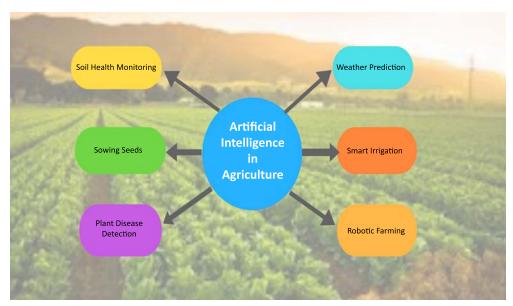


Fig. (1). Applications of AI in Agriculture.

AI has the capability to process huge amounts of data coming from various sources in real-time to give farmers important insights about crop health and soil conditions. In this manner, precision agriculture is brought into a more workable approach that allows maximum resource use of fertilizers and water in the process. AI can analyze big data sets from different sensors and satellites to enable farmers to gain useful insights regarding crop health [6 - 8], quality of soil, and weather conditions [9, 10]. This makes it possible to make precise decisions regarding fertilization, irrigation, and pesticide use to maximize the effectiveness of resources, while at the same time minimizing their effect on the environment. Another crucial application of AI in agriculture is crop monitoring, which provides in-the-moment field condition analysis and surveillance. Through the analysis of images obtained by drones or ground-based sensors, machine-learning algorithms can identify early indicators of diseases, insect infestations, and nutritional deficits. Early detection of these problems allows farmers to take focused measures to stop them from spreading, which lowers the need for chemical treatments and maintains crop quality [11 - 13]. In addition, farmers

may track yields more precisely and optimise harvesting schedules for maximum freshness and market demand with the use of AI-enabled monitoring systems.

By offering precise weather forecasts and encouraging adaptable farming methods, AI strengthens resistance against climate change. AI-driven automation also takes care of the demand for productive and self-sufficient farm operations as labour shortages become more common. In addition, labour-intensive operations throughout the agricultural value chain are being revolutionised by AI-driven robotics and automation [14]. AI navigation algorithms in autonomous cars enable previously unheard-of levels of efficiency and precision when carrying out a variety of field tasks, including planting, weeding, and harvesting. Because these robotic solutions work for long hours without the need for human interaction, they not only improve productivity but also help address the labour problem on farms [15]. Furthermore, in smart irrigation systems, AI models can predict weather patterns with the help of which farmers can decide when and how much to irrigate based on upcoming rainfall, temperature, and humidity. AI-powered smart controllers can adjust the irrigation schedules automatically depending upon the data received in real-time. This ensures optimal water delivery without any human intervention.

AI is also revolutionising logistics and supply chain management in the agriculture industry. Predictive analytics algorithms are utilised to optimise distribution routes, storage facilities, and inventory levels by analysing past data, market trends, and external factors such as weather patterns. Artificial Intelligence (AI) helps minimise transportation costs, eliminate food spoilage, and assure timely delivery of agricultural products to customers worldwide by precisely anticipating demand and identifying potential bottlenecks [16].

1.2. Soil Health Monitoring

Good crops come from good soils, and healthy crops feed people and other animals. There is a direct correlation between food quality and quantity and soil quality. The food-producing plants depend on soil for vital nutrients, water, oxygen, and root support to grow and thrive (depicted in Fig. 2). One or more soil issues may contribute to plant issues and poor development. Three major issues with soil are erosion, topsoil removal, and compaction (dense soil that drains water slowly). It will save you time and money and provide a healthier landscape if you assess your soil and make the required corrections and enhancements before planting [17, 18]. Once an area is planted, it is difficult to go back and fix bad soil conditions. Using artificial intelligence tools to monitor and control soil health in agricultural contexts is known as soil health monitoring with AI [19]. Informed decisions that can increase crop yields, maximise resource use, and

CHAPTER 4

Enhancing Cybersecurity through Intelligent Defence

Abstract: In the modern era, everything is transformed onto online platforms whether it is a transaction of money, sending information from one system to another, e-mails, business plans, trading, *etc.* Every passing minute, a huge amount of data is generated, processed, and executed. Cybersecurity is a field of computer science that deals with the protection of all these things over the internet and machine learning techniques are playing an important role in identifying threats. This chapter is focused on describing the role of machine learning in the detection of intrusions present in the system so that sensitive data can be protected. By analysing a huge amount of data, AI can identify hidden patterns and behaviours that help in building more proactive measures.

Keywords: Cybersecurity, DoS attack, Intrusion detection system, Malware, Machine learning, Signature-based detection.

1. INTRODUCTION

In the conventional period, computers were isolated machines used for specific purposes. However, as technology advances in terms of networking, computers are connected forming a large network, leading to the development of the Internet [1, 2]. Nowadays, the Internet has become a necessity for everyone. People have become so dependent on the Internet to carry out various tasks such as online banking, online payments, shopping, education, etc. In a study [3], it was found that the internet usage rate in 2017 was 48% but now it is increased to more than 90% in developing countries. These kinds of work have become so easy and faster. But at the same time, the need to protect and secure the data from unauthorized access has also arisen. Point-to-point data transfer has become a challenge because the rate of fraud, intrusions, and other malware attacks has also increased. Various types of threats such as phishing attacks [4], data breaches [5], denial of service attacks [6], etc. are coming into the picture on a daily basis. In the year 2000, companies like amazon.com and ebay.com got affected by cyberattacks where the intruders made modifications in the program coding. As a result, companies declared shutdown to remove this anomaly [7]. In May 2005, a

> Madhu Bala & Ritika Sharma All rights reserved-© 2025 Bentham Science Publishers

professional criminal obtained confidential information belonging to 500,000 clients of Wachovia Inc. Instead of using an advanced hacking method, the thief used conventional bribery to recruit. Ethereum theft [8] took place in July 2017 where 150 USD were stolen from an Ethereum application within a few minutes. The outdated and conventional techniques of detection such as firewalls, and antivirus systems are not sufficient enough to tackle these kinds of problems. Fig. (1) shows the rate of increase in cybercrimes in India from 2012 to 2022 [9]. From this, it can be analysed that there has been a significant jump in the number of such crimes over the past few years.

Fig. (1). Rate of increase of cybercrimes in India from 2012 to 2022 [9].

Cybersecurity is composed of two words-cyber and security. The cyber term is related to computers, information technology, and digital systems such as networks programs systems, and data. Security is concerned with the protection of applications, data, system, and networks [10 - 12]. It is also termed as electronic information security and is needed to protect:

- private data,
- intellectual data,
- banking and financial data,
- channel security.

Machine learning techniques can be applied to applications that deal with different transactions over the internet to make the system more robust, secure, and reliable. To maintain cybersecurity, it is mandatory to have fundamental knowledge of risks and threats that one can encounter while using internet services, making transactions, and any other related tasks.

1.2. Cyber-attacks and Malware

Cyber-attack refers to the process of gaining unauthorized access to someone's system through the introduction of any malicious act. This results in disruption of the computer system and the information contained inside it. These attacks can come from various modes- business competitors, terrorists, secret agents, and hackers. On the other hand, malware is malicious software used to gain access to someone's computer so that either the information can be retrieved or the data stored in the system can be disrupted. Malware can be in the form of code, software, links or any other kind of active content that can be spread or distributed through e-mails, social networking sites, downloads, or websites. Some commonly found malware are shown in Fig. (2).

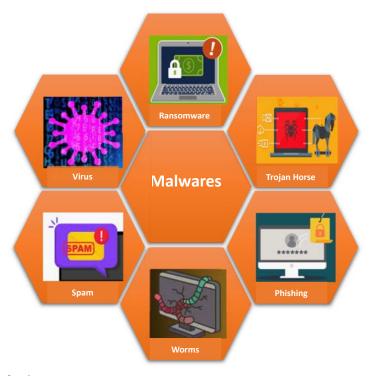


Fig. (2). Types of malware.

The Future of Diagnosis, Treatment, and Care with AI-Powered Healthcare

Abstract: AI is radically changing the healthcare industry by providing ground-breaking solutions for surgery, therapy, diagnosis, and patient management. In this chapter, the academic applications of artificial intelligence (AI) in several healthcare disciplines are explored, along with the advantages and difficulties of adopting AI. In order to improve illness identification, lower diagnostic mistakes, and speed up the interpretation of complicated imaging data, machine learning techniques are used in medical imaging and diagnostics. This chapter also discussed AI-driven tools used in robotically assisted operations, showing how these innovations enhance surgical accuracy, shorten recuperation periods, and make difficult treatments more likely to succeed. Predictive analytics and artificial intelligence's role in customized medicine are covered extensively in this chapter.

Keywords: Artificial Intelligence, AI-Diagnosis, Healthcare, Machine Learning.

1. INTRODUCTION TO AI IN HEALTHCARE

Artificial intelligence, broadly transforming industries globally, including healthcare, is an area of interest to researchers. Because AI is known to work with huge volumes of data, recognize patterns and predict outcomes, it is increasingly playing a more vital role in healthcare delivery, clinical decision-making, patient outcomes, and operational efficiencies (Fig. 1). The emergence of technologies using artificial intelligence (AI) within healthcare holds much promise. AI in healthcare improves patient diagnosis, boosts cost-effectiveness, and helps with prevention and treatment. It also helps ensure that everyone has fair access to healthcare [1].

Artificial Intelligence (AI) is a simulation of human intelligence in machines aimed at programming to think, learn, and solve problems. It incorporates the technologies that enable machines to perform tasks usually requiring human intelligence such as visual perception, speech recognition, decision-making, and language translation.

Madhu Bala & Ritika Sharma All rights reserved-© 2025 Bentham Science Publishers Researchers have three ideas about how AI may be used in healthcare. According to the first scenario, AI would diagnose every patient, negating the necessity for physicians. This position's main motivation is to save costs while maintaining similar patient outcomes. Another potential is that AI will be able to evaluate more patients while clinicians examine fewer cases, which would result in fewer patients being treated by physicians and lower costs for the healthcare system. Finally, AI may benefit medical professionals by assisting them in making wiser decisions that will enhance patient outcomes and save costs [2, 3].

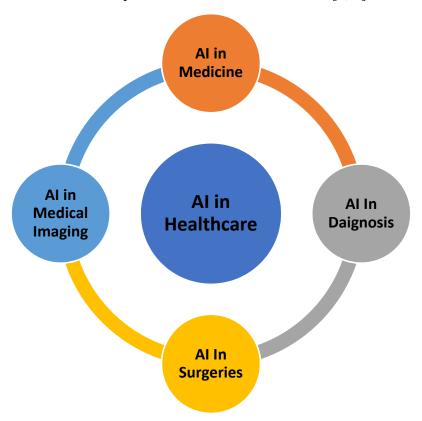


Fig. (1). Role of artificial intelligence in healthcare.

1.1. Significance of AI in Healthcare

Healthcare systems around the world face immense pressure today, either due to increasing pressure from the aging population, chronic diseases, healthcare worker shortages, or increasing costs. AI offers solutions to challenges like these by putting forth tools that can help streamline healthcare processes, better detect diagnoses, and enable personalized treatments. Let's look into why it is indispensable in healthcare:

- a. **Data Overload:** Modern healthcare has produced an enormous amount of data such as patient records, imaging data, genomics, and clinical trial results. However, with that size of a dataset, human practitioners cannot analyze and process it efficiently enough to significantly improve the care provided to patients. The reason AI can be an invaluable tool for improving outcomes is its ability to sift quickly through massive datasets accurately.
- b. **Accuracy and Precision:** Human fallibility is inevitable in healthcare most often caused by long hours of work, cognitive biases, or even the gaps left in knowledge. AI algorithms make decisions based on data that will always work without getting tired or harboring biases hence allowing more accurate diagnoses and suggestions for treatment. For instance, imaging tools led by artificial intelligence can pick almost imperceptible changes that may define a patient's early diagnosis of cancer.
- c. **Personalization:** AI can be more personal and end up being the actual healing for real patients. Most importantly, this is highly crucial because oncology is one of those fields where AI can predict how different patients will respond to specific drugs based on their genetic makeup, medical history, and lifestyle.
- d. **Efficiency:** Most healthcare systems are clogged with inefficiencies, from the waste of time trying to schedule appointments to handle records for patients. AI can automate so much of this process that valuable time for healthcare professionals may be left for time spent on patient care. Even a routine administrative task or an initial patient consultation may be replaced by an AI-driven chatbot or virtual assistant as doctors are finally free for the more complex cases.

With rapid growth and changes in AI technologies, the main aim is to research the tools and trends utilized in health care with AI applications by looking at recent trends and algorithms applied to this field. Fig. (2 provides a number of published scientific articles from the years 2005 to 2024 obtained from Scopus using keywords artificial intelligence and healthcare with 4098 research articles. The data states that there are a large number of research articles published in this field.

Artificial intelligence provides a number of techniques that are used efficiently and effectively in the healthcare industry. Some of them are discussed below:

CHAPTER 6

Artificial Intelligence in Education: The Future of Learning

Abstract: Artificial intelligence, more commonly known as AI has been integrated into education. The incorporation of AI in education is not without its benefits and as such, brings with it new chances, challenges, and opportunities for teaching and learning. The purpose of artificial intelligence (AI) in education is to enhance the teaching processes by training and relevant and useful experiences and paring out of standard interchangeable modules interfacing, data graphical representation, and probability inference. Giving each student individualized kind of help or advice that may be provided to the learners depending on learning status, learning interests, or learning characteristics is one of the biggest aims of artificial intelligence in learning.

Keywords: Adaptive learning, Classrooms, Class engagement, Educators, Institutions, Predictive learning, Students.

1. INTRODUCTION

There have been a lot of innovative achievements in the field of applying artificial intelligence for education in the last 25 years. Since the advent of computing and information processing technologies, the usage of AI technologies in education is quite widespread and increasingly developing [1, 2]. It takes about two to three years before the new technology is adopted in a given organization. Funding commitments from governments of at least \$10 billion and up to \$25 billion have already been made. This amount of investment makes sense considering estimates that general-purpose AI technology might provide an extra \$13 trillion in shortterm economic activity by 2030, or 1.2% greater GDP growth yearly [3]. AI in education aims at using it in supporting instruction whereby teachers have an important role to play respectively; however, the critical role and their acceptance of AI are crucial. Examples of this include availing and facilitating discourse analysis and attaining performance forecasts using education data mining. However, because AI is still a relatively new concept for educators, inexperienced and a large number of educators normally struggle to be able to quickly and appropriately answer to analytics from AI organization applications, which in turn makes them less accepting of and apprehensive about AI.

> Madhu Bala & Ritika Sharma All rights reserved-© 2025 Bentham Science Publishers

Effective partnerships of academics, educators, policymakers, and professionals should be fostered since addressing new opportunities and challenges emerged with the help of artificial intelligence and big data explosion. They need to ensure that all the students get to be informed on or benefit from efficient completion of their academic work with consumer-led competencies and skills that they require for a job in the twenty-first-century economy. It is only important to note that functions such as automatic grading, adaptation, distant learning, and others are just some of the most basic uses of AI technology in the education sector.

It is accepted that as we live in "technological societies," technology must be used to aid in teaching and learning activities, and curriculum-related instruction on technology use and knowledge must be heavily weighted [4, 5]. This means that, in order to improve education generally, it will become necessary to design programs and technology that fully complement pedagogical endeavours. It is also acknowledged that kids who frequently feel left behind by the conventional educational system would benefit from the technological advancements in education, since access to computers and the internet will enhance their academic performance.

AI-based conversational robots have become new norms of shopping. It also offers advice to people in various situations, such as in finding employment. Artificial neural networks, and speech recognition, have a viable outlook for improving the quality of such feedback [6, 7]. Thus, the automatic grading system is one of the most refined, intelligent computer programs that imitate the teacher's actions to produce the proper learning environment.

AI evaluates and even scrutinizes the students' answers and, at the same time, provides remarks on the responses plus builds training plans that address them exclusively to the intended would be employees. The assessments of learning tests can be explained by the following points in relation to the system: this is followed by the evaluation score of the course and is given to the learner automatically.

1.1. Importance of AI in Technology

Artificial intelligence has brought a significant shift in the field of learning. It offers personalized learning experiences, catering to individual needs and enhancing engagement and retention through gamification, interactive simulations, and virtual reality [8].

• It enables accessible education for all, bridging the gap between remote and traditional classrooms, and understanding how AI affects education as a whole, as a learning ecosystem, can close this research gap.

- AI streamlines the process of grading assignments and tests by automating the process, allowing educators to focus on teaching and providing valuable feedback. It also helps identify and address learning gaps by tracking student progress, pinpointing areas of struggle, and offering additional resources or support. This proactive approach to education can significantly improve student outcomes.
- AI empowers educators by handling routine tasks like grading and data analysis. freeing them to focus on inspiring and guiding students. In essence, AI is not here to replace educators but to empower them, allowing them to focus on their core competencies.

Overall, AI is poised to revolutionize education, making it more accessible, efficient, and effective for all students.

1.2. Impact of AI

AI is only one example of the many ways that technology has changed schooling. As was already said, it is a relatively new field of technical advancement that is gaining attention in academic and teaching circles worldwide [9]. Rapid development is seen in this field due to the inclusion of advanced and high performance computing devices to perform various kind of administrative tasks. This shift has impacted many aspects of education to the point where businesses and government organizations are trying to duplicate the same success in their own industries. Even though the benefits of AI are frequently discussed in the business world, not many people are aware of how it will affect how students and teachers interact.

AI is aiding in the expansion of the education sector by reducing these gaps in knowledge. In particular, it has led to a rise in the quantity of big data intelligence systems-powered online learning platforms. This result has been attained by taking advantage of big data analysis opportunities to improve educational outcomes. All things considered, AI's beneficial effects on the education sector have increased prospects for the industry's expansion and advancement. As a result, instructors stand to gain from the improved learning and development opportunities that arise from the integration of AI into the educational system.

6.2 APPLICATIONS OF ALIN EDUCATION

By developing cutting-edge applications that improve educational opportunities and administrative effectiveness, artificial intelligence (AI) is further transforming the educational landscape. The following are a few recent developments:

SUBJECT INDEX

A	AI-powered 60, 63, 95, 106, 112, 114, 118, 124
Abiotic agents 65	cybersecurity platform 95
Abnormal protein deposits 107	EHR management 124
Abnormalities 65, 86, 107	image recognition systems 114
identifying plant 65	imaging systems 60
lung 107	medical imaging 106
spot 86	remote consultations 118
Activity 63, 87, 116	robotic systems 112
electrical 116	soil health monitoring 63
microbial 63	Algorithms 10, 11, 13, 14, 33, 61, 63, 67, 74,
Agricultural 60, 62, 72	86, 87, 88, 92, 102, 106, 108, 116, 118,
operations 60, 72	128, 139, 143
production processes 60	machine-learning 61
products 62	supervised learning 14
Agriculture 25, 55, 60, 61, 62, 69, 70, 72, 73,	supervised machine learning 10, 13, 88
74, 75, 76	unsupervised machine learning 92
industry 62	Amazon web services (AWS) 94, 95
revolutionise 73	American association of artificial intelligence
sector 75	(AAAI) 3
urban 74	Antivirus systems 82
	Artificial neural networks 32, 33, 34, 38, 39,
AI 23, 112, 116, 118, 134	40, 41, 42, 44, 132
-compatible teaching resources 134	Attribute selection measure (ASM) 13
-driven continuous monitoring 116	Augmented 48, 72, 115, 136, 146
-empowered predictive maintenance	reality (AR) 115
systems 23	architectural search techniques 48
image analysis 118	assessment systems 146
surgery 112	farming 72
tutoring services 134	prediction systems 136
AI-based 64, 65	Automatic grading system 132
plant disease detection techniques 64	rutomatic grading system 132
techniques 65	В
AI-enabled 62, 69, 75, 138	В
drones 75	Dinama angga antugus laga 42
monitoring systems 62	Binary cross-entropy loss 43
systems 138	Biotic agents 64
wind power forecasting system 69	Blood 108, 115, 117
AI-enhanced 113, 115, 134	clots 115
robotic systems 113	glucose data 117
special education tools 134	pressure, elevated 108
technologies 115	Brain 2, 38, 40, 41, 44, 107
	artificial 2

Madhu Bala & Ritika Sharma All rights reserved-© 2025 Bentham Science Publishers

atrophy 107	resilience 70
scans 107	rotation 69
visual 44	Cross-validation techniques 136
Branches, mechanical engineering 9	CT 22, 35, 104, 105, 106, 107, 112, 114 images 114
C	scans 22, 35, 104, 105, 106, 107, 112
	Cyberattacks 126, 143
Cameras, high-resolution 74	Cybercrimes 82
Cancer(s) 5, 35, 102, 103, 105, 106, 107, 108,	Cybersecurity 81, 82, 83, 84, 88, 89, 90, 91,
110, 111	92, 94, 95, 96
breast 106, 107	hygiene 91
colorectal 106	landscape 94
detection 106	platform 95
genomics 108	•
immunotherapy 111	D
ovarian 108	_
prostate 107	Damage 69, 113
skin 107	minimizing tissue 113
Cardiac valves 22	Data 10, 30, 33, 36, 43, 52, 70, 93, 94, 127,
Cardiovascular 108, 110, 116	133, 136, 143
disease management 110	aggregation 93, 94
disease prediction 108	analytics 30, 33, 70
problems 116	augmentation 36, 52
Cars, autonomous 52, 62	density 43
Chemical signaling 41	intelligence 133
Chronic 110, 117	localization provisions 127
obstructive pulmonary disease (COPD) 117	mining 10, 136
pain management 110	protection laws 143
Chronic diseases 101, 103, 115, 116, 117, 119	Datasets 10, 11, 12, 14, 15, 19, 20, 21, 33, 34,
managing 119	54, 67, 87, 88, 89, 102, 127, 128
Clustering algorithms 24	massive 54, 102
CNN 45, 46, 48	plant disease 67
architectures 46	Deep 34, 37, 44
designs 45, 46, 48	learning and conventional machine learning
Computational framework 88	34
Computer 36, 145	neural networks (DNNs) 37, 44
-aided design (CAD) 36	Density 20, 106
program 145	-based spatial clustering 20
Computer vision (CV) 8, 9, 24, 31, 34, 35, 38,	tissue 106
48, 60, 65, 68, 72, 74, 104	Depression, treatment-resistant 110
technologies 48, 68	Detection 20, 22, 23, 25, 66, 74, 81, 82, 85,
tools 104	86, 87, 88, 89, 90, 94, 96
Convolutional neural networks (CNNs) 22,	automating weed 74
30, 34, 39, 44, 45, 46, 47, 48, 52, 67	breast cancer 22
COVID-19 pandemic 107, 117	cloud 94
Crop 55, 60, 61, 69, 70, 72, 73, 74, 75	incident 94
conditions 75	nutrient deficiency 25
health monitoring 55, 72, 74	Device(s) 38, 47, 48, 55, 72, 74, 108, 115,
management 60	116, 117, 118, 120, 144
monitoring 60, 61, 73	computational 38

Subject Index

~···J···	
data, wearable 108	${f F}$
digital 144	
dispersed 55	Facial
monitor 116	feat
wearable 115, 116, 117, 118, 120	reco
Diabetic retinopathy 104, 108	Farme
Diagnostic decision support systems (DDSS)	Farmir
109	met
Disease(s) 35, 60, 61, 64, 65, 66, 67, 105, 106,	tech
107, 108, 110, 111, 117	Farmir
abiotic 65	susta
chronic obstructive pulmonary 117	Fertilis
detection 66	Food 6
diagnosis 35	inta
infectious 65, 107, 111	qua
lung 106	spo
neurodegenerative 107	~ r ~
predicting 67	G
rare 108	G
transmit 65	Gated
DNS system 86	Galed GDP g
	Genera
E	1
	Genera
Education 131, 133, 142	3
data mining 131	Geneti
revolutionize 133	data
transforming 142	fact
EHRs, managing 124	
Flectronic 104 105 109 118 123 124	mar

```
Electronic 104, 105, 109, 118, 123, 124
  health records, (EHRs) 104, 109, 118, 123,
  medical records (EMRs) 105
Emergency 115, 116
  intervention 115
  response 116
Emerging cybersecurity ethical dilemmas 94
Endoscopic procedures 113
Environment 4, 9, 32, 36, 37, 61, 67, 68, 69,
     70, 75, 87, 88, 94
 cloud 94
 operation 70
 real-time IDS 87
Environmental 63, 64, 65, 67, 71, 111
  conditions 63, 65, 71
  data 67
  factors 64, 65, 111
Erosion-prone locations 63
```

Ethical principles 144

48, 140 tures 48 ognition systems 140 ers, small-scale 76 ing 25, 62, 75 ethods 62, 75 hniques 25 ng practices 73, 74, 75, 76 ainable 75, 76 iser, applying 70 62, 117, 120 ake 117, 120 ality 62 oilage 62

recurrent units (GRUs) 49 growth 131 ral data protection regulation (GDPR) 127, 143 rative adversarial networks (GANs) 30, 36, 50, 51 tic 107, 108, 110, 111, 113 ta 107, 108, 110, 111 etors 110 rkers 110, 113 profile 108 Glucose levels, blood 117 Google 8, 53 search engine 53 translators 8, 53 GoogLeNet 47 Google's 4, 39 DeepMind 39 Gemini 4 PaLM 4 Growth, drive cancer 108

Н

```
Harnessing big data 107
Health 63, 65, 74, 93, 102, 110, 115, 116, 117,
     119, 120, 121, 124
 care 102
 crises, potential 117
 deterioration 116
 mental 110, 115, 116
```

mobile 119 population 124	J
virtual 115, 120, 121 Healthcare 22, 54, 100, 102, 104, 105, 126,	Java virtual machine (JVM) 54
129 ecosystem 126	L
industry 22, 54, 100, 102, 104 sector 22, 104, 105, 129	Language translation 8, 34, 37, 39, 100, 140 real-time 39
Heart 103, 108, 111, 117 disease 103, 111, 117	tools 140 Learning algorithms 8, 33, 35, 37, 76, 107
rhythm 108 Hospital facilities 123	applying machine 8 Learning management systems (LMS) 137
I	LISP machines 3 Long short-term memory (LSTM) 49
Image(s) 47, 56, 65, 106 digital 65	M
processing, digital 56 radiological 106 recognition tasks 47 Image analysis 35, 67, 118 medical 35 ImageNet large scale visual recognition challenge (ILSVRC) 46 Imaging 100, 104, 105, 106, 107 medical 100, 106 neurological 107 Imaging data 102, 104, 113, 114, 115 real-time 114, 115 Immune system 92, 110, 111 Immunotherapy 110 Industries 26, 31, 36, 37, 44, 54, 55, 56, 60, 133, 135 agricultural 60 financial 54 tourism 135 transform 31 Infectious disease vaccination 111 Infestations 61, 65, 74 insect 61 pest 74	Machine learning 5, 6, 7, 18, 25, 30, 31, 32, 33, 34, 35, 55, 75, 81, 83, 85, 91, 100, 103, 112, 135, 136, 137, 138 algorithms process 112 anatomy 138 techniques 18, 25, 33, 81, 83, 100, 137 tools 75, 85 Machine 50, 51, 74 translation 50, 51 vision 74 Machinery 36, 60, 75 autonomous 60 industrial 36 Medical imaging analysis 104 Melanoma 107, 118 Mental health 1, 107, 110 conditions 1, 110 disorders 107 Metabolic processes 40 Mobile 53, 76, 93, 115, 116, 120 apps 76 devices 53, 93 health applications 115, 116, 120
Information 82, 131 processing technologies 131	MobileNet designs 47 MXNet's support 54
technology 82 Intrusion detection systems (IDS) 87, 88, 90 IoT 64, 66, 71	N
-based smart irrigation system 71 sensors 64, 66	Naive Bayes algorithm 11, 12 Natural language processing (NLP) 8, 34, 35, 38, 39, 40, 49, 51, 54, 55, 67, 103, 104,
Irrigation systems 70, 71, 72, 75	124, 135

Subject Index Artificial Intelligence: Unleashing the Future 153 Nervous system 40 application 48, 89 image analysis 114 Network(s) 38, 39, 41, 42, 45, 46, 47, 48, 49, 52, 84, 85, 86, 87, 88, 92, 94, 95 Real-time network 86 activity 87 monitoring 86 anomalies 86 traffic monitoring 86 Recurrent neural networks (RNNs) 30, 34, 39, computer 87 topologies 48 49, 50, 67 traffic 84, 86, 87, 88, 95 Reinforcement learning (RL) 6, 8, 36, 52 Neural 48 Resources, financial 76 architecture search (NAS) 48 Revolutionizing radiology 106 Neural network(s) 1, 3, 4, 30, 32, 33, 34, 37, Risk 35, 54, 94 39, 40, 43, 44, 46, 49, 50, 54 assessment 35, 94 architecture 39 management 54 Robotic(s) 9, 31, 36, 49, 60, 62, 72, 73, 75, construction 54 Neurological disorders 106 104, 111, 112, 137 Neurons 1, 34, 38, 39, 40, 41, 42, 44, 45 farming 60, 72, 73 artificial 38, 39, 41, 42 harvesters 72 biological 41 surgical 112 motor 41 swarm 73 NLP technique 135 Nutrient deficiencies 25, 65, 74 S P Security 55, 64, 82, 87, 91, 94, 96, 120, 127, 143, 146 cyber 87 PET scans 107 Plant(s) 60, 62, 64, 65, 66, 67, 69, 70, 71, 74, devices 87 75 electronic information 82 density 69 flaws 91 disease detection 64, 66 food 64 diseased 67 problem 87 diseases 60, 64, 65, 66, 67, 74 teams, cyber 96 food-producing 62 Sensor(s) 9, 25, 35, 61, 63, 66, 67, 70, 71, 72, injury 65 74, 75 pathology 64 advanced 74 stress 65 -based procedures 66 Planting, seed 70, 72 ground-based 61 Pollination 73 soil moisture 71 Polynomial regression methods 24 Sensory neurons 41 Populations 60, 73, 101, 121, 134, 143 Software tools 135 aging 101 Soil 25, 60, 61, 62, 63, 65, 68, 69, 71, 74 bee 73 analysis 60 varied 143 conditions 60, 61, 65 Psychology, cognitive 2 dense 62 health monitoring 25, 62, 63 management techniques 69 R moisture 63 moisture data, real-time 71 Random forest (RF) 10, 14, 15, 23, 25, 67, 85, quality 62, 63 87, 88, 89, 90 sensors 63, 68, 74 Rare disease diagnosis 108

Real-time 48, 89, 114

Storage 60, 62, 124, 143

```
digital 124
  facilities 62
Supply chain 62, 95
  attacks 95
   management 62
Support vector machines (SVM) 7, 10, 15, 16,
     25, 43, 67, 88
Surgery 8, 22, 100, 104, 111, 112, 113, 114,
     115, 118, 119, 124
  cardiac 115
  gynaecologic 22
  liver resection 114
  orthopedic 114
  real-time 8
Sustainability 37, 55, 60, 67, 74, 75
  environmental 37
Sustainable agricultural practices 63, 64
T
```

```
Therapies, rehabilitation 104
Threat(s) 93, 94, 87, 95
cyber 87, 95
intelligence 93, 94
Traditional machine learning 30, 34
methods 34
techniques 30
Training 10, 13, 15, 16, 39, 42, 43, 47, 49, 51, 87, 88, 121, 129, 131, 142
data augmentation 51
dataset 10
Transformative 60, 61, 122
effects 60
force 61
```

\mathbf{V}

Variational autoencoders (VAEs) 36, 52 Vinci surgical system 22, 112 Virtual health services 120

W

Wearable technology 105 Weather monitoring 70

Madhu Bala

Madhu Bala is an Assistant Professor in the Department of Computer Science and Engineering at Lovely Professional University, Punjab, India. She has more than 12 years of vast research and teaching experience. Her topic of research is plant leaf disease identification using deep learning techniques. She did her M. Tech in Computer Science and Engineering from CDLU, Sirsa, India and awarded as gold medalist for doing academically best. Her areas of interest are image processing, computer vision, artificial intelligence, and data science. She has several national and international publications to her credit and has also published several patents. She has mentored at various technical events, including hackathons, and has been recognized by the Ministry of Human Resource and Development for her excellent efforts as a convener and an Innovation Ambassador for the Institution Innovation Council.

Ritika Sharma

Ritika Sharma is an Assistant Professor in the Computer Science and Engineering Department at Maharaja Agrasen Institute of Technology, Maharaja Agrasen University, H.P., India, and has 8 years of teaching experience. She completed her B.Tech. (Honors) in Computer Science and Engineering from Himachal Pradesh University, Shimla, India, in 2013, and her M.Tech. (Honors) from the Department of Computer Science and Applications, Kurukshetra University, Kurukshetra, India. She has presented and published various research papers at national and international conferences and in journals. She has also published four patents and has one granted patent to her credit. Under her guidance, students participate in various project competitions and have won two prizes in National Level Smart India Hackathons. Her research interests include Image Processing, Neural Networks, Artificial Intelligence, Machine Learning, Deep Learning, and Data Science.