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7.3 Trend Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4 Seasonal Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.5 Cyclical Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.6 Irregular Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7 Time Series Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.9 REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Seismicity Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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FOREWORD

Dr. Carlos Polanco’s book provides a concise examination of the fundamental top-

ics addressed in “MATHEMATICAL FOUNDATIONS OF TIME SERIES ANAL-

YSIS: THEORY AND CASES.” The author effectively clarifies the fundamental

principles of time series analysis and illustrates their pragmatic implementation in

diverse scientific fields via perceptive case studies. This piece of work serves as ev-

idence of Dr. Polanco’s ability and capacity to simplify the complex realm of time

series for a wide readership, effectively connecting theoretical concepts with prac-

tical implementations. This book is certain to prove to be an indispensable resource

for readers as they delve into the realm of time series analysis.

Vladimir N. Uversky

University of South Florida

Tampa, FL, USA.
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FOREWORD

Dr. Carlos Polanco’s book offers a clear and accessible overview of the mathemati-

cal concepts presented in MATHEMATICAL FOUNDATIONS OF TIME SERIES

ANALYSIS: THEORY AND CASES. Through straightforward explanations and

relevant case studies, the author guides readers in understanding the essential prin-

ciples of time series analysis and its practical applications across various scientific

fields.

Whether you are new to the subject or already familiar with time series analysis,

this book serves as a valuable resource. Dr. Polanco’s engagement with the topic

creates an educational environment that is both informative and practical.

This book provides a reliable reference to help you navigate the complexities of

time series analysis and apply it effectively in your studies or professional work.

It offers the tools and insights needed for a practical understanding of the core

principles that drive this field.

Thomas Buhse

Universidad Autónoma del Estado de Morelos

Cuernavaca Morelos, México.
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PREFACE

This book is intended to provide a rigorous introduction to the mathematical foun-

dations of the Time series analysis. It is designed for readers who are either new to

the field or possess preliminary knowledge and seek to enhance their understanding

of essential concepts and analytical methodologies within the discipline.

The material is structured systematically to offer a comprehensive overview of fun-

damental topics, including classical mechanics, thermodynamics, electrodynam-

ics, and quantum mechanics. Each theoretical framework is presented with precise

mathematical foundations of the time series analysis and is accompanied by an

explanation of the physical laws that govern each domain.

The text emphasizes mathematical accuracy and conceptual clarity. Each chapter

contains a selection of carefully designed exercises and problems aimed at facili-

tating the application of theoretical concepts and fostering the development of an-

alytical skills essential for a thorough engagement with the subject matter. Readers

are encouraged to approach these exercises with diligence, as they provide impor-

tant practice in mastering the theoretical constructs presented.

The chapters are organized to build sequentially upon prior knowledge, allowing

for a gradual progression in both complexity and depth of the content. Summaries

at the end of each chapter encapsulate the central concepts and serve as a concise

reference for reviewing key ideas.

This work aspires to function not only as an academic resource but also as a source

of intellectual engagement for those pursuing further study in physics. Readers are

encouraged to critically examine the material, to consider its implications, and to

cultivate an inquisitive approach toward the fundamental structure of the universe.

The author would like to acknowledge the Faculty of Sciences at Universidad Na-

cional Autónoma de México and Instituto Nacional de Cardiologı́a for providing

cases and examples.

Carlos Polanco

E-mail: polanco@unam.mx

Department of Electromechanical Instrumentation

Instituto Nacional de Cardiologı́a Ignacio Chávez

México City, México
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I

BASIC CONCEPTS



The first part of this book introduces the reader to the concepts, properties, and

main components of a time series Y (t). It defines each of these components in

detail, analytically and geometrically, isolating them from the time series. We in-

troduce the Least squares method to approximate the analytical function and utilize

visualization techniques to enhance our understanding of the studied phenomenon.

This section includes the study of analytical functions in the plane and in space us-

ing the multidimensional panel data technique. It has been ensured that the section

is self-contained so that the unfamiliar reader can follow the topic.



Abstract: This chapter reviews in detail the definition and components of a real-

valued function f (x). A Time Series Function f (t) is defined later with its com-

ponents and limitations. We also review the quality of the data points in a Time

Series Graph. Finally, we introduce the Trend components T (t), Cyclical compo-

nents C(t), Seasonal components S(t), and Irregular components I(t), as elements

of a Time Series Graph.

Keywords: Cyclical component, irregular component, least squares method, sea-

sonal component, trend component

1.1. Introduction

In this chapter, we will review the concept of Time Series function f (t), which is

a real-valued functions f (x) whose independent variable is time t. We will identify

the domain( f ), image( f ), and graph ( f ) and we will discriminate the Discrete

and Continuous Time Series Graphs. We will study different types of graphs with

some examples to define the four components: Trend component T (t), Cyclical

component C(t), Seasonal component S(t), and Irregular component I(t) as the

elements of a Time Series function f (t). Finally, we will study several techniques

to ensure that the data points are reliable and reflect the phenomena studied.

1.2. Real-Valued Functions

Definition 1.1. A function f , is a well-defined rule that relates two sets f : A → B,

where each element in set A corresponds to a unique element in set B.

A real-valued function f (x) is particularly a numerical function i.e., f : R → R,

where its independent variable x ∈ domain( f ) ⊂ R and its dependent variable

f (x) ∈ image( f ) ⊂ R. The graph of the real-valued function f is graph ( f ) =
{

(x, f (x)) ∈ R
2| , where x ∈ domain( f ) and f (x) ∈ image( f )

}

(Fig. 1.1).
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Figure 1.1: Graph( f ) and its components.

1.3. Time Series Functions

Definition 1.2. A Time Series function is a real-valued function f (t) (Def. 1.1)

whose independent variable t ∈ the domain ( f ) and represents the time. Graph( f )
(Def. 1.1) is named Time Series graph i.e., graph( f ) shows the behavior of the

phenomenon over a long period i.e., domain( f ).

Note: 1.1. In the Time Series Analysis, we will use the nomenclature above men-

tioned for the succession of the data points in image( f ) generated by the Time

Series function f , the geometrical representation of graph( f ), the data points eval-

uated by the Time Series function f , or the Time Series function f itself (Def. 1.1),

to avoid confusion.

The procedure to know the behavior of a Time Series function f is to break it

into sums or products of the real-valued functions fi(t), such that function f is

interpreted as sums (Eq. 1.1) or products (Eq. 1.2).

f (t) = f1(t)+ · · ·+ fn(t) (1.1)

f (t) = f1(t)×·· ·× fn(t) (1.2)

The transformation of a Time Series function f (t) into components of a sum or

product fi(t) enables the elimination of some terms fi(t), so the behavior of the

remaining functions can be easily identified.

Let the Time Series function f (t) = f1(t) + · · ·+ fn(t) (Eq. 1.1); if you subtract

from both sides of Eq. 1.1 the term f1(t), you will get Eq. 1.3. Note that if you

graph the function (Eq. 1.3) in the Y axis, you will get the term f (t)− f1(t) and the
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graph will correspond to the Time Series function f2(t)+ · · ·+ fn(t), which is not

f (t).

f (t)− f1(t) = f2(t)+ · · ·+ fn(t) (1.3)

Now consider the Time Series function f (t) = f1(t)×·· ·× fn(t) (Eq. 1.2), if you

divide both sides of Eq. 1.2 by the term f1(t), you will get Eq. 1.4. Note that if you

graph the function (Eq. 1.4) in the Y axis, you will get the term
f (t)

f1(t)
and the graph

will correspond to the Time Series function f2(t)+ · · ·+ fn(t), which is not f (t).

f (t)

f1(t)
= f2(t)+ · · ·+ fn(t) (1.4)

We will use these two procedures in the following sections.

1.3.1. Limitations

The following assumptions are associated with the analysis of a Time Series, it is

advisable to carefully review them before using this method.

1. Patterns or regularities observed in the past are supposed to continue in the

future.

Note Special care should be taken in the size of the chosen domain( f ), so the

repetition of the regularities in the Time Series graph( f ) can be observed.

2. If domain( f ) is divided into intervals i.e., discretize the time interval, these

intervals have to be evenly distributed throughout the domain( f ) of the Time

Series function f .

Note This can be achieved if the domain( f ) of the Time Series function f is

divided into equal intervals.

3. There should not be “lost data” sets for the Time Series function f .

Note If this condition is not met, all the results of the Time Series function are

compromised, so before using this procedure it must be verified that the set of

data is uniform and without “lost data”.

4. Time Series analysis should not be used to predict events of random nature

e.g., terrorist attacks, Tsunami disasters, or any other disaster, among others.

Note These types of events do not have regularity; therefore, they should not

be studied with a Time Series Analysis.

1.4. Time Series Graphs

A graph( f ) of a Time Series function f (Fig. 1.2) is mainly used to study the

behavior of a phenomenon. In this graph, you can see a Time Series Graph (Fig. 1.2)

that can be considered discrete, since its domain( f ) is discrete.

Time Series    5



Abstract: In this chapter, we review the decomposition of a Time Series function

f (t) from the exclusion of the Trend component T (t), Cyclical component C(t),
Seasonal component S(t), and Irregular component I(t) with the quotient and sub-

traction methods. We also deepen the Time Series Analysis from the exclusion in a

different order, according to the nature of the phenomenon studied.

Keywords: Cyclical component, cyclical decomposition, irregular decomposition,

least squares method, linear squares method, nonlinear squares method, seasonal

decomposition, time series analysis, time series graph, trend decomposition

2.1. Introduction

In this chapter, we will interpret a Time Series function f (t) as the sum or product

of the Trend component T (t), Seasonal component S(t), Cyclical component C(t),
and Irregular component I(t) introduced in Chapt. 1.

Thus, the Time Series function f (t) will be treated as the sum of the functions

(Eq. 2.1) or the product of the functions (Eq. 2.2).

f (t) = T (t)+C(t)+S(t)+ I(t) (2.1)

f (t) = T (t)×C(t)×S(t)× I(t) (2.2)

A function f (t) product type (Eq. 2.2) can be transformed into a sum function

(Eq. 2.1) with the logarithmic property g(t)h(t)→ logg(t)+ logh(t) in both sides

of Eq. 2.2 as Eq. 2.3.

f (t) = T (t)×C(t)×S(t)× I(t)

log f (t) = logT (t)+ logC(t)+ logS(t)+ log I(t)
(2.3)

The decomposition process shown in this chapter will enable the exclusion of the

components of the Time Series function f (t), so it will be possible to study each

component separately or the interaction of two or more components in a graph ( f ).
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2.2. Multiplicative and Additive Decompositions

We have to consider that in the additive hypothesis, the four components are in-

dependent. For instance, the trend component does not condition the effect of the

Seasonal or Cyclical components; whilst in the multiplicative hypothesis, the ele-

ments are interrelated with each other. Thus, the Seasonal or Cyclical components

are added as a percentage of the Trend component and not as an independent value.

In summary, to determine whether the Time Series has an additive or multiplica-

tive scheme, we have to analyze the Cyclical component amplitude. If it increases

with the trend component, it is a multiplicative model; if it remains constant, it is

additive.

Each of these decompositions will be analytically and graphically illustrated with

different examples that show the convenience of using either the additive or the

multiplicative format of f (t), as well as the decomposition order to be used.

2.2.1. Multiplicative Decomposition Form

We will start with a function that represents the experimental data f (t) = t2 (Ta-

ble 1), and as Trend component, we will have the function T (t) = t2 (Ex. 1). Note

that f (t) and T (t) are the same functions.

Now, we will divide f (t) by function T (t) (Eq. 1.1). Since f (t) and T (t) are identi-

cal, the quotient will be 1 ∀t ∈ domain( f ) i.e., function
f (t)

T (t)
= 1; and its geomet-

rical representation is given in Fig. 2.1.

Figure 2.1: Graphs of f (t), T (t), and
f (t)

T (t)
.
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2.2.2. Additive Decomposition Form

Now, we are going to exclude from function f (t) = t2 (Table 1) the Trend compo-

nent represented with function T (t) = t2 (Ex. 1). Note that both functions are the

same.

To get this, we subtract from function f (t) function T (t) (Eq. 1.1), where t ∈
domain (f). Since f (t) and T (t) are identical, the difference will be 0 ∀t ∈ domain

(f) i.e., function f (t)− T (t) = 0. Its geometrical representation is Fig. 1.1,and

Fig. 2.2.

Figure 2.2: Graphs of f (t), T (t), and f (t)−T (t).

2.2.3. Basic Stages for Decomposition

The decomposition of the Time Series function f (t) in four components, is done

by subtracting or dividing each component in f (t). This procedure is named Time

Series Analysis.

The order for the decomposition of the components of the function f (t) will be

T (t), S(t), I(t) and C(t), so they define the terms of the function (Eq. 2.4).

f (t) = T (t)×S(t)× I(t)×C(t) (2.4)

The decomposition of the Trend component T (t) will be the function (Eq. 2.5).

f (t)

T (t)
= S(t)× I(t)×C(t) (2.5)

Then, we exclude the Seasonal component S(t) (Eq. 2.6).

f (t)

T (t)×S(t)
= I(t)+C(t) (2.6)

We will identify the Seasonal component with the regularities in a year.
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Abstract: This chapter will review in detail the main real-valued functions and

their maps. Both are defined and geometrically interpreted. All concepts are dis-

cussed, exemplified, and illustrated with graphics. The concept of function perme-

ates all chapters of this ebook since there is a function embedded in all mathemat-

ical operators. We strongly advise the reader to review all examples and do all the

exercises included.

Keywords: Cyclical decomposition, irregular decomposition, linear squares method,

multivariate components, noise component, nonlinear squares method, polynomial

extrapolation, polynomial interpolation, time series analysis, trend decomposition

3.1. Introduction

In this chapter, we will review the forecasting technique named Extrapolation that

helps to calculate previous or subsequent values in a data set, and an estimation

named Interpolation that calculates the value between two already existent in a

data set.

We will study both techniques from a polynomial function degree 5, built with

the Least Squares Method (Sect. 1.7.1), computationally implemented with the

Progs. A.2- A.5. Since we are using a polynomial approximation, both techniques

will be called Polynomial Interpolation or Polynomial Extrapolation.

These techniques can be used in any data set, considering that a data set of a Time

series is the most representative set of a phenomenon studied. However, as previ-

ously studied, a Time Series represents four phenomena combined: the Trend T (t),
Cyclical C(t), Seasonal S(t), and Irregular components I(t).

To these four components we can add a fifth component called the Noise compo-

nent N(t) that will have a greater range of presence than an isolated event such as

the Irregular component I(t).

The Noise component is usually associated with the “startup” or “warming up” of

a process in an initial phase.

An example of this component is a pandemic outbreak that occurs at any time and

lasts at least 10 years affecting everything.
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In summary, a Time Series is a phenomenon that represents the interaction of multi-

ple variables, not only one. Therefore, it is important to note that the forecast using

these techniques is restricted to all of them.

3.2. Polynomial Interpolation

Interpolation estimates an intermediate outlier from the data set (Fig. 3.1) from a

polynomial function f evaluating it from point t3 i.e. the outlier will be (t3, f (t3).

Figure 3.1: Missing point (t3, f (t3)) and trend curve (red).

In the graph of the function f (t2, f (t2)) and (t4, f (t4)), two points can be joined by

an infinite number of curves (Fig. 3.2). Here, we used a line that is a polynomial

function of degree 1, so the point (t3, f (t3)) changes position.

Figure 3.2: Missing point (t3, f (t3)), trend curve (red), and trend line (green).
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3.3. Polynomial Extrapolation

Extrapolation estimates an outlier at the far left or far right of the data set in a

polynomial function f , evaluating it at the point ti i.e., the outlier (ti, f (ti)) will be

at either end of the function or both.

This is a value at the far right (t7, f (t7)) that represents a future value estimated

with the polynomial function f (Fig. 3.3).

Figure 3.3: Missing point (t7, f (t7)) and trend curve (red).

This is a far left value (t1, f (t1)) and represents a past value estimated with the

polynomial function f (Fig. 3.4).

Figure 3.4: Missing point (t1, f (t1)) and trend curve (red).

Extreme values help to know the past or future trend of a Time Series Graph.
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Abstract: This section examines the development of a multivariate time series

function fi, j(t) that encapsulates the impact of one variable on two or more vari-

ables. We present the elements that constitute the multidimensional space and

demonstrate how multidimensional panel data can facilitate the analysis. Each mul-

tivariate time series function fi, j(t) is derived using the multivariate least squares

method to analyze the trend T (t), cyclical C(t), seasonal S(t), and irregular com-

ponents I(t).

Keywords: Correlation coefficient, cyclical component, interquartile range, IQR,

multidimensional panel data, multivariate time series function, outliers, seasonal

component, time series forecasting, time series function

4.1. Introduction

This section will examine the elements of a time series function f (t), where the

independent variable t is specifically confined to the R2 plane or the R3 space. Sub-

sequently, we will elucidate the analytical and geometrical interpretation to confine

the function f (t) to a sequence of points x(t) ∈ domain( f ). Utilizing the sequence

of points from graph( f ), we will construct the time series function f through the

least squares approach, and the components of the time series will be delineated.

Ultimately, we shall illustrate its utility with a practical example.

4.2. f : Rn → R

A multivariate real-valued function f (x1, · · · ,xn) is a numerical function e.

f : R⋉ → R where the independent variable (x1, · · · ,xn) ∈ domain( f ) ⊂ R
n and

the dependent variable f (x1, · · · ,xn) ∈ image( f ) ⊂ R. The Graph of the real-

valued function f is graph ( f ) =
{

(x1, · · · ,xn, f (x1, · · · ,xn)) ∈ R
n+1| (x1, · · · ,xn) ∈

domain( f ) and f (x1, · · · ,xn) ∈ image( f )
}

.
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4.2.1. Graph( f )

Particularly, if n = 2, graph f is a surface (Fig. 4.1).

Figure 4.1: Graph of function f (x,y).

4.2.2. Graph( f )|x(t)

The graph of the multivariate real-valued function f (x1, · · · ,xn) is transformed from

a plane in the space R
n+1 to a curve in the same space when its evaluation is re-

stricted to a sequence of points x(t) ∈ domain( f ). The graph( f )|x(t) (Fig. 4.2) il-

lustrates the case of a function f : R2 → R.

Figure 4.2: Graph of function f (x,y) restricted to x(t).
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The arrangement of points depicted by the curve x(t) can be aligned to indicate

either a progression or regression in time (Fig. 4.3). The graph( f )|x(t) exhibits a

consistent direction. The projections of the curve in the planes of space R3 illustrate

the relationships among the variables (x,y, f (x,y)) (Fig. 4.3).

Figure 4.3: Oriented curve of function f (x,y) restricted to x(t) and its projections

over the planes x/y, x/z, and y/z.

Despite the abstraction required to geometrically understand the functions f :R2 →
R, it is not practical to use this notation to represent a Multivariate Time Series

function, since in higher dimensional spaces, it is not possible to obtain any geo-

metrical representation. Therefore, in the next section, we will introduce a proce-

dure named Multidimensional Panel Data, which is highly intuitive.

4.3. Multidimensional Panel Data

Using a Multidimensional Panel Data (Table 1), it is possible to observe the changes

that occur in one factor over time in comparison to what happens in another fac-

tor. Simply examining the Graph( f )|x(t) is equivalent to the same thing that was

done previously. A time series function f (t) can be used to analyze the numeri-

cal progression shown in Table 1. This function can then be broken down into the

components that were discussed earlier.
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II

CASES



The second part of the book introduces the reader to application examples that use

time series to understand the phenomenon under study. The cases studied in detail

correspond to the following areas: financial risk analysis, mathematical epidemi-

ology, astronomical stellar classification, weather forecasting, commercial goods

supply chain, and environmental pattern recognition.



Abstract: This chapter will study in detail the behavior of oil and non-oil imports

and exports in México from 1993 to 2022. The Time Series Graphs of these factors

are decomposed into the Trend T (t), Cyclical C(t), Seasonal S(t), and Irregular I(t)
components. We will carry out the conclusive analysis from the graphical results,

not from the economic point of view. All concepts are discussed and illustrated with

graphics. We strongly advise the reader to review these concepts in the previous

chapters.

Keywords: Cyclical decomposition, irregular decomposition, seasonal decomposi-

tion, time series analysis, time series graph, trend component, trend decomposition

5.1. Introduction

Financial risk analysis is the review and evaluation of the probability that a drastic

change happens in one or several factors and its effect on the financial risk study.

Determining this change and its impact is not evident; usually when a factor is

altered, it also impacts other factors.

Here, we will review the behavior of the oil and non-oil imports and exports in

México from 1993 to 2022, with the Time Series method.

5.2. Oil and Non-oil Imports and Exports in México

Although the source is cited for each example presented here, the reader should

keep in mind that other factors may influence the outcomes. However, the number

of variables has been restricted to focus on the mathematical method.

The following graphs geometrically describe the oil (Fig. 5.1) and non-oil (Fig. 5.2)

imports and exports in México from 1993 to 2022.

In a first analysis of Fig. 5.1, we can see that in July 2009, the curve of domestic oil

exports reaches a maximum value -though there are other local maximum values-.

On the other hand, and in May 2013, there is a sharp change in the curve of the

domestic oil exports i.e., before this date, the curve of the domestic oil exports is
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above the curve of the domestic oil imports; after this date, the trend is reversed.

Finally, in Apr 2020, the domestic oil exports and imports have a minimum value.

We can also see that at the far right of the graph, the domestic oil imports have a

maximum value, however, as it is at the end of the range, we will not study it as its

regularity cannot be verified.

In both cases, the linear trend is positive.

Figure 5.1: Imports and exports of oil in México represented by Time function

f (t) [5].

In the graph, the domestic non-oil exports and imports curve (Fig. 5.2) have a sharp

fall in the trend of Jul 2009. Then, in May 2013, we can see that the curve of the

domestic non-oil exports changes trend i.e., before that date, the curve representing

the domestic non-oil exports is above, and after the trend date, of the curves is re-

versed. In April 2020, both curves, domestic non-oil exports, and imports, reached

the minimum value. At the far right of the graph, we can see the maximum values

for the non-oil exports and imports, however, they are not considered as there is not

enough information to confirm the regularity.

In both cases, the linear trend is positive.
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Figure 5.2: Imports and exports of non-oil in México represented by the Time func-

tion f (t) [5].

5.3. Trend Component

Here, we plot the graph of the Trend Component T (t) for the domestic oil and

non-oil imports and exports and calculate the function
f (t)

T (t)
for each one of them.

In the curves
f (t)

T (t)
of the domestic oil exports and imports (Fig. 5.3), it is geo-

metrically seen that in July 2009, the domestic oil exports and imports, reached a

maximum value, and in May 2013, the trend of the curves is reversed. The curve

representing the domestic oil exports is above the oil imports, after that date, the

trend changes. In April 2020, we can see that the curves of the domestic oil exports

and imports reached a minimum value.
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Abstract: This chapter will review in detail the overall mortality and births in

México between 1994 and 2021, to explain the catastrophic behavior associated

with Epidemiology. The Time Series graphs of the factors will be decomposed only

into the Trend component T (t), and Irregular component I(t), and from the graphic

results, we will carry out an analysis to explain the excess mortality. All concepts

are discussed and illustrated with graphics. We strongly advise the reader to review

the concepts in the previous chapters.

Keywords: Cyclical component, cyclical decomposition, deaths, graph(f), irregu-

lar decomposition, overall mortality, time series, time series analysis, time series

graph, trend decomposition

6.1. Introduction

The analysis of mortality in México is based on the number of deaths [6] and

births [7] reported by Instituto Nacional de Estadı́stica y Geografı́a (INEGI) be-

tween 1994 and 2021. From both factors, we explain the extreme epidemiological

event that occurred in 2020.

As a strategy, we will analyze the general birth and death figures with the Time

Series methodology. We will express both factors as Time Series functions and we

will decompose them into the Trend Component T (t) and the Irregular Component

I(t) to find an explanation for the behavior of the excess mortality at the end of this

period.

6.2. Overall mortality in México

Although the source is cited for each example presented here, the reader should

keep in mind that other factors may influence the outcomes. However, the number

of variables has been restricted to focus on the mathematical method.

The graphs geometrically describe the behavior of the deaths reported by INEGI

(Fig. 6.1) in México between 1994 and 2021.
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In the first analysis (Fig. 6.1), we can see that in December 2020, the curve of

the overall mortality has a maximum value, though we can also see other local

maximum values. Between the years 1995 and 2017, the graph shows an upward

trend with a slow growth and the curve shows an upward concavity, which means

a slowdown.

The linear trend is all positive.

Figure 6.1: Overall mortality in México [6] represented by the Time function f (t)
and the maximum points (green) in the graph.

6.3. Overall births in México

Although the source is cited for each example presented here, the reader should

keep in mind that other factors may influence the outcomes. However, the number

of variables has been restricted to focus on the mathematical method.

The graphs geometrically describe the behavior of the births reported by INEGI

(Fig. 6.2), in México between 1994 and 2021.

In Fig. 6.2, we can see that in December 2020, the curve of the overall births has a

minimum value, though other local minimum values are also shown. Between 1995

and 2017, there is a downward trend with a slow decrease and the curve shows a

downward concavity, which means an acceleration.

The linear trend is all negative.
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Figure 6.2: Overall births in México [7] represented by the Time function f (t) and

the minimum points (green) in the graph.

6.4. Trend Component

Then, we calculated the linear Trend Component T (t) of the overall mortality in

México (Fig. 6.3) and function
f (t)

T (t)
for the overall mortality studied (Fig. 6.4).

In the curve
f (t)

T (t)
of the overall mortality (Fig. 6.3), we can geometrically see that

the maximum value in December 2020 does not correspond to the Trend Compo-

nent. We can also see that in the first months of 1994, the line of the linear Trend

Component T (t) starts below the graph of the Time Series f (t); this is usually due

to very high maximum values and also to the upward concavity of the curve.
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Abstract: This chapter will review in detail the behavior of the Consumer Price

Index, Producer Price Index, and Inflation in México between 2008 and 2022. The

Time Series Graphs of these factors will be decomposed into the Trend component

T (t), Cyclical component C(t), Seasonal component S(t), and Irregular component

I(t). From the graphic results, we will carry out a conclusive analysis that will not

be from the economic point of view. All concepts will be discussed and illustrated

with graphs. We strongly advise the reader to review these concepts in previous

chapters.

Keywords: Consumer price index, producer price index, cyclical component, cycli-

cal decomposition, graph(f), irregular component, irregular decomposition, time

series graph, trend decomposition

7.1. Introduction

This chapter reviews the impact that sharp changes have on the graphs of the Con-

sumer Price Index (CPI) [8] (Fig. 7.1), the Producer Price Index (PPI) [9] (Fig. 7.2),

and Inflation [9] with a Time Series. For this purpose, we have taken the figures

from 2008 to 2022 in México.

The Consumer Price Index (CPI) is the price of a weighted average market basket

of consumer goods and services purchased by households [10], and the Producer

Price Index (PPI) measures the average changes in prices received by domestic

producers for their output [11].

The PPI is often used to calculate real growth by adjusting inflated revenue sources,

and the CPI is often applied to calculate changes on the cost of living by adjusting

revenue and expense sources.

Inflation refers to a rise in the prices of goods and services in the economy over

time, eroding purchasing power for both consumers and businesses.

The following analysis is based on the graphs for the CPI and PPI to later include

the graph for inflation.
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Figure 7.1: Consumer Price Index (black) in México represented by the Time func-

tion f (t) [8].

In the graph of the Consumer Price Index (Fig. 7.1), there is a slightly upward trend,

whilst in the Producer Price Index (Fig. 7.1), the trend is upward with no cyclical

movement.

Figure 7.2: Producer Price Index (black) in México represented by the Time func-

tion f (t) [9].

In an ideal scenario, both graphs of the CPI and PPI should correlate so that only a

translation between both can be observed. However, in this case, there is a correla-
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tion between the Consumer Price Index with the factor of Inflation, as we will see

later.

7.2. Consumer – Producer Price Index and Inflation

in México

Although the source is cited for each example presented here, the reader should

keep in mind that other factors may influence the outcomes. However, the number

of variables has been restricted to focus on the mathematical method.

Initially, the graphs of the Consumer Price Index and the Producer Price Index

(Sect. 7.1) in México between 2008 and 2022 are normalized with the maximum

value of each set of data (Fig. 7.3).

In Fig. 7.3, it can be seen that the maximum points of the factors PPI and CPI

correlate in three different dates, being the maximum in October 2022. We can

also see that there are two local minimums in the Consumer Price Index and the

Producer Price Index that correlate.

Figure 7.3: Normalized Consumer Price Index [8] (black), Producer Price Index [9]

(red), maximum peaks (green), and minimum peaks (orange).

In Fig. 7.4, we included the graph of the normalized inflation to the normalized

graphs of the Consumer Price Index and Producer Price Index, thus we can see a

similarity of the trend in the Consumer Price Index and Inflation.
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Abstract: This chapter will review the behavior of earthquakes in México with the

Time Series method from 1901 to 2022. The Time Series Graph will be decom-

posed into the Trend T (t), Cyclical C(t), Seasonal S(t), and Irregular component

I(t) functions. Based on the results from the graphs, we will carry out an analysis to

find graphical regularities. All concepts are discussed, and illustrated with graphics.

We strongly advise the reader to review them in the previous chapters.

Keywords: Cyclical component, cyclical decomposition, irregular component, ir-

regular decomposition, seismicity pattern recognition, time series, time series anal-

ysis, time series graph, trend component, trend decomposition

8.1. Introduction

In this chapter, we review the regularities identified in the record of earthquakes

that represented a risk to the population from 1900 to 2020 in México. For this

purpose, from Servicio Sismológico Nacional [12], we got all the information about

all surface earthquakes greater than 5.5 degrees on the Richter scale that occurred

in the Mexican territory that have been verified. We expressed this information in a

graph as a Time Series function (Fig. 8.1).
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Figure 8.1: Earthquakes in México from 1901 to 2022 represented by Time function

f (t) [12].

It is important to note that although the information recorded seems graphically

large (Fig. 8.1), it is due to the length of the range i.e., 122 years since most years

only have a couple of events logged.

8.2. Seismicity in México

Although the source is cited for each example presented here, the reader should

keep in mind that other factors may influence the outcomes. However, the number

of variables has been restricted to focus on the mathematical method.

An earthquake is the abrupt movement of the Earth caused by the release of energy

accumulated over a long period. Usually, the movements are slow and impercepti-

ble, however, some displacements release a large amount of energy when one of the

plates moves sharply against another, breaking it and causing the earthquake [13].

México is a country where earthquakes with these characteristics frequently occur.

The danger of an earthquake is related to the depth it has. The most destructive

are those that occur at a few kilometres deep and their intensity is greater than 5.5

degrees on the Richter scale. We will review the earthquakes that occurred between

1900 and 2022 in México [12] to see if there is any correlation between frequency

and intensity in the earthquakes of this region. For this purpose, we have graphed

the Time Series function f (t) and the Linear Trend Graph T (t) (Fig. 8.2) that show

a slight downward trend in the intensity.
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Figure 8.2: Time Series function f (t) and Trend Component T (t) of earthquakes in

México.

The graphs (Figs. 8.1, 8.2) reviewed show some cycles and a downward trend that

we will decompose into the Time Serie function and its components.

8.3. Trend Component

We get the Trend Component T (t) of the number of incidences of earthquakes in

México by separately calculating function
f (t)

T (t)
(Fig. 8.3).

Figure 8.3:
f (t)

T (t)
function of earthquakes in México.
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Abstract: This chapter will review in detail the behavior of the population density

in México from 1990 to 2020. The Time Series Graph of this factor will be decom-

posed into the Trend T (t), Seasonal S(t), Cyclical C(t), and Irregular I(t) compo-

nents. From the graphical results, we will analyze and obtain will get a method to

calculate the population density in the future and the possible consequences. All

concepts are discussed and illustrated with graphics. We strongly advise the reader

to review the concepts in previous chapters.

Keywords: Cyclical decomposition, graph(f), irregular component, irregular de-

composition, overall mortality, time series, time series analysis, time series graph,

trend component, trend decomposition

9.1. Introduction

In this chapter, we will review the regularities found in the population density

graphs of each State in México between 1990 and 2020. For this purpose, we have

taken all the records related to this factor from Instituto Nacional de Estadı́stica

Geografı́a e Informática [14] and we have classified them by year and State. These

graphs have then been expressed as a Time Series function of the average value

(Fig. 9.1).
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Figure 9.1: Population Density behavior in México [14].

9.2. Population Density

Although the source is cited for each example presented here, the reader should

keep in mind that other factors may influence the outcomes. However, the number

of variables has been restricted to focus on the mathematical method.

In a world of finite resources, population density should be a major issue; however,

when it is eventually reported by the media, it is usually a secondary issue. Pop-

ulation density is related to the allocation of resources (normally by State) to the

inhabitants. An irregular distribution of the population provokes a lack of resources

in some places, severely affecting the food supply and the attention to vulnerable

groups in those locations.

In this sense, population density is a pointer to the quality of life the inhabitants of a

country, state, or territory have since the more densely populated a place (high den-

sity) the lower the quality of life, if there is no adequate urban and social planning.

On the other hand, a scarcely populated region (low density) in a developing coun-

try implies the deficient or null distribution of the goods and services necessary for

survival.

Given the population difference between the States in México, they were di-

vided into three groups: those with low density (Fig. 9.2), those with high den-

sity (Fig. 9.3), and finally the area with the highest density, which is México City

(Fig. 9.4) with a density 30 times higher than the average of the low-density States

(≈ 200).

From Fig. 9.2, we can see that 27 of the 31 States in México have a very low

population density. This means a limited or null supply of public services such as

piped water, electricity, or telephone.
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Figure 9.2: México States with low population density [14].

In Fig. 9.3, we can see that 3 of 31 México States have high population density.

High values imply a high demand per square kilometre of the public services men-

tioned. To meet this demand, the State has to transport these services from other

States.
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Abstract: This chapter reviews how the Time Series method, studied in this work,

can be applied to different fields and it explores its use with several approaches. It

also examines how the applicability of this method can affect diverse disciplines

with different impacts. The implementation of the Time Series method can even

have the option of self-learning programming. However, it is worth it to emphasize

the fact that this method has limited results when it is used to forecast events.

Keywords: Cyclical component, cyclical decomposition, graph(f), irregular com-

ponent, irregular decomposition, time series, time series analysis, time series graph,

trend component, trend decomposition

10.1. Scope

A Time Series function f (t) has four components i.e., f (t) = T (t)+ S(t)+ c(t)+
I(t). Each one of them represents a particular type of fluctuation in the graph f (t),
so by clearing the component to be identified, we can analyze the function.

Although the theory and application cases studied in this book show its effective-

ness in knowing a particular phenomenon, the Time Series method is far from help-

ing to forecast by extrapolation or interpolation of the graph f (t).

In a strict sense, the graph of a function can show the regularities of a phenomenon,

and its decomposition can effectively explain a phenomenon in a sector of the do-

main; however, to extend the graph of the function to determine the past or future

trend of a known range is, to put it simply, a leap into the void.

Consider the following sequence: 1,2,3,4,5,6. Would you bet that the next number

is 7? There is no information to know what number is next, the sequence could

be 1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6, 1,2,3,4,5,6,5,4,3,2,1,2, or 3,4,5,6.

There is an infinite number of possibilities.

The last two options show that the forecast of a future or past event from a present

event or in a determined range requires much more attention and the use of other

operators, such as stochastic variable functions.

Stochastic functions enable the association of an element with a value of the proba-

bility of occurrence. For instance, consider a real-valued function f (x) representing
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the sequence 1,2,3,4,5,6 i.e., f (x) = x, whose domain( f ) = {1,2,3,4,5,6}. If we

evaluate element 7, it will be f (7) = 7 and its accuracy will be that the result could

only be true or false. If we use a stochastic function f (x) = x±30% for value 7, we

will get f (7) = [4.9,9.1].

This means that the function has a range of values, including 7 or 5. Note that these

two values forecast the seventh element of the first and the last sequence mentioned.

Are stochastic functions the answer to forecast the present or future trend of a

factor or variable? The answer is NO. Since the percentage (%) we can give when

evaluating a function of a specific value x i.e., x± y%, is related to the level of

knowledge you have of the phenomenon studied and this knowledge is precisely

what we want to find out from the function, so this is a contradiction.

What can help is to train the stochastic function with an initial value and that this

value is adjusted as the results are accepted or rejected. This type of self-adjusting

function will have a convergence radius that will lead to a representative function

of the phenomenon studied and will help to progressively understand it. A family

of Time Series functions can be used for this purpose.

In summary, the Time Series Method is an efficient procedure to understand what

happens in a limited range of time, and the information it provides about the phe-

nomenon can be used to feed a stochastic function that gradually adjusts the per-

centage value of the forecast.

10.2. Main Possibilities

This book is formed by two sections: the first introduces the Time Series Method

defining a Time Series function f (t); it then shows its components and how they

can be used, and later it describes how this function can be extended to a greater

number of variables or factors. The second section has a set of cases from different

fields, completely solved and developed explicitly so the reader can understand the

strategy to make the most of the Time Series Method.

The reader will not find a unique strategy; in these cases, the phenomenon studied

will indicate the approach taken with the Time Series function. Below, we will

recount the main strategy for each case.

Chap. 5, Financial Risk Analysis case: The Time Series method showed a cyclical

regularity in oil imports and exports. This regularity is not evident in the original

graphs. The reversed predominance of the domestic oil exports over the imports in

May 2013 (Fig. 5.1) can be partially explained by its cyclical component (Fig. 5.5).

A careful revision of each component and its adjustment will enable the construc-

tion of a Time Series function f (t) (Sect. 5.6) that can give information over a

short period. This period can be two months or so, bearing always in mind that an

irregular event can affect the analysis.

Chap. 6, Mathematical Epidemiology case: The use of the Time Series method

based on the graphs of the overall mortality (Fig. 6.1) and births (Fig. 6.2) in

México, showed a drastic fall in the overall births in December 2020 and, simulta-

neously, high growth in the overall mortality in the same month. It did not show any

cyclical or seasonal events, although when calculating the irregular component in

both graphs (Figs. 6.7 and 6.8), it showed a match at the same time in December
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2020. In this case, we can see that it is possible to combine the two Time Series

functions, to form f (t) that can model the net growth i.e., f (t) = fmortality + fbirths,

or to build another where f (tmortality, tbirths) : R2 → R. This function will show if

the population gets old or young.

Chap. 7, Consumer and Producer Price Index and Inflation case: The analysis of

the behavior of the Consumer Price Index, Producer Price Index, and the Infla-

tion in México between 2008 and 2022 with the decomposition of its Times Series

graphs showed two important issues: the cycles in the Consumer Price Index and

the correlation between Inflation and the Producer Price Index. The latter will re-

duce the number of factors to study issues: the Consumer and the Producer Price

Index. When calculating the graph of these factors for the United States of America

(Fig. 7.12), we can see that the graphs do not correlate in a way that there is a trans-

lation between them. This lack of translation negatively impacts the purchasing

power of the consumer.

Chap. 8, Seismicity Pattern Recognition case: The study of the surface earthquakes

with a magnitude greater than 5.5 degrees on the Richter scale that occurred in

México between 1900 and 2022, showed in the Linear Trend component a decrease

in their intensity in the time range studied (Fig. 8.3) and a quarterly cycle in its

Seasonal component (Fig. 8.4). Both results are important since they help to take

measures to protect the population and orient them on what they can do when an

earthquake of the characteristics studied takes place.

Chap. 9, Population Density case: It describes the results found on the popula-

tion density factor for México between 1990 and 2020, classifying its States in

high, and low population density. Twenty seven out of the 31 States in México

with low population density have continuous growth. We can see the same trend in

the 3 States with high population density. México City shows a much larger rate

of growth, 30 times larger than the rate of the low population density States. The

Seasonal and Cyclical components did not provide more information about the phe-

nomenon, and the Trend component shows an increasing linear behavior. When the

population density in Spain was graphed, we could also see an increasing linear

behavior, but with high and low density, it was almost equally distributed in all its

regions. In the case of Finland, the growth is almost non-existent and there is a very

low population density in its territory. These two countries are considered devel-

oped; therefore, their population density does not affect the sufficiency of goods

and services, which is not the case in México.

In these examples, the Time Series Method made it possible to explore and have a

better understanding of the phenomena studied. The Time Series function f (t) can

even be used, in a very restrictive way, to interpolate or extrapolate the trend of the

function.

The theory introduced in this ebook, is not abundant; however, it focuses on the

main components of the Time Series Method that we consider enough to address

any project. Nevertheless, since it is not a definitive method, a refined analysis of

the components will be necessary in each case studied.

There are many other applications of the Time Series method in different fields.

This work aims to introduce the theory with practical cases, motivating its use with

the simplicity of the Function Theory involved and its ability to address multiple

variables simultaneously.
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Computational Programs

Abstract: In this chapter, we present three computational programs written in

Fortran-95, designed to address various aspects related to matrix analysis. The first

program is a Cramer’s rule matrix calculator, allowing for the solution of systems

of linear equations using this technique. The second program focuses on the gen-

eration of matrix A and its parameters bi, providing an efficient tool for creating

customized matrices. Lastly, an introduced program tackles the unexplained vari-

ation component in the context of data analysis. These Fortran-95 programs offer

effective and reliable solutions for matrix problems and data analysis, expanding

the capabilities of researchers and professionals in the field.

Keywords: Cramer rule matrix calculator program, FORTRAN-95, Matrix A, pa-

rameters bi program, Linux script, unexplained variation component program

A.1. Introduction

In the fields of computer science and computational sciences, the Fortran-95 pro-

gramming language has played a crucial role in the development of highly ef-

ficient and trustworthy programs. In this chapter, we will investigate a collec-

tion of Fortran-95 programs that address various aspects of mathematical analysis.

Through the power of computational calculation, these programs have been created

to solve particular problems and provide accurate solutions.

We will begin by introducing the Cramer’s Rule Matrix Calculator program, which

is an indispensable instrument in linear algebra. This software is based on the well-

known Cramer method for solving linear equation systems using matrices. Users

will be able to input coefficient matrices and obtain the corresponding solutions for

unknown variables using this program. We will investigate how Fortran-95 facili-

tates the efficient and accurate calculation of Cramer’s rule.

Next, we will examine the program for generating the matrices A and bi. This ap-

plication is especially helpful for solving optimization problems and fitting curves.

The program allows users to generate a matrix A with specific parameters (bi) to

meet the requirements of their specific problem. We will investigate how Fortran-95

facilitates the efficient construction and manipulation of matrices, paving the way

for more sophisticated mathematical solutions.
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This chapter will also include a Fortran-95-developed Linux script. This script auto-

mates specific duties by interacting with the Linux operating system using Fortran-

95’s capabilities. We will investigate how Fortran-95 can be used not only for so-

phisticated mathematical calculations, but also to leverage the potential of the Linux

platform and improve data handling and processing efficiency.

We will conclude by discussing the Unexplained Variation Component program.

This program focuses on variance analysis and provides a valuable instrument for

evaluating the contribution of various factors to the variation in a dataset. We will

demonstrate how Fortran-95 can be used to calculate and interpret the unexplained

variation components, allowing for a more in-depth comprehension of the data and

its variability.

By examining these Fortran-95 computer programs, readers will gain a better un-

derstanding of the mathematical analysis applications of this potent programming

language. In addition, they will benefit from specific examples and applications that

will strengthen their abilities to use Fortran-95 to solve problems in the scientific

and engineering disciplines.

A.2. Linux script

1 ! /bin/sh

2 #Author Carlos Polanco

3 #Date July, 2022

4

5 # Step 1

6 #Generation of matrix A and parameters b_i

7 gfortran pgmccl.f -o primero

8 ./primero

9

10

11 # Step 2

12 #Solution by Cramer Rule Matrix Systems Calculator

13 and Laplace Theorem

14 clear

15

16 rm todo.py

17

18 cat partePY1.py > todo.py

19 resultado=‘head -1 parteprimera.dat‘

20 echo " $resultado" >> todo.py

21 echo " " >> todo.py

22

23 resultado16=‘head -1 partesegunda16.dat‘

24 echo " $resultado16" >> todo.py

25

26 resultado26=‘head -1 partesegunda26.dat‘

27 echo " $resultado26" >> todo.py

28

29 resultado36=‘head -1 partesegunda36.dat‘

30 echo " $resultado36" >> todo.py

31

32 resultado46=‘head -1 partesegunda46.dat‘

33 echo " $resultado46" >> todo.py

34
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35 resultado56=‘head -1 partesegunda56.dat‘

36 echo " $resultado56" >> todo.py

37

38 resultado66=‘head -1 partesegunda66.dat‘

39 echo " $resultado66" >> todo.py

40

41 cat partePY2.py >> todo.py

42

43 python todo.py | grep "A" > salida.dat

44 cut -d"=" -f2 salida.dat > salida2.dat

45

46 head -1 salida2.dat > a0.dat

47 head -2 salida2.dat | tail -1 > a1.dat

48 head -3 salida2.dat | tail -1 > a2.dat

49 head -4 salida2.dat | tail -1 > a3.dat

50 head -5 salida2.dat | tail -1 > a4.dat

51 head -6 salida2.dat | tail -1 > a5.dat

52

53 # Step 3

54 #Calculation of the polynomial function y_est

55 gfortran pgmccl2.f -o segundo

56 ./segundo

57

58 Output

59 -2.488 13.579 -18.054 13.854 41.409

60 25.345 162.795 1095.012

61 Tendencia no lineal: 0.999768794

62

Appendix A    113



C(t), 3

Domain( f ), 3, 50

Graph( f ), x(t)50

Graph( f ), 3, 50

H(t), 40

I(t), 3

Range( f ), 3, 50

S(t), 3

TC(t) Form, 38

TL(t)×C(t) Form, 40
TL(t)× (C(t)

I(t)
Form, 43

f (t), 3

f (x), 3

f : Rn → R, 49

Additive Decomposition, 20

Basic Steps in Decomposition, 21

Consumer and Producer Price Index,

81

Correlation Coefficient, 52

Cyclical Component, 3, 16

Extrapolation, 35

Financial Risk Analysis, 63

Future Uses

Time Series Methods, 107

Interpolation, 35

Interquartile Range, 6, 8

IQR, 6, 8

Irregular Component, 3, 17

Least Squares Method, 10

Long-term Prediction, 47

Lost Data, 8
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