ARTIFICIAL INTELLIGENCE: A MULTIDISCIPLINARY APPROACH TOWARDS TEACHING AND LEARNING

Editors: **Tahmeena Khan Manisha Singh Saman Raza**

Bentham Books

Artificial Intelligence: A Multidisciplinary Approach towards Teaching and Learning

Edited By

Tahmeena Khan

Department of Chemistry Integral University Lucknow, U.P., India

Manisha Singh

Department of Education Integral University Lucknow, U.P., India

&

Saman Raza

Department of Chemistry Isabella Thoburn College Lucknow, U.P., India

Artificial Intelligence: A Multidisciplinary Approach towards Teaching and Learning

Editors: Tahmeena Khan, Manisha Singh and Saman Raza

ISBN (Online): 978-981-5305-18-0

ISBN (Print): 978-981-5305-19-7

ISBN (Paperback): 978-981-5305-20-3

© 2024, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

First published in 2024.

BENTHAM SCIENCE PUBLISHERS LTD.

End User License Agreement (for non-institutional, personal use)

This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal (**"Work"**). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work.

Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: permission@benthamscience.net.

Usage Rules:

- 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement.
- 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it.
- 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights.

Disclaimer:

Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work.

Limitation of Liability:

In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work.

General:

^{1.} Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of Singapore. Each party agrees that the courts of the state of Singapore shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims).

^{2.} Your rights under this License Agreement will automatically terminate without notice and without the

need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights.

3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail.

Bentham Science Publishers Pte. Ltd. 80 Robinson Road #02-00 Singapore 068898 Singapore Email: subscriptions@benthamscience.net

CONTENTS

CONTENTS	
DREWORD I	
DREWORD II	
REFACE	
ST OF CONTRIBUTORS	
HAPTER 1 THE EVOLUTION OF ARTIFICIAL INTELLIGENCE FROM F	PHILOSOPHY
) NEW FRONTIER	
Manisha Singh, Arbind K. Jha, Tahmeena Khan and Saman Raza	
INTRODUCTION	
THE HISTORY OF ARTIFICIAL INTELLIGENCE (AI)	
PHILOSOPHY AND AI: A PHILOSOPHICAL JOURNEY	
PHILOSOPHICAL CONSIDERATION OF AI	
Metaphysics and AI	
Epistemology and AI	
Axiology and AI	
Framework of AI	
HUMAN-MACHINE TEAMING FRAMEWORK	
FORMS OF AI	
Based on Capabilities	
Artificial Narrow Intelligence	
Artificial General Intelligence	
Artificial Super Intelligence	
Generative AI	
Based on Functionality Artificial Intelligence	
Reactive Machines	
Limited AI	
Theory of Mind AI	
Self-aware AI	
Some other forms of AI	
AI AND NEW FRONTIERS	
AI and Medical Science	
AI and Life Science	
AI and Mathematics	
AI and Architecture	
AI and Environmental Science	
AI in Education	
AI in Research	
ChatGPT/Perplexity/GoogleBard	
PDFgear	
Wordvice AI	
Consensus	
Trinka	
QuillBot AI	
Page.AI	
Zotero, EndNote Online, Mendeley, RefWorks, etc	
AI, HUMAN INTELLIGENCE AND HUMAN WISDOM	
CONCLUDING REMARKS	
REFERENCES	

Chanda Hemantha Manikumar Chakravarthi, Viswajit Mulpuru and Nidhi Mishra 27 INTRODUCTION 27 Overview of Machine Learning 27 Supervised Learning 27 Unsupervised Learning 27 Reinforcement Learning 27 Importance of Drug Design 27 Challenges in Traditional Drug Discovery 27 DATA ANALYSIS AND PREPROCESSING 28 Utilizing Biological Databases 28 Omics Data Integration 29 Data Cleaning and Feature Extraction 29 Data Cleaning and Pre-processing 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 PreDICTIVE MODELLING 32 Support Vector Machines (SVM) 33 Networks 35 Regression Analysis 36 Outsistency 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Target Identification and Validation 40 Disease	CHAPTER 2 ARTIFICIAL INTELLIGENCE AND BIOINFORMATICS: A POWERFUL SYNERGY FOR DRUG DESIGN AND DISCOVERY	26
INTRODUCTION 27 Overview of Machine Learning 27 Supervised Learning 27 Unsupervised Learning 27 Reinforcement Learning 27 Importance of Drug Design 27 Challenges in Traditional Drug Discovery 27 DATA ANALYSIS AND PREPROCESSING 28 Utilizing Biological Databases 28 Omics Data Integration 29 Data Cleaning and Freeprocessing 29 Data Cleaning and Pre-processing 30 Oversampling and Undersampling 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Advanced Algorithms for Imbalanced Data 31 Advanced Algorithms 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Ouries Data Integration 40 Definition of Batch Effects 33 Neural Networks 35 Regression Analysis 36		20
Overview of Machine Learning 27 Supervised Learning 27 Unsupervised Learning 27 Reinforcement Learning 27 Importance of Drug Design 27 Challenges in Traditional Drug Discovery 27 DATA ANALYSIS AND PREPROCESSING 28 Utilizing Biological Databases 29 Data Cleaning and Feature Extraction 29 Data Cleaning and Pre-processing 29 Feature Extraction Techniques 30 Handling Imbalanced Datasets 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Ensuring Consistency 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Support Vector Machines (SVM) 32 Support Vector Machines (SVM) 32 Random Forests 38 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 <t< th=""><th></th><th>27</th></t<>		27
Supervised Learning 27 Unsupervised Learning 27 Reinforcement Learning 27 Importance of Drug Design 27 Challenges in Traditional Drug Discovery 27 DATA ANALYSIS AND PREPROCESSING 28 Utilizing Biological Databases 28 Onics Data Integration 29 Data Cleaning and Feature Extraction 29 Data Cleaning and Pre-processing 29 Pata Cleaning and Pre-processing 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Definition of Nachines (SVM) 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regresion Analysis 40 Omics Data Integration 40 Discase Gene Prediction 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 Expression Profiling and Differential Analysis 41 Pha		
Unsupervised Learning 27 Reinforcement Learning 27 Importance of Drug Design 27 Challenges in Traditional Drug Discovery 27 DATA ANALYSIS AND PREPROCESSING 28 Utilizing Biological Databases 29 Data Cleaning and Feature Extraction 29 Data Cleaning and Preprocessing 29 Data Cleaning and Preprocessing 30 Handling Imbalanced Datasets 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Ensuring Consistency 32 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Target Identification and Validation 40 Omics Data Integration 40 Omics Data Integration 40 Discase Gene Prediction 41 Expression Profiling and Differential Analysis 41 Virtual Screening Temporting <		
Reinforcement Learning 27 Importance of Drug Design 27 Challenges in Traditional Drug Discovery 28 Utilizing Biological Databases 28 Omics Data Integration 29 Data Cleaning and Feature Extraction 29 Data Cleaning and Pre-processing 29 Data Cleaning and Pre-processing 29 Data Cleaning and Pre-processing 30 Handling Imbalanced Datasets 30 Overscampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Definition Root Algorithms 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41		
Importance of Drug Design 27 Challenges in Traditional Drug Discovery 27 DATA ANALYSIS AND PREPROCESSING 28 Utilizing Biological Databases 28 Omics Data Integration 29 Data Cleaning and Feature Extraction 29 Data Cleaning and Pre-processing 29 Feature Extraction Techniques 30 Handing Imbalanced Datasets 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Ensuring Consistency 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 41 Disease Gene Prediction 41 Handom of Structural Biology Data 41 Disease Gene Prediction 41 <t< td=""><td></td><td></td></t<>		
Challenges in Traditional Drug Discovery 27 DATA ANALYSIS AND PREPROCESSING 28 Utilizing Biological Databases 28 Utilizing Biological Databases 29 Data Cleaning and Frequencessing 29 Data Cleaning and Pre-processing 29 Data Cleaning and Pre-processing 30 Oversampling and Undersampling 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Definition of Batch Effects 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 40 Omics Data Integration 40 O		
DATA ANALYSIS AND PREPROCESSING 28 Utilizing Biological Databases 28 Omics Data Integration 29 Data Cleaning and Feature Extraction 29 Data Cleaning and Fre-processing 29 Feature Extraction Techniques 30 Handling Imbalanced Datasets 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Definition of Satch Effects 31 Definition of Satch Effects 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 41 VIRTUAL SCREENING 41 Disease Gene Prediction 41 Disease Gene Prediction 41 Disease Gene Prediction 41 Text Mining and Literature Analysis 41 Pharmacogenomics 41 Text Mining		
Utilizing Biological Databases 28 Omics Data Integration 29 Data Cleaning and Feature Extraction 29 Data Cleaning and Pre-processing 29 Feature Extraction Techniques 30 Handling Imbalanced Datasets 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Ensuring Consistency 31 PREDICTIVE MODELLING 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 It rest Mining and Literature Analysis 41 VIRTUAL SCREENING 42 Quantitative Structure-Activity Relationship (QSAR) 41		
Omics Data Integration 29 Data Cleaning and Pre-processing 29 Data Cleaning and Pre-processing 29 Peature Extraction Techniques 30 Handling Imbalanced Datasets 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Definition of Batch Effects 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Omics Data Integration 40 Disease Gene Prediction 40 Disease Gene Prediction 41 Pharmacogenomics 41 Pharmacogenomics 41 Pharmacogenomics 42 Molecular Descriptors and Fingerprints 42 Quantitative Structure-Activity Relationship (QSAR) 43 Molecular Descriptors and Fingerprints 44 Phar		
Data Cleaning and Feature Extraction 29 Data Cleaning and Pre-processing 29 Feature Extraction Techniques 30 Handling Imbalanced Datasets 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Ensuring Consistency 31 PREDICTIVE MODELLING 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Onics Data Integration 40 Disease Gene Prediction 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 VIRTUAL SCREENING 42 Molecular Descriptors and Fingerprints 42 Molecular Disorder Group High-Throughput Screening (HTS) 41 Integration of Structural Biology Data 42 Ligand-Based Virtual Screening Techniques		
Data Cleaning and Pre-processing29Feature Extraction Techniques30Handling Imbalanced Datasets30Oversampling and Undersampling30Advanced Algorithms for Imbalanced Data31Addressing Batch Effects31Definition of Batch Effects31Ensuring Consistency31PREDICTIVE MODELLING32Classification Algorithms32Support Vector Machines (SVM)32Random Forests33Neural Networks35Regression Analysis36Quantitative Structure-Activity Relationship (QSAR)36Predicting Molecular Properties38VIRTUAL SCREENING40Target Identification and Validation40Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Pharmacogenomics41Integration of Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacogenomics41Expression Profiling and Differential Analysis41Pharmacogenomics41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Structure-Based Virtual Screening44		
Feature Extraction Techniques 30 Handling Imbalanced Datasets 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Ensuring Consistency 31 PREDICTIVE MODELLING 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Target Identification and Validation 40 Omics Data Integration 40 Disease Gene Prediction 41 Expression Profiling and Differential Analysis 41 Validation through High-Throughput Screening (HTS) 41 Integration of Structure-Activity Relationship (QSAR) 42 Quantitative Structure-Activity Relationship (QSAR) 43 Molecular Descriptors and Fingerprints 42 Molecu		
Handling Imbalanced Datasets 30 Oversampling and Undersampling 30 Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Definition of Batch Effects 31 PREDICTIVE MODELLING 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Omics Data Integration 40 Disease Gene Prediction 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 Vialidation through High-Throughput Screening (HTS) 41 Integration of Structure Activity Relationship (QSAR) 42 Ligand-Based Virtual Screening Techniques 42 Molecular Descriptors and Fingerprints 42 Quantitative Structure-Activity Relationship (QSAR) 43 Machin		
Oversampling and Undersampling30Advanced Algorithms for Imbalanced Data31Addressing Batch Effects31Definition of Batch Effects31Ensuring Consistency31PREDICTIVE MODELLING32Classification Algorithms32Support Vector Machines (SVM)32Random Forests33Neural Networks35Regression Analysis36Quantitative Structure-Activity Relationship (QSAR)36Predicting Molecular Properties38VIRTUAL SCREENING40Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structure-Activity Relationship (QSAR)43Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Structure-Ligand Docking44Structure-Ligand Docking44Structure-Ligand Docking44Structure-Ligand Docking44Structure-Ligan		
Advanced Algorithms for Imbalanced Data 31 Addressing Batch Effects 31 Definition of Batch Effects 31 Ensuring Consistency 31 PREDICTIVE MODELLING 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Omics Data Integration 40 Obiesase Gene Prediction 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 Validation through High-Throughput Screening (HTS) 41 Integration of Structure Analysis 42 Ligand-Based Virtual Screening Techniques 42 Quantitative Structure-Activity Relationship (QSAR) 43 Machine Learning Techniques 42 Quantitative Structure-Activity Relationship (QSAR) 43 Molecular Descriptors and Fingerprints 42 Quantitative		
Addressing Batch Effects 31 Definition of Batch Effects 31 Ensuring Consistency 31 PREDICTIVE MODELLING 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Target Identification and Validation 40 Obiesase Gene Prediction 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 Validation through High-Throughput Screening (HTS) 41 Integration of Structural Biology Data 42 Molecular Descriptors and Fingerprints 42 Quantitative Structure-Activity Relationship (QSAR) 43 Machine Learning Classifiers 43 Pharmacophore Modeling 43 Chemical Similarity Networks 43 Chemical Similarity Networks 43 Chemical Similarity Networks 44		
Definition of Batch Effects 31 Ensuring Consistency 31 PREDICTIVE MODELLING 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Target Identification and Validation 40 Omics Data Integration 40 Disease Gene Prediction 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 Validation through High-Throughput Screening (HTS) 41 Integration of Structural Biology Data 42 Ligand-Based Virtual Screening Techniques 42 Quantitative Structure-Activity Relationship (QSAR) 43 Machine Learning Classifiers 43 Pharmacophore Modeling 43 Chemical Similarity Networks 43 Chemical Similarity Networks 43 Distease Genering Classifiers 4		
Ensuring Consistency31 PREDICTIVE MODELLING 32Classification Algorithms32Support Vector Machines (SVM)32Random Forests33Neural Networks35Regression Analysis36Quantitative Structure-Activity Relationship (QSAR)36Predicting Molecular Properties38 VIRTUAL SCREENING 40Target Identification and Validation40Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Pharmacogenomics41Viatidation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Structure-Based Virtual Screening44Structure-Based Virtual Screening44		
PREDICTIVE MODELLING 32 Classification Algorithms 32 Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Target Identification and Validation 40 Omics Data Integration 40 Obisease Gene Prediction 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 Validation through High-Throughput Screening (HTS) 41 Integration of Structural Biology Data 42 Ligand-Based Virtual Screening Techniques 42 Quantitative Structure-Activity Relationship (QSAR) 43 Machine Learning Classifiers 43 Pharmacophore Modeling 43 Chemical Similarity Networks 43 Ensemble Methods 44 Structure-Based Virtual Screening 44 Structure-Based Virtual Screening 44		
Classification Algorithms32Support Vector Machines (SVM)32Random Forests33Neural Networks35Regression Analysis36Quantitative Structure-Activity Relationship (QSAR)36Predicting Molecular Properties38VIRTUAL SCREENING40Target Identification and Validation40Omics Data Integration40Disease Gene Predicting and Differential Analysis41Expression Profiling and Differential Analysis41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Quantitative Structure-Activity Relationship (QSAR)43Chemical Similarity Networks43Pharmacophore Modeling44Structure-Based Virtual Screening44Structure-Based Virtual Screening44Structure-Based Virtual Screening44		
Support Vector Machines (SVM) 32 Random Forests 33 Neural Networks 35 Regression Analysis 36 Quantitative Structure-Activity Relationship (QSAR) 36 Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Target Identification and Validation 40 Omics Data Integration 40 Disease Gene Prediction 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 Integration of Structural Analysis 41 Validation through High-Throughput Screening (HTS) 41 Integration of Structural Biology Data 42 Quantitative Structure-Activity Relationship (QSAR) 43 Molecular Descriptors and Fingerprints 42 Quantitative Structure-Activity Relationship (QSAR) 43 Machine Learning Classifiers 43 Pharmacophore Modeling 43 Chemical Similarity Networks 43 Ensemble Methods 44 Scoring Functions 44		
Random Forests33Neural Networks35Regression Analysis36Quantitative Structure-Activity Relationship (QSAR)36Predicting Molecular Properties38VIRTUAL SCREENING40Target Identification and Validation40Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Text Mining and Literature Analysis41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Structure-Based Virtual Screening44Structure-Ligand Docking44Scoring Functions44		
Neural Networks35Regression Analysis36Quantitative Structure-Activity Relationship (QSAR)36Predicting Molecular Properties38VIRTUAL SCREENING40Target Identification and Validation40Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Pharmacogenomics41Text Mining and Literature Analysis41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Scoring Functions44		
Regression Analysis36Quantitative Structure-Activity Relationship (QSAR)36Predicting Molecular Properties38VIRTUAL SCREENING40Target Identification and Validation40Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Pharmacogenomics41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Scoring Functions44		
Quantitative Structure-Activity Relationship (QSAR)36Predicting Molecular Properties38VIRTUAL SCREENING40Target Identification and Validation40Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Pharmacogenomics41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks44Structure-Based Virtual Screening44Scoring Functions44		
Predicting Molecular Properties 38 VIRTUAL SCREENING 40 Target Identification and Validation 40 Omics Data Integration 40 Disease Gene Prediction 41 Expression Profiling and Differential Analysis 41 Pharmacogenomics 41 Text Mining and Literature Analysis 41 Validation through High-Throughput Screening (HTS) 41 Integration of Structural Biology Data 42 Ligand-Based Virtual Screening Techniques 42 Molecular Descriptors and Fingerprints 43 Machine Learning Classifiers 43 Pharmacophore Modeling 43 Chemical Similarity Networks 43 Ensemble Methods 44 Structure-Based Virtual Screening 44		
VIRTUAL SCREENING40Target Identification and Validation40Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Pharmacogenomics41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Scoring Functions44		
Target Identification and Validation40Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Pharmacogenomics41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Structure-Ing Classifiers44		
Omics Data Integration40Disease Gene Prediction41Expression Profiling and Differential Analysis41Pharmacogenomics41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Scoring Functions44		
Disease Gene Prediction41Expression Profiling and Differential Analysis41Pharmacogenomics41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Scoring Functions44		
Expression Profiling and Differential Analysis41Pharmacogenomics41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Scoring Functions44		
Pharmacogenomics41Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Scoring Functions44		
Text Mining and Literature Analysis41Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Scoring Functions44		
Validation through High-Throughput Screening (HTS)41Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Scoring Functions44		
Integration of Structural Biology Data42Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Scoring Functions44		
Ligand-Based Virtual Screening Techniques42Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Protein-Ligand Docking44Scoring Functions44		
Molecular Descriptors and Fingerprints42Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Protein-Ligand Docking44Scoring Functions44		
Quantitative Structure-Activity Relationship (QSAR)43Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Protein-Ligand Docking44Scoring Functions44		
Machine Learning Classifiers43Pharmacophore Modeling43Chemical Similarity Networks43Ensemble Methods44Structure-Based Virtual Screening44Protein-Ligand Docking44Scoring Functions44		
Pharmacophore Modeling 43 Chemical Similarity Networks 43 Ensemble Methods 44 Structure-Based Virtual Screening 44 Protein-Ligand Docking 44 Scoring Functions 44	Quantitative Structure-Activity Relationship (QSAR)	43
Chemical Similarity Networks 43 Ensemble Methods 44 Structure-Based Virtual Screening 44 Protein-Ligand Docking 44 Scoring Functions 44	Machine Learning Classifiers	43
Ensemble Methods 44 Structure-Based Virtual Screening 44 Protein-Ligand Docking 44 Scoring Functions 44		
Structure-Based Virtual Screening 44 Protein-Ligand Docking 44 Scoring Functions 44		
Protein-Ligand Docking 44 Scoring Functions 44	Ensemble Methods	44
Scoring Functions	Structure-Based Virtual Screening	44
	Protein-Ligand Docking	44
Deep Learning in Binding Affinity Prediction		
	Deep Learning in Binding Affinity Prediction	45

Machine Learning Filters	45
Consensus Scoring	
Machine Learning for Binding Site Prediction	
Fragment-Based Virtual Screening	
DE NOVO DRUG DESIGN	
Generative Models in Drug Design	
Generative AI in bioinformatics	
Generative AI in Drug Design	
Generative AI revolutionizes Drug Discovery Processes	
Variational Autoencoders (VAEs)	
Generative Adversarial Networks (GANs)	
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) Networks	
Transformer-Based Models	
Graph Generative Models	
Conditional Generative Models	
Transfer Learning in Generative Models	
Reinforcement Learning for Molecule Generation	
Objective Function Definition	
Policy Networks	
Action Space Representation	
Monte Carlo Tree Search (MCTS)	
Actor-Critic Models	
Exploration Strategies	
Transfer Learning and Pre-training	
DRUG REPURPOSING	
Identifying New Indications for Existing Drugs	
Biological Data Integration	
Drug Similarity and Similarity Networks	
Disease Similarity and Phenotype Matching	
Text Mining and Literature Analysis	
Predictive Modeling for Drug-Disease Associations	
Network Propagation Algorithms	
Electronic Health Records (EHR) Analysis	
Multi-Omics Data Integration	53
Utilizing Machine Learning for Drug Repositioning	
Data Integration and Representation	53
Feature Extraction and Engineering	53
Predictive Modelling for Drug-Disease Associations	54
Network-Based Approaches	54
Deep Learning Models	54
Text Mining and Literature Analysis	54
Clinical Data Mining	55
Ensemble Learning	
PHARMACOPHORE MODELLING	
Molecular Interaction Understanding	
Drug Design and Optimization	
Virtual Screening	
Lead Identification and Optimization	
Polypharmacology Analysis	
Structure-Activity Relationship (SAR) Analysis	
Fragment-Based Drug Design	
	20

Target Druggability Assessment	56
Pharmacokinetic and Toxicity Prediction	56
Adverse Effects Mitigation	56
Feature Selection and Descriptor Generation	57
Training Data Generation	57
Enhanced Pharmacophore Screening	57
Predictive Pharmacophore Modeling	57
Polypharmacology Prediction	. 58
Druggability Assessment	58
Hybrid Approaches	. 58
Pharmacophore Optimization	58
Data-Driven Drug Design	58
PERSONALIZED MEDICINE	59
Tailoring Treatments Based on Individual Genetic Profiles	59
Importance and Benefits	. 59
Application of Machine Learning	. 60
Examples of Personalized Medicine Applications	
Ethical and Regulatory Considerations	
Future Directions	
Machine Learning in Patient Stratification	
Key Components of Patient Stratification	62
Importance and Benefits	
Applications of Machine Learning	
Examples of Patient Stratification	
Challenges and Considerations	
Future Directions	
CHALLENGES AND FUTURE DIRECTIONS	
Data Quality and Availability	
Data Quality Issues	
Data Standardization and Integration	
Limited Accessibility	
Small Sample Sizes	
Biological Variability	
Ethical Considerations	
Future Directions	
Advancements in Personalized Medicine	
Ethical and Regulatory Considerations	
Patient Privacy and Informed Consent	
Data Ownership and Sharing	
Bias and Fairness in Models	
Regulatory Compliance	
Inclusivity in Research	
Transparency in AI Decision-Making	
Future Directions	
Emerging Technologies and Trends in Drug Design	
Artificial Intelligence (AI) and Machine Learning	
Quantum Computing	
Structural Biology Advancements	
Immunotherapy and Personalized Medicine	
CRISPR and Gene Editing	
Nanotechnology in Drug Delivery	

Data Integration and Systems Biology	70
3D Printing in Drug Manufacturing	
Blockchain for Data Security	
CONCLUDING REMARKS	
Artificial Intelligence (AI) and Machine Learning	
Quantum Computing	
Immunoinformatics	
CRISPR-Cas9 and Gene Editing	
3D Bioprinting	
Nanotechnology	
RNA Therapeutics	
Pharmacogenomics	
Virtual Reality (VR) and Augmented Reality (AR)	
Blockchain in Drug Development	
Metabolomics and Systems Biology	
Synthetic Biology	
Potential Impact on the Pharmaceutical Industry	
Acceleration of Drug Discovery	
Revolutionizing Vaccine Development	
Precision Medicine and Personalized Therapies	
Efficient Drug Testing and Development	
Targeted Drug Delivery and Formulation	
Innovations in RNA Therapeutics	
Optimizing Drug Responses	
Immersive Research Environments	
Ensuring Data Integrity and Compliance	
Comprehensive Understanding of Drug Impact	
Biosynthesis and Customized Biological Systems	
REFERENCES	
CHAPTER 3 ARTIFICIAL INTELLIGENCE ASSISTED TEACHING AND LEARNING A	
RESEARCH OF ENVIRONMENTAL SCIENCES	80
Tahmeena Khan, Priya Mishra, Kulsum Hashmi, Saman Raza, Manisha Singh,	
Seema Joshi and Abdul Rahman Khan	
INTRODUCTION	
Generative AI in Education	82
AI In Teaching, Learning and Academic Achievement	
AI-Based Tools and Methodologies in Environmental/Geoscience Teaching	
Different AI Techniques Used in Environment and Geosciences-Based Research	95
Hazard Identification	96
Risk Assessment	96
Risk Evaluation	97
Decision Making	97
Earthquakes	97
Volcano	97
Landslide	
Rainfall	
Cyclones	
Meteorological Drought	
Wildfire	
Dust storm	99

Anthropogenic Air Pollutants
AI in Biosphere
Chat GP and Environmental Science
CHALLENGES IN AI IN ENVIRONMENTAL SCIENCE BASED RESEARCH
Choosing a Suitable Model
Training Optimization
Data Preparation
Ethical Issues
CONCLUDING REMARKS
REFERENCES
IAPTER 4 INTEGRATING AI APPROACHES IN TEACHING-LEARNING ASSOCIAT
TH THE MITIGATION OF AIR POLLUTION: A COMPREHENSIVE ANALYSIS
Rahila Rahman Khan, Ahmad Faiz Minai and Rushda Sharf
INTRODUCTION
OVERVIEW OF THE CURRENT STATE OF AIR POLLUTION AND ITS IMPACT
APPLICATIONS OF AI IN ENVIRONMENTAL CHALLENGES
Environmental Monitoring
Climate Modeling
Biodiversity Conservation
Renewable Energy
POTENTIAL OF AI IN ADDRESSING AIR POLLUTION
Data Analysis and Prediction
Source Identification
Early Warning Systems
Policy Formulation
PROBLEMS WITH CONVENTIONAL AIR QUALITY MONITORING TECHNIQUES
Restricted Coverage
Temporal Limitations
High Installation and Maintenance Costs
Data Timeliness
AI-BASED AIR QUALITY MONITORING
Remote Sensing and Satellite Technology
Integration of Satellite Data
AI Algorithms for Data Analysis and Interpretation
Sensor Networks and IoT Devices
Deployment of Smart Sensors
Machine Learning for Sensor Data Analysis
UTILIZING AI FOR TIMELY INFORMATION
AI TECHNIQUES FOR IDENTIFYING AND QUANTIFYING POLLUTION SOURCE
Data Fusion and Integration
Chemical Mass Balance Models
Source Separation Algorithms
INCORPORATING AI INSIGHTS INTO CITY PLANNING FOR POLLUTION
CONTROL
Zoning and Land Use Planning
Traffic Management
Emission Reduction Strategies
AI AND POLICY IMPLEMENTATION
OVERCOMING CHALLENGES IN POLICY IMPLEMENTATION
PUBLIC AWARENESS AND ENGAGEMENT

FUTURE INNOVATIONS AND RESEARCH DIRECTIONS	
CONCLUDING REMARKS	
REFERENCES	12
CHAPTER 5 APPLICATIONS OF NEURAL NETWORK IN PHYSICS: COSMO	LOGY AND
MOLECULAR DYNAMICS	
Vivekanand Mohapatra, Dhruv Agrawal and Shubhamshree Avishek	1.
INTRODUCTION TO ML AND NEURAL NETWORK	1
MACHINE LEARNING IN 21-CM COSMOLOGY	
Differential Brightness Temperature	
Challenges in Observational Cosmology	
Modelling the Foreground Signal	
Modeling the Differential Brightness Temperature	
Application of ANN in Cosmology	
Basic Architecture of ANN	
Parameter Estimation using ANN	
INTRODUCTION TO MOLECULAR DYNAMICS SIMULATIONS	
Recurrent Neural Networks	
Understanding Sequential Data Processing in RNNs	
Integration of RNNs with Physics	
CONCLUDING REMARKS	
REFERENCES	1
CHAPTER 6 ROLE OF ARTIFICIAL INTELLIGENCE IN TEACHING AND LE	ARNING
CHEMICAL SCIENCES	1
Shahla Tanveer, Mariyam Tanveer and Ayesha Tanveer	
INTRODUCTION	
CHEMICAL REPRESENTATION OF ATOMS AND MOLECULES IN COM UNDERSTANDABLE FORMAT	
Molecular Graph Representation	
Simplified Molecular Input Line Entry System (SMILES)	
InChi	
APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN CHEMICAL SCIEN	
Retrosynthesis	
Reactant Selection	
Template Selection	
Prediction of Reaction Outcomes	
Molecular Designing	
Simulator	
Evaluator	
Constraints	
Specifications	
GP (Genetic Programming)	
Visualizer	
Visualizer Control Interface	
Properties for Electronic Data	
Properties for Electronic Data Pharmaceutical Applications	
Reactive Properties and Catalyst Optimization	
Structure and Docking Ability	
Molecular Property Prediction	
Benefits of Integrating Generative AI in Chemistry Learning and Teaching	
Benefits of Integrating Generative At in Chemistry Learning and Leaching	1

Enhanced Student Involvement	162
Instantaneous Answers and Assistance	162
Customised Learning	162
Promotion of Critical Thinking	
Access to Extra Learning Resources	162
Facilitation of Continuous Learning	163
Reinforcement of Essential Knowledge	163
Supplementing Limited Resources	
Role of ChatGPT in Promoting Student Engagement and Active Learning	
Interactive Conversations	
Instant Response and Feedback	
Scaffolded Learning	163
Fostering Curiosity and Inquiry	
Exploratory Learning	
Adaptable Learning Environments	
Active Problem-Solving	164
Fostering Discussion and Collaboration	
CHALLENGES AND LIMITATIONS	
Underdeveloped Technologies	164
Lack of AI Skills	
Inadequate Data	
Trust and Transparency Concerns	
Uncertain ROI	
Data Bias	
Limited Generalisation	165
High Computing Requirements	
Ethical Concerns	
Integration Challenges	
FUTURE PROSPECTS	
Accelerated Medication Discovery	
Precision Medicine	
Green Chemistry	
Material Design and Discovery	166
Automation and Robots	
Integration of Big Data	
CONCLUDING REMARKS	
REFERENCES	
CHAPTER 7 AI TOOLS FOR TEACHING-LEARNING CHEMISTRY	
Saman Raza, Satya, Tahmeena Khan and Manisha Singh	
INTRODUCTION	173
TYPES OF AI	174
GENERATIVE AI	
APPLICATIONS OF AI IN CHEMISTRY	176
Prediction of Chemical Reactions	
Drug Design	
Material Design	
Others	
AI POWERED TOOLS AND APPLICATIONS FOR TEACHING AND LEARNING	
CHEMISTRY	182
Tutoring Systems using AI	

	ng Platforms
	Homework Solver
	mistry Assistant
	MINE THE INFLUENCE OF AI IN LEARNING CHEMISTR
	ISING AI FOR CHEMISTRY EDUCATION
	CHALLENGES
	ARKS
	MATION IN THE WORLD OF COMMERCE AND ECONOM
	a Tandon and Tarang Mehrotra
	cs
	ion-Making
	on
	ency
	;
	S
·	
	nthesizing Key Findings from Existing Research
	in Understanding AI's Impact on Commerce and Economics
AI IN ANALYTICS A	ND DECISION-MAKING
	IS
	tics
	Processes
	ATIONS OF AI
	ncement
Labour Dynamics	
	RENT BIASES IN AI MODELS
Gender Bias	
Biases in Labor M	arkets
Policy Bias	
	OCESSES
	on for Holistic Representation
	parency: Unveiling the Black Box
	Evaluation: The Lifeline of Bias Rectification
Stakeholder Colla	boration: A Collective Approach
	ARKS
REFERENCES	
	MING ENGLISH PEDAGOGY WITH ARTIFICIAL
	FE TO ENHANCED LANGUAGE LEARNING
Leena Rajak, Sangeeta (
What is Artificial	Intelligence (AI)?

VOLUTION PROCURED BY GENERATIVE AI IN THE FIELD OF EDUCATIO English Language Education Technology in Language Teaching Online Language Learning Platforms Language Learning Apps Virtual Reality (VR) and Augmented Reality (AR) Online Tutoring and Video Conferencing Digital Language Resources Interactive Whiteboards and Smartboards ANGUAGE LEARNING MANAGEMENT SYSTEMS (LMS) Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Technology in Language Teaching Online Language Learning Platforms Language Learning Apps Virtual Reality (VR) and Augmented Reality (AR) Online Tutoring and Video Conferencing Digital Language Resources Interactive Whiteboards and Smartboards ANGUAGE LEARNING MANAGEMENT SYSTEMS (LMS) Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Online Language Learning Apps Language Learning Apps Virtual Reality (VR) and Augmented Reality (AR) Online Tutoring and Video Conferencing Digital Language Resources Interactive Whiteboards and Smartboards ANGUAGE LEARNING MANAGEMENT SYSTEMS (LMS) Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Processing (NLP) Adaptive Assessment 24/7 Availability
Language Learning Apps Virtual Reality (VR) and Augmented Reality (AR) Online Tutoring and Video Conferencing Digital Language Resources Interactive Whiteboards and Smartboards ANGUAGE LEARNING MANAGEMENT SYSTEMS (LMS) Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Processing (NLP) Adaptive Assessment 24/7 Availability
Virtual Reality (VR) and Augmented Reality (AR) Online Tutoring and Video Conferencing Digital Language Resources Interactive Whiteboards and Smartboards ANGUAGE LEARNING MANAGEMENT SYSTEMS (LMS) Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Online Tutoring and Video Conferencing Digital Language Resources Interactive Whiteboards and Smartboards ANGUAGE LEARNING MANAGEMENT SYSTEMS (LMS) Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Processing (NLP) Adaptive Assessment 24/7 Availability
Digital Language Resources Interactive Whiteboards and Smartboards ANGUAGE LEARNING MANAGEMENT SYSTEMS (LMS) Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Processing (NLP) Adaptive Assessment 24/7 Availability
Interactive Whiteboards and Smartboards ANGUAGE LEARNING MANAGEMENT SYSTEMS (LMS) Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Processing (NLP) Adaptive Assessment 24/7 Availability
ANGUAGE LEARNING MANAGEMENT SYSTEMS (LMS) Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Speech Recognition Technology Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Educational Software and Apps Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Social Media and Online Communities Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Virtual Assistants for Language Learning Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Intelligent Tutoring Systems Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Natural Language Processing Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Gamification and Interactive Learning Accessibility and Inclusivity The Role of Teachers The Future of English Language Education OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Accessibility and Inclusivity
The Role of Teachers
The Future of English Language Education
OLE OF AI IN ENGLISH AND LANGUAGE LEARNING Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment
Personalized Learning Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment
Immediate Feedback Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Enhanced Engagement Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Accessibility Language Analysis Natural Language Processing (NLP) Adaptive Assessment
Language Analysis Natural Language Processing (NLP) Adaptive Assessment
Natural Language Processing (NLP) Adaptive Assessment 24/7 Availability
Adaptive Assessment
24/7 Availability
Data-Driven Insights
Language Generation
HALLENGES IN THE IMPLEMENTATION OF AI TECHNOLOGY IN LANGU
EARNING
Access and Equity
Quality of Content
Data Privacy and Security
Lack of Personalization Understanding
Integration with Traditional Pedagogy
Ethical Considerations
User Engagement and Motivation
Cost of Implementation
Adaptability and Continuous Improvement
Overreliance on Technology
UTURE SCOPE
ONCLUDING REMARKS
EFERENCES
TED 10 DEVOLUTIONIZINO LEADNING LANDOGADEO, UNI EAQUINO TH
TER 10 REVOLUTIONIZING LEARNING LANDSCAPES: UNLEASHING THE TIAL OF AI IN THE REALM OF ACADEMIC RESEARCH

INTRODUCTION	243
ACADEMIC RESEARCH	243
THE ADVANCEMENT OF AI IN ACADEMIC RESEARCH IN THE 21 ST CENTURY 2	244
ROLE OF AI IN REVOLUTIONIZING ACADEMIC RESEARCH	245
Using AI Techniques to Review the Literature and Gain Research Knowledge	
AI in Writing Research Hypothesis	
AI in Academic Writing	
Applying AI to Data Analysis	
Recommendation System	
NAVIGATING THE RESEARCH JOURNEY WITH ARTIFICIAL INTELLIGENCE:	
	247
Define Research Objectives	
Literature Review	
	249
	249
Data Preprocessing	
	249
	249
	249
	249
	249
5 1	250
	250 250
	250 250
KEY ARTIFICIAL INTELLIGENCE TECHNIQUES EMPLOYED IN DATA ANALYSIS	-50
	252
Natural Language Processing (NLP)	
	254
Computer Vision	
Deep Learning	
Predictive Analytics	
Reinforcement Learning	
Clustering and Classification	
Blockchain for Research Integrity	
DIVERSE AI TOOLS FOR EMPOWERING ACADEMIC RESEARCH	
NLTK (Natural Language Toolkit)	
SpaCy	
ChatGPT and GPT-3	
TensorFlow and PyTorch	
Scikit-learn	
Zotero and Mendeley	
Slack and Microsoft Teams	
	257 257
•	257 257
-	257 257
	257 258
	238 258
1	258
6 6	258 258
	230 259
Improving Educational Outcomes	-39

Addressing Educational Inequality	259
A COMPREHENSIVE EXAMINATION OF CHALLENGES IN INTEGRATING	
ARTIFICIAL INTELLIGENCE INTO ACADEMIC RESEARCH	260
Data Quality and Availability	
Interpretability	
High Computational Costs	
Lack of Standardization	
Lack of Technical Expertise	
Ethical Considerations in Using AI in Academic Research	
Data Privacy	
Algorithmic Bias	
Equity and Access	
CONCLUDING REMARKS	
REFERENCES	
CHAPTER 11 FUTURE TRENDS AND INNOVATIONS IN ARTIFICIAL INTELLIGENC Samiya Farooq and Pooja Mishra	
INTRODUCTION	
Stages of Artificial Intelligence	
THEORETICAL BACKGROUND	
AI and Education	
Education for Understanding AI	
The Use of AI in Education	
Model Framework of Educational Landscape	
REASONS TO ADDRESS ARTIFICIAL INTELLIGENCE IN EDUCATION	
E-LEARNING TRENDS	272
Google Classroom	
Collaborative Learning	273
MOOCs	273
Blended Learning	
Gamification	
TECHNOLOGIES WITH AI	274
Chatbots	274
Virtual Reality	274
Learning Management System	275
FUTURE TRENDS OF AI	275
Personalized Learning	275
Adaptive Learning Systems	276
Chatbots and Virtual Assistants	276
Gamification and AI	276
AI in Grading and Assessment	276
Predictive Analytics for Student Success	276
AI AS A PROMISING TECHNOLOGY TO SUPPORT THE EDUCATIONAL PROCE	
POLICIES FOR AI IN EDUCATION	277
AI ENABLES ADAPTIVITY IN LEARNING	279
INDIAN EDUCATION SYSTEM AND ARTIFICIAL INTELLIGENCE	280
ARTIFICIAL INTELLIGENCE: PROMISING APPLICATIONS AND POTENTIAL	
EFFECTIVENESS	281
Personalized Learning Opportunity	
Delivery of Quality Content	
Remote Learning	
-	

Curriculum Upgradation	283
Droupouts Management	
Assessment Grading	
Research Activities	
CONCLUDING REMARKS	283
REFERENCES	284
SUBJECT INDEX	288

FOREWORD I

I feel immense pleasure to write a Foreword to the book titled "*Artificial Intelligence: A Multidisciplinary Approach towards Teaching and Learning.*" As we move further into the 21st century, the role of artificial intelligence (AI) in education is becoming increasingly important. In this book, the authors explore the ways in which AI can be used to enhance and support the teaching and learning process. They provide a comprehensive overview of the latest research and developments in this field and offer practical advice for educators looking to incorporate AI into their teaching practice. The authors are experts in their discipline and are full of bright ideas on how the field of AI can be infused into their discipline, and their insights are invaluable for anyone interested in this topic. They provide a clear and concise overview of the ways in which AI can be used to support individualized learning, provide diagnostic feedback, and improve teaching practice. They also address the philosophical perspectives associated with the use of AI in education.

This book is an important contribution to the field of education, and I am confident that it will be of great interest to educators, policymakers, and researchers alike. It provides a timely and insightful analysis of the ways in which AI is transforming the teaching and learning process, and offers practical guidance for those looking to incorporate AI into their own practice. I highly recommend this book to anyone interested in the future of education and the role that AI will play in shaping it.

> Umesh Chandra Vashishtha Department of Education University of Lucknow Lucknow-Uttar Pradesh India

FOREWORD II

In the dynamic intersection of Artificial Intelligence (AI) and education, the field of chemical sciences is undergoing a remarkable transformation. This book provides an insightful exploration of how AI is reshaping both pedagogy and research in different disciplines. It delves into AI's role in enhancing learning experiences, accelerating research, and presenting new methodologies for understanding complex phenomena.

The authors bring to light the profound implications of AI applications, from personalized education paths to innovative solutions in different fields. They present a nuanced discussion on the potential and challenges of integrating AI, emphasizing the need for ethical considerations and the continued role of educators in guiding learning.

As AI becomes increasingly embedded in educational practices, its potential to enrich and transform learning is immense. This book invites readers to reflect on the future of education, the ethical deployment of technology, and the exciting possibilities at the nexus of AI and various educational streams. Let this be a starting point for educators, students, and researchers to navigate and contribute to the evolving landscape of AI in education.

Omid Ameri Sianaki Information Systems Management College of Arts, Business, Law, Education and IT Melbourne, Australia

PREFACE

As we stand on the brink of the Fourth Industrial Revolution, AI has revolutionized and acted as a transformative force in redefining and reshaping industries, economies, and perhaps most significantly, education. The landscape of education is positioned for a paradigm shift with the infusion of AI. This book delves into the absorbing connection of AI and the teachinglearning process, exploring this constantly evolving association that has the potential to impact educators and learners in a way that is productive for them. The book is a compilation of 11 chapters from the contribution of different experts in their areas and therefore covers a rich account of insights, new frontiers, and collaboration across disciplines. Each chapter is constructed to be self-contained, permitting readers to dive in and out as per their own understanding.

The book begins with an introduction to AI, its roots in philosophy, its application in different disciplines, and most importantly an analysis of AI from the perspective of philosophy. The subsequent chapters will cover a spectrum of topics, which are constructed in a way that each chapter draws upon insights from various fields including biological science, physical sciences, mathematics, languages, environmental science, bio-informatics, chemical science, education, and research. The book examines the theoretical underpinnings of AI-assisted teaching-learning in different disciplines, explores the latest technological advancements, and offers practical strategies for integrating AI into the classroom. The chapters delve deeper, delivering a comprehensive in-depth analysis of the multi-faceted connection between AI and the teaching-learning process of different disciplines.

Our aim is to provide a rich tapestry of insights to educators, researchers, policymakers, and students, while encouraging cross-disciplinary dialogue and collaboration. We hope to empower stakeholders to harness the potential of technology while addressing the challenges it presents by fostering a deeper understanding of AI's impact on teaching and learning. This book would be useful for students, teachers, researchers, and academicians who look forward to the amalgamation of AI and education.

As the editors of this multidisciplinary book, we would like to thank the contributing authors for their time and expertise. We also want to thank the readers whose curiosity and commitment to advancing education through technology drive our ongoing investigation of this fascinating intersection.

Tahmeena Khan Department of Chemistry Integral University Lucknow, U.P., India

Manisha Singh Department of Education Integral University Lucknow, U.P., India & Saman Raza Department of Chemistry Isabella Thoburn College Lucknow, U.P., India

List of Contributors

Ayesha Tanveer	College of Engineering & Science, Victoria University, Sydney Campus, Australia
Ahmad Faiz Minai	Department of Electrical Engineering, Integral University, Lucknow, U.P., India
Abdul Rahman Khan	Department of Education, Integral University, Lucknow, U.P., India
Arbind K. Jha	Indra Gandhi National Open University, New Delhi, India
Apoorva Tandon	B.Tech Computer Science KIET Group of Institution, Ghaziabad, India
Chanda Hemantha Manikumar Chakravarthi	Vignan's Foundation for Science, Technology and Research, Guntur, A.P., India
Dhruv Agrawal	Department of Physics, National Institute of Technology Meghalaya, Shillong, Meghalaya-793003, India
Gunjan Rautela	State Council of Education Research and Teaching, Lucknow, U.P., India
Kulsum Hashmi	Department of Chemistry, Isabella Thoburn College, Lucknow, U.P., India
Leena Rajak	Department of Education, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, U.P., India
Mariyam Tanveer	Aston University, Birmingham, United Kingdom
Manisha Singh	Department of Education, Integral University, Lucknow, U.P., India
Nidhi Mishra	Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
Pooja Mishra	Department of Commerce, Isabella Thoburn College, U.P., India
Priya Mishra	Department of Chemistry, Isabella Thoburn College, Lucknow, U.P., India
Rahila Rahman Khan	Department of Environmental Science, Integral University, Lucknow, U.P., India
Rushda Sharf	Department of Environmental Science, Integral University, Lucknow, U.P., India
Samiya Farooq	Department of Business Administration, Isabella Thoburn College of Professional Studies, U.P., India
Saman Raza	Department of Chemistry, Isabella Thoburn College, Lucknow, U.P., India
Seema Joshi	Department of Chemistry, Isabella Thoburn College, Lucknow, U.P., India
Shubhamshree Avishek	Department of Mechanical Engineering, National Institute of Technology Meghalaya, Shillong, Meghalaya-793003, India
Shahla Tanveer	Department of Chemistry, Integral University, Lucknow, U.P., India
Satya	Department of Chemistry, Isabella Thoburn College, Lucknow U.P., India
Sangeeta Chauhan	Department of Education, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, U.P., India
Sonu Bara	Department of Education, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, U.P., India

Tarang Mehrotra	INMATEC Institute of Ghaziabad, Ghaziabad, India
Umang Tandon	Department of Commerce, Isabella Thoburn College, Lucknow, U.P., India
Viswajit Mulpuru	Vignan's Foundation for Science, Technology and Research, Guntur, A.P., India
Vivekanand Mohapatra	Department of Physics, National Institute of Technology Meghalaya, Shillong, Meghalaya-793003, India
Waseem Zahra	Department of Teachers' Education, Mahila Vidyalaya Degree College, Lucknow U.P., India

The Evolution of Artificial Intelligence from Philosophy to New Frontier

Manisha Singh^{1,*}, Arbind K. Jha², Tahmeena Khan³ and Saman Raza⁴

¹ Department of Education, Integral University, Lucknow, U.P., India

² Indra Gandhi National Open University, New Delhi, India

³ Department of Chemistry, Integral University, Lucknow, U.P., India

⁴ Department of Chemistry, Isabella Thoburn College, Lucknow, U.P., India

Abstract: In an era characterized by significant technical advancements in the field of Artificial Intelligence (AI), it is crucial to comprehend AI by considering its origins and future prospects. This chapter examines the historical origins of artificial intelligence (AI) and explores its relationship with philosophy. It also delves into the significant inquiries that philosophy poses regarding AI, encompassing its metaphysical, epistemological, and axiological dimensions. The chapter additionally provides an overview of the historical context of artificial intelligence (AI), its various manifestations, its theoretical underpinnings, and a framework that establishes a correlation between humans and machines, referred to as "Human-machine Teamwork." The chapter also explores the importance of AI in several fields and illuminates emerging areas where artificial intelligence is also examined, giving rise to significant inquiries. The objective of this chapter is to offer comprehensive knowledge and a fresh viewpoint on the examination of AI by its users, producers, and designers.

Keywords: Artificial Intelligence, Artificial wisdom, Education, Human wisdom, New frontiers, Philosophical considerations.

INTRODUCTION

AI is often thought of as "a system's ability to interpret external data correctly, to learn from such data, and to use that learning to achieve specific goals and tasks through flexible adaptation" [1]. Artificial Intelligence (AI) refers to the field of study and development focused on creating intelligent computers. Intelligence, in this context, is the ability of an entity to operate effectively and with anticipation within its surroundings [2]. AI, or artificial intelligence, refers to the intelligence

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers

^{*} Corresponding author Manisha Singh: Department of Education, Integral University, Lucknow, U.P., India; E-mail: singh.manisha123@gmail.com

exhibited by machines, as opposed to the natural intellect exhibited by people. The term AI is commonly employed to refer to machines that imitate human cognitive abilities, including learning, comprehension, logical thinking, and problem-solving [3].

THE HISTORY OF ARTIFICIAL INTELLIGENCE (AI)

The history of AI extends further than commonly acknowledged, encompassing various disciplines such as science and philosophy dating back to ancient Greece [4]. However, the term "artificial intelligence" was formally coined by John McCarthy in 1956 at the first academic meeting dedicated to the advancement of intelligent machines. Russel and Norvig [5] described it as the "genesis of artificial intelligence." However, the quest to determine if machines may genuinely exhibit cognitive abilities commenced long before that. In his influential publication, Vannevar Bush presented a concept that enhances individuals' knowledge and comprehension [6]. Five years later, Alan Turing authored a paper discussing the concept of robots being capable of emulating human beings and exhibiting intelligent behaviors, such as playing Chess [7].

"Is it possible for machines to possess the ability to think?" Alan Turing posed this problem in his renowned article "Computing Machinery and Intelligence" [8]. In order to address this question, he believes it is necessary to provide a clear definition of thinking. Nevertheless, due to the arbitrary nature of thought, it proves challenging to precisely define or describe it. Turing subsequently introduced the Turing Indirect Method, which is an approach for assessing the capacity of a machine to engage in thinking. This method examines whether a machine can exhibit intellect that is indistinguishable from that of a human. When a machine successfully completes a test, it is classified as possessing artificial intelligence (AI). In the 1980s, the revival of artificial intelligence (AI) was propelled by the development of systems by multiple research institutes and universities. These systems were able to generate a set of essential rules based on expert knowledge, which in turn helped non-experts in making precise decisions. They are referred to as "expert systems." Stanford University's MYCIN and Carnegie Mellon University's XCON are two prominent instances. The expert system utilized expert knowledge to generate logical rules, facilitating its ability to tackle practical issues for the initial instance. The comprehension that enhanced the intelligence of machines served as the foundation for AI research throughout this period. However, as time passed, the expert system became apparent with several disadvantages, such as privacy concerns, limited flexibility, limited variety, expensive maintenance expenses, and other issues. Concurrently, the Japanese government allocated substantial financial resources to the Fifth Generation Computer Project ultimately fell short of accomplishing the majority

of its initial objectives. Simultaneously, the Japanese government devoted significant financial resources towards the Fifth Generation Computer Project, which eventually fell short of attaining the majority of its initial objectives.

In 2006, Geoffrey Hinton and his colleagues achieved significant advancements in the field of artificial intelligence (AI) by introducing an innovative method for building neural networks with increased depth and a solution to address the problem of gradient vanishing during the training process. Consequently, there has been a resurgence in AI research, leading to the emergence of deep learning (DL) algorithms as a very active field within the realm of AI studies. Deep learning (DL) is a distinct subfield within the broader domain of machine learning (ML) that employs neural networks with multiple layers and places emphasis on the acquisition of representation knowledge. On the other hand, ML is a broader field within artificial intelligence (AI) where computers or programs may learn and acquire intelligence without the need for human interaction [9].

Langley emphasizes that one of the first concepts of AI was centered on "highlevel cognition" [10]. AI lacks the ability to recognize concepts, perceive objects, or perform complex motor skills like most animals. However, it is designed with the capacity to engage in multi-step reasoning, comprehend natural language, create innovative artifacts, generate new plans to achieve goals, and even reason about its own reasoning. The term "strong AI" [11] is used to describe a form of artificial intelligence that exhibits a level of intelligence comparable to that of a human being. Another branch of AI, known as weak AI, differs in its approach to rule adherence. This pertains to how robots interact with rules. Rule-based decision-making is associated with narrow or weak artificial intelligence (AI), while rule-following decision-making is associated with general or strong AI. Wolfe argues that Strong AI entails computers creating and adhering to their own set of rules, a capability that is currently unattainable [12]. The main methodology focused on strong artificial intelligence (AI) is symbolic reasoning, which posits that computers are not merely arithmetic calculators but rather versatile symbol manipulators. According to Newell and Simon's physical symbol system concept, intelligent behavior seems to necessitate the capacity to understand and alter symbolic structures [13]. Although this technique initially displayed potential, numerous disciplines of AI have subsequently abandoned it because of its inherent complexity and the limited advancements achieved in the 21st century. The timeline and feasibility of achieving strong AI are yet uncertain [14]. AI is described by two dimensions: one pertains to the process and reasoning part, while the other focuses on the behavior aspect. Both components of AI, namely thinking, problem-solving, and understanding, as well as behavioral changes, have equal significance. Table 1 illustrates four categorizations of the definition of AI [3].

Artificial Intelligence and Bioinformatics: A Powerful Synergy for Drug Design and Discovery

Chanda Hemantha Manikumar Chakravarthi¹, Viswajit Mulpuru¹ and Nidhi Mishra^{2,*}

¹ Vignan's Foundation for Science, Technology and Research, Guntur, A.P., India

² Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India

Abstract: This chapter will emphasize the advances in artificial intelligence and bioinformatics to accelerate the drug design and discovery process. The field of artificial intelligence (AI) aims to develop machines and systems that can perform tasks that require human intelligence, such as learning, reasoning, and decision-making. One of the domains where AI has been applied is bioinformatics and computer-aided drug designing (CADD). Bioinformatics is an interdisciplinary field that uses computational methods to analyze biological data, such as genomic, proteomic sequences and structures, and gene expressions. CADD is the process of using computational tools to design and optimize new drugs or drug candidates based on their molecular properties and interactions with biological targets. AI can improve both bioinformatics and CADD by providing novel methods for data analysis, pattern recognition, feature extraction, prediction, optimization, and simulation. In this book chapter, we will review the current state-of-the-art and future challenges of AI in bioinformatics and CADD. We will discuss how AI can help solve some of the key problems in these fields, such as data integration, data quality, data interpretation, data visualization, data mining, data modelling, data validation, and data discovery. We will also highlight some of the ethical, social, and legal implications of using AI in bioinformatics and CADD, such as data privacy, data security, data ownership, data sharing, data governance, data accountability, and data responsibility.

Keywords: Artificial Intelligence, Drug design, Drug discovery, Machine learning, Pharmacokinetics, PBPK, QSAR, Quantitative structure-activity relationship, Virtual screening.

^{*} Corresponding author Nidhi Mishra: Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India; E-mail: nidhimishra@iiita.ac.in

INTRODUCTION

Overview of Machine Learning

Machine learning involves the development of algorithms and models that enable computers to learn patterns from data without explicit programming. It leverages statistical techniques to empower systems to improve their performance on a specific task over time.

Supervised Learning

The algorithm is trained on a labelled dataset, where the input data is paired with the corresponding output.

Unsupervised Learning

The algorithm explores patterns and relationships within unlabelled data, uncovering hidden structures.

Reinforcement Learning

The model learns by interacting with an environment and receiving feedback in the form of rewards or penalties. In drug designing, machine learning plays a pivotal role by analyzing complex biological data, predicting molecular interactions, and assisting in the identification of potential drug candidates. Machine learning algorithms contribute to more efficient drug discovery processes, reducing time and costs associated with traditional methods [1, 2].

Importance of Drug Design

Drug design is a critical aspect of the pharmaceutical industry, aiming to develop effective and safe therapeutic compounds to treat various diseases. The process of drug design involves understanding the molecular mechanisms of diseases, identifying potential drug targets, and creating molecules that interact with these targets to modulate their activity [3].

Challenges in Traditional Drug Discovery

Traditional drug discovery methods often involve a trial-and-error approach, leading to lengthy and expensive processes with a high rate of failure. The advent of drug resistance, complex diseases, and the need for personalized medicine have underscored the importance of innovative approaches, such as those offered by machine learning in drug design. Machine learning applications in drug design bring efficiency by analysing vast datasets, identifying patterns, and predicting

28 Artificial Intelligence: A Multidisciplinary Approach

Chakravarthi et al.

molecular interactions. Accelerating the drug discovery process through computational methods helps researchers prioritize potential drug candidates, reducing the time and resources required for experimental validation. Efficient drug design has a direct impact on patient outcomes, providing new and more effective treatments for various medical conditions. Machine learning contributes to the development of targeted therapies, minimizing adverse effects and enhancing the overall efficacy of pharmaceutical interventions [4].

DATA ANALYSIS AND PREPROCESSING

Utilizing Biological Databases

Biological databases play a pivotal role in advancing drug design by providing a wealth of information related to molecular structures, interactions, and biological activities. Integrating data from these databases is instrumental in leveraging machine learning algorithms for more effective drug discovery and development [5].

PDB is a repository of experimentally determined three-dimensional structures of biological macromolecules. Utilizing PDB data allows researchers to understand the spatial arrangement of proteins and other biomolecules, aiding in the identification of potential drug targets. Algorithms can be trained on PDB data to recognize structural motifs, predict binding sites, and understand the conformational changes associated with ligand binding, contributing to virtual screening and molecular docking studies.

PubChem is a comprehensive database of chemical compounds and their biological activities. It provides a vast collection of chemical information, including compound structures, bioassay data, and references. Machine learning models can analyze PubChem data to predict the bioactivity of compounds, identify structure-activity relationships (SAR), and prioritize molecules for experimental validation based on their potential therapeutic relevance [6].

DrugBank contains detailed information about drug targets, drug interactions, and the chemical structures of approved drugs. Integrating DrugBank data aids in the identification of known drug-target associations and facilitates drug repurposing efforts. Algorithms trained on DrugBank data can predict potential drug-target interactions, assist in virtual screening, and contribute to the identification of novel therapeutic uses for existing drugs through repurposing.

Genomic and Proteomic Databases containing genomic and proteomic information provide insights into the genetic basis of diseases and the molecular pathways involved. Understanding these pathways is crucial for target

Artificial Intelligence Assisted Teaching and Learning and Research of Environmental Sciences

Tahmeena Khan^{1,*}, Priya Mishra², Kulsum Hashmi², Saman Raza², Manisha Singh³, Seema Joshi² and Abdul Rahman Khan¹

¹ Department of Chemistry, Integral University, Lucknow, U.P., India

² Department of Chemistry, Isabella Thoburn College, Lucknow, U.P., India

³ Department of Education, Integral University, Lucknow, U.P., India

Abstract: Artificial intelligence (AI) has become the latest tool in facilitating the computer-assisted teaching-learning process. The AI-based teaching system is viewed as a personalized one-on-one student-teacher interaction. AI in education is becoming more common and has received a lot of attention recently. This growing interest is likely to have a big impact on higher education. Many educators and educational authorities are considering integrating AI topics into K-12 curricula, to provide school students with insights into these evolving technologies. Recent studies on AI curricula have mostly concentrated on identifying which AI tools are better for student learning and what subject matter knowledge and abilities need to be taught. Since the goal of these studies was to promote information, they designed their curriculum with appropriate content, effective delivery methods, and strategies to increase students' competency levels. Environmental education seeks to explore natural processes and foster the development of skills and attitudes geared towards sustainability and the protection of the environment. Recently, AI has been widely used in geological, environmental, and related research. It can also assist in the exploration of energy resources and minerals. The use of AI in education teaching-learning and academic achievement has been elucidated in this chapter. This chapter also aims to explore the role of AI-assisted teaching of environmental sciences and how it impacts the overall learning experience. Understanding the role of AI in environmental sciences is very important as it can address crucial problems like climate change, early prediction of natural disasters, and many others. Currently, there is a need to develop accurate models at an affordable time and cost. Other than research, the implementation of AI in environmental education can lead to a change in students' aptitude and interest and can help in the development of sensitivity towards environmental protection.

Keywords: AI, Biosphere, Cyclones, Earthquakes, Teaching-learning, Tnvironmental education, Landslides.

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers

^{*} **Corresponding author Tahmeena Khan:** Department of Chemistry, Integral University, Lucknow, U.P., India; E-mail: tahminakhan30@yahoo.com

INTRODUCTION

The field of environmental education involves studying and comprehending interactions between humans and natural and artificial environments. There are many aspects and areas covered under the umbrella of environmental sciences, which include pollution studies, energy allocation and conservation, studies related to population, urban and rural planning, and technology development. In a broader sense, environmental education encompasses elucidation of the different interactions between humans and their surroundings inclusive of culture and physical environment [1]. It also cultivates the necessary skills in a student for decision-making and self-behaviour regulations related to environmental quality. Through the attainment of environmental education, a person acquires knowledge and skills to collectively solve environmental problems [2] like betterment of environmental quality and development of self-behavioural principles in case of occurrence of any natural disaster. For these obvious reasons, it becomes very important and pertinent to include environmental sciences as part of the curriculum at different educational levels to inculcate problem-solving ability on environmental issues. The holistic environmental science education includes the following key concepts [3].

i) Knowledge Concept: Refers to understanding the environment and its characteristics, concepts of pollution and its maintenance and remediation, and intelligent and sensible use of environmental resources.

ii) Affection Concept: Refers to the inculcation of concerns towards environmental protection, and appreciation, and development of environmental ethics and values.

iii) Technical Concept: Refers to the prevention of environmental pollution and management and conservation of environmental resources and environmental protection behaviours.

The teaching-learning process has become advanced with the computers and internet having a strong communication ability for automated instructions. AI has emerged as the newest aid in computer computer-assisted teaching-learning process. It is a system that combines human intelligence and behaviours within a computer, aiding in problem-solving and comprehending natural language through learning and reasoning [4]. AI-based teaching systems can stimulate teachers to help in the whole teaching process and also assess the learners's learning conditions [5]. The AI-based teaching system is considered a personalized one-on-one instructional interaction between the student and the teacher [6]. The advent of AI-based teaching systems has shifted learning to be more student-centric, offering individualized teaching-learning experiences and

electronic books. This chapter aims to explore the role of AI-assisted teaching of environmental sciences and how it impacts the overall learning experience.

Generative AI in Education

Generative AI is a type of AI that uses deep learning and machine learning methods to create new data. In contrast to conventional tasks like regression and classification, generative AI can independently create new data, such as music, text, and images. The generative model, which simulates the possible distribution of data and produces new data that is comparable to the original data, is an essential part of generative AI. Generative AI has diverse applications such as natural language processing, music, and image generation [7]. Generative AI is a promising technology that can generate original content like images, text, and sound. The application of GenAI in educational environments is gaining popularity and it presents a variety of benefits and challenges. This particular issue addresses the management and integration of GenAI in education, including opportunities, best practices, and ethics. The opportunity for GenAI in teaching is enormous. GenAI utilizes algorithms and data to generate innovative content that enhances traditional teaching methods, making learning experiences more personalized and interactive [8].

AI is commonly described as the emulation of human intelligence in machines, designed to replicate human thought processes and imitate their behaviours. It is employed in the context of machines exhibiting attributes associated with the human mind [9]. The recent development and proliferation of the education system using AI have introduced both possibilities and challenges to different scientific domains. Although some believe that integrating AI into robotics would lead to technological unemployment, it has allowed research to expand into previously unknown fields and brought ease of execution, notably in areas like medical diagnostics [10]. The incorporation of AI with the widespread use of real-time data (Big Data) is advocated as a means to enhance education by providing more personalized, adaptable, inclusive, and captivating learning experiences. To achieve these advantages, governments, educational institutions, and technology organizations have been proactively exploring the integration of AI tools and platforms to enhance the efficiency of educational system monitoring. This aims to make the monitoring process more efficient, reducing administrative burdens, and more effective by providing timely, accurate, and informative indicators compared to current educational practices [11].

The use of AI in education is increasingly prevalent and has garnered significant attention in recent years. The 2018 Horizon report [12] emphasizes AI and adaptive learning technologies as notable advancements in educational

Integrating AI Approaches in Teaching-Learning Associated with the Mitigation of Air Pollution: A Comprehensive Analysis

Rahila Rahman Khan^{1,*}, Ahmad Faiz Minai² and Rushda Sharf¹

¹ Department of Environmental Science, Integral University, Lucknow, U.P., India ² Department of Electrical Engineering, Integral University, Lucknow, U.P., India

Abstract: Pollution is a major hazard to ecosystems, human health, and the stability of the global climate. Acknowledging the shortcomings of traditional methods, this thorough examination investigates the incorporation of Artificial Intelligence (AI) as a revolutionary instrument for reducing air pollution. A summary of the current situation of air pollution is given in this chapter, with a focus on its significant effects. It provides an overview of AI's ability to address environmental issues and lays the groundwork for a full investigation of its uses. This chapter uses satellite technology, sensor networks, and remote sensing to demonstrate how AI is revolutionising air quality monitoring, predictive modelling, and early warning systems. It also emphasizes AI's ability to identify pollution sources, presenting methods for measuring pollution sources and incorporating AI findings into urban planning. It clarifies AI's critical role in influencing public involvement, awareness, and evidence-based policymaking. It provides examples of AI-driven air pollution solutions from around the world, together with best practices and insights into successful projects. It discusses privacy and equality issues as well as ethical issues related to AI in environmental monitoring. It also points the way for upcoming discoveries and lines of inquiry, enabling ongoing progress.

Keywords: Artificial Intelligence, Air pollution, remote sensing, satellite technology.

INTRODUCTION

Air pollution is a serious worldwide issue that has an impact on climate change, environmental sustainability, and public health. The complexity and scope of air pollution are too great for traditional techniques of monitoring and managing the problem, especially as urbanization and industries continue to grow [1]. Within

* Corresponding author Rahila Rahman Khan: Department of Environmental Science, Integral University, Lucknow, U.P., India; E-mail: E-rahilarkhan123@iul.ac.in

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers this framework, AI manifests as a revolutionary force, providing creative answers and perspectives to counteract the deleterious impacts of air pollution. AI which includes machine learning, data analytics, and sensor technologies, is revolutionizing our capacity to track, comprehend, and anticipate problems with air quality [2]. Through the use of AI, our goal is to investigate a wide range of applications, ranging from source identification and predictive modelling to realtime monitoring and policy advice.

This investigation explores the difficulties and moral dilemmas surrounding the use of AI in air pollution prevention in addition to evaluating the field's present stage of application. We aim to systematically analyze the possibilities, constraints, and future prospects of AI-driven solutions in creating a more hygienic and salubrious environment for future generations. Come along on this adventure with us as we explore the available AI solutions to reduce air pollution and work towards a resilient and sustainable future.

OVERVIEW OF THE CURRENT STATE OF AIR POLLUTION AND ITS IMPACT

Air pollution is a worldwide environmental problem mostly caused by toxic compounds found in the Earth's atmosphere as a result of human activity. The main pollutants that are released from sources like industrial facilities, automobile emissions, and agricultural operations are particulate matter, nitrogen oxides, sulphur dioxide, carbon monoxide, and volatile organic compounds. Air pollution poses a serious risk to people who have respiratory conditions, such as asthma, bronchitis, and chronic obstructive pulmonary disease (COPD) [3]. Heart Attacks, strokes, and hypertension are among the cardiovascular problems associated with pollution exposure. It is well established that certain air pollutants, such as formaldehyde and benzene, raise the risk of developing cancer [4].

Air pollution damages plant and animal life in habitats, which lowers biodiversity. Pollutants have the ability to accumulate on land and in bodies of water, which can have an impact on aquatic ecosystems and soil quality [5]. Methane and carbon dioxide are two examples of atmospheric pollutants that contribute to the greenhouse effect, which causes climate change and global warming. Both locally and globally, air pollution can impact precipitation and weather patterns, which in turn affects the climate [6].

APPLICATIONS OF AI IN ENVIRONMENTAL CHALLENGES

In a variety of fields, AI has shown to be a potent instrument for tackling environmental problems. Its uses are found in many different industries depicted in Fig. (1), such as:

Integrating AI Approaches

Environmental Monitoring

Artificial Intelligence is used to analyze massive volumes of data from sensors, satellites, and other sources in order to monitor environmental factors in real time, including deforestation, water quality, and air quality [7].

Climate Modeling

AI algorithms enhance climate models by processing complex data sets, improving accuracy in predicting climate patterns, and assisting in understanding the impacts of human activities on the environment [8].

Biodiversity Conservation

AI uses picture recognition and data analysis to help identify and track endangered species, which supports efforts to conserve biodiversity [9].

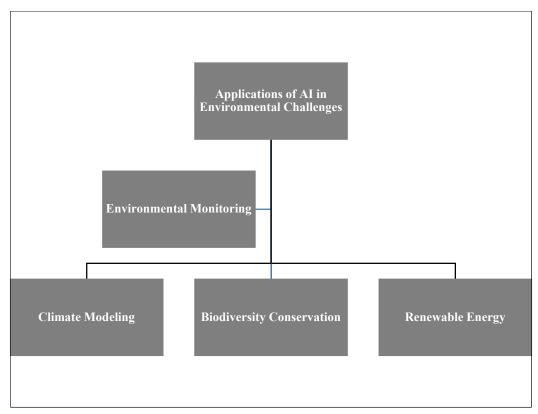


Fig. (1). Application of AI in different industries.

Applications of Neural Network in Physics: Cosmology and Molecular Dynamics

Vivekanand Mohapatra¹, Dhruv Agrawal^{1,*} and Shubhamshree Avishek²

¹ Department of Physics, National Institute of Technology Meghalaya, Shillong, Meghalaya-793003, India

² Department of Mechanical Engineering, National Institute of Technology Meghalaya, Shillong, Meghalaya-793003, India

Abstract: Understanding the underlying physics of a physical system at both the cosmological and molecular scales has been a focus of attention for decades. Modeling the system using ordinary and partial differential equations along with the Markov Chain Monte Carlo technique are the conventional methods being used. These methods have been proven to reconcile accurate results, however, they fail miserably when the physics is not completely known, which leads to the presence of a large number of free parameters in the model describing the system. Recently, conventional methods have been aided by the use of machine learning techniques to solve real-world problems, which include the use of artificial neural networks such as convolutional neural networks, generative adversarial networks, and random forests. The ability of these techniques to understand the complexity of a physical system and predict new physics solely from data has given a new edge to conventional methods. Their prevalent applications lie in parameter prediction, where available data is used to train a neural network model, and then physical quantities are predicted using the trained model. Classification is another fundamental aspect of machine learning that involves predicting the specific family or category to which the provided data pertains. These techniques find an essential place in physics, providing important insights into complex systems.

Keywords: Non-linear dynamics, Recurrent neural network, Reservoir computing, Transients.

INTRODUCTION TO ML AND NEURAL NETWORK

The history of machine learning that we know today is deeply rooted in the quest to simulate human intelligence. It has been a pivotal exploration ground for researchers for over half a century. From the perceptron developed by Frank

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers

^{*} Corresponding author Dhruv Agrawal: Department of Physics, National Institute of Technology Meghalaya, Shillong, Meghalaya-793003, India; E-mail: p22ph002@nitm.ac.in

Cosmology and Molecular Dynamics

Artificial Intelligence: A Multidisciplinary Approach 129

Rosenblatt in the 1950s to the boom and subsequent winter of Artificial Intelligence (AI) in the late 1980s, machine learning underwent a series of paradigm shifts [1]. The first concept of machine learning ever came into existence, was when a group of scientists proposed that machines can be programmed in a manner that can think rationally and make independent decisions [2]. In order to achieve such goals, certain methodologies were later developed that helped the machine to learn effectively. Eventually, these methodologies gained traction over time, and they evolved into machine learning and deep learning.

It was back in 1959 when Arthur Samuel coined the term machine learning when the term self-teaching computers was in the air [3]. Later in the year, with the idea of reinforcement learning, a model known as Cybertron was created in the early 1960s that was repeatedly trained for a prolonged period to recognize the pattern and assess incorrect decisions [4]. This led to the onset of the advancement of machine learning technology, and eventually, several resources were built to understand the patterns and algorithms associated as a whole. Although there was a gap witnessed between the 1960s and 1990s, it was only after the 2000s that there was a resurgence of machine learning, fueled by the confluence of the evolvement of big data, enhanced algorithms, and computational power [5]. Neural networks, inspired by the architecture of the human brain, emerged as the cornerstone of this renaissance, with deep learning models showcasing unprecedented capabilities in tasks ranging from image recognition to natural language processing.

Machine learning, neural networks, and deep learning all come under the concept of AI, as shown in Fig. (1). However, oftentimes, they are misunderstood as identical techniques. It is indeed necessary to bring out the distinct differences to understand the working principle of each individual concept.

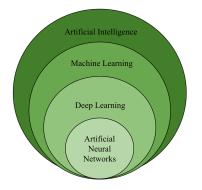


Fig. (1). Neural networks and Deep Learning as a subset of Machine Learning.

130 Artificial Intelligence: A Multidisciplinary Approach

Mohapatra et al.

It can be easily understood as machine learning being the overarching concept, neural network resembling a specific architecture that is primarily inspired by the human brain, and deep learning is a subset of machine learning designed to focus on deep neural networks. It is all about creating a system that can learn from data, reducing the need for manual feature engineering. The principle of machine learning works under three forms of learning and processing data, *i.e.*, Supervised, Unsupervised, and Reinforcement Learning. As the name suggests, supervised learning is a methodology where discrete instructions are given to the machine to make it learn a job. Labelled datasets are used where input data is mapped with its corresponding output response, and the algorithm is trained subsequently so that it can learn to map data correctly. It was the initial phase from which the main idea of machine learning was shaped, but it came up with certain situations that raised challenges and prompted a shift towards other forms of learning, especially unsupervised learning. A few of the key concerns that came up with supervised learning were limited labelled data, the subjectivity of the labelling, assessing dynamic data, and lastly, privacy concerns. The algorithm of unsupervised learning is based on unlabeled data seeking to build a relationship among the data without any explicitly specific guidance. This can efficiently work on limited data sets, refrain from supervision, and easily form relationships between the data. One of the primary problems of supervised learning with subjecting the label can be efficiently tackled with the clustering method of unsupervised learning that identifies the inherent pattern without needing the initial predefined labels [6]. Another form of learning on which machine learning is based is reinforcement learning, where an agent independently learns to make decisions by interacting with a particular environment. The feedback in the form of reward and penalty is assigned to the agent's action, and based on that, it learns to take corrective actions over time. So, the continuous process of re-evaluating the self and refining the strategy to make better decisions is what reinforcement learning is based on. A diverse array of algorithms are routinely employed to address quests of tasks and challenges. Among these algorithms, prominent methodologies include neural networks, linear regression, logistic regression, clustering, decision trees, and random forest. Each algorithm is distinguished by its unique characteristics, and its applicability is contingent upon the specific nature of the problem at hand.

Neural networks, being a crucial subset of machine learning, provide a solid framework that adapts to several tasks and extracts meaningful representations of the input features. Inspired by the biological neural networks, it works on 4 primary grounds: neurons, layers, connections, and activation functions. The most fundamental building blocks of the entire concept of neural networks are neurons, which are simply nodes that receive input, compute, and then return an output. These are then organized into layers and have a connection with the next layer, having neurons forming a network. This network consists mainly of an input layer

Role of Artificial Intelligence in Teaching and Learning Chemical Sciences

Shahla Tanveer^{1,*}, Mariyam Tanveer² and Ayesha Tanveer³

¹ Department of Chemistry, Integral University, Lucknow, U.P., India

² Aston University, Birmingham, United Kingdom

³ College of Engineering & Science, Victoria University, Sydney Campus, Australia

Abstract: Artificial Intelligence (AI) is revolutionizing our everyday tasks, and education has certainly not been left behind. AI harnesses technologies such as machine learning, natural language processing, and deep learning, to execute tasks and elevate our problem-solving capabilities. The infinite possibilities that arise due to interactions between atoms and molecules further leading to bond formation are nearly impossible for a human to comprehend. Thus, AI is playing a vital role in understanding chemistry by accelerating research, designing novel molecules, and optimizing processes. AI plays a diverse role, from assisting in drug discovery research to identifying new drug targets to supporting personalized learning experiences that aid students in their learning journeys. AI-powered adaptive learning system identifies a student's performance and tailor the learning requirements accordingly. Students receive real-time feedback and personalised content helping them to understand the concepts more easily. AI is being used to develop interactive simulations and customized learning programs to help students learn chemistry more efficiently. Virtual laboratories driven by AI provide a safe and reachable environment for hands-on experience. This allows students to be inquisitive about chemical reactions, molecular structures, and their spectroscopic analysis in a risk-free environment. Some examples include Chat GPT, which helps create a customized learning experience for students while helping them answer their queries, an AI-powered tutoring system known as Socratic, which helps the students learn chemistry concepts, and Molecules in Motion (an AI-powered simulation) to inspect the behaviour of molecules. This chapter discusses how the union of AI and chemical sciences has accelerated innovation in the field of chemistry and can further improve learning outcomes.

Keywords: Artificial Intelligence, Chat GPT, Chemistry, Drug discovery, Deep learning, Material science, Machine learning, Natural language processing, Problem-solving, Research, Generative AI, Socratic, Simulations, Tutoring system, Virtual laboratory.

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers

^{*} **Corresponding author Shahla Tanveer:** Department of Chemistry, Integral University, Lucknow, U.P., India; E-mail: shahla@iul.ac.in

INTRODUCTION

Over the past two decades, machine learning and artificial Intelligence have gained widespread use due to advanced algorithms and cost-effective technology [1]. Big Data and powerful data mining algorithms have led to significant changes in various industries, including biotechnology and pharmaceuticals, due to advancements in technology [2, 3]. Machine learning is revolutionizing chemistry by providing detailed insights into chemical systems, saving time, computer power, and materials needed for various experimental and theoretical investigations [4, 5]. Machine learning is utilized for identifying underlying structures and providing insightful chemical information with less data and experimentation than traditional research methods due to its quick learning speed and ability to uncover novel perspectives [6].

The integration of AI and computational technologies is revolutionizing chemistry education by enabling personalized learning and research opportunities [7, 8]. AI enhances chemistry education by adjusting the learning pace and material based on student behaviour and preferences, ensuring comprehensive comprehension before introducing new content, thereby enhancing the learning experience [9, 10]. Artificial Intelligence and computational technologies are revolutionizing chemistry education through adaptive tests, real-time feedback, and personalized learning, enabling educators to make data-driven judgments for quality instruction [11]. AI and computational technologies in chemistry teaching foster creativity and teamwork, enabling accurate prediction of molecule and material properties through sophisticated methods like quantum chemistry simulations [12, 13].

OpenAI's ChatGPT is a powerful natural language processing model that utilizes the transformer architecture and pre-trains on large amounts of text data [14 - 16]. OpenAI's ChatGPT is a significant AI innovation, significantly contributing to advancements in deep learning and natural language processing [17, 18]. There are varied views on AI chatbots like ChatGPT in education, with some educators being cautious and others embracing and integrating them into their teaching methods [19]. Teachers embrace remote learning for a tech-driven future, highlighting Google's "Bard" AI chatbot's competitiveness and its numerous educational applications that enhance academic results and quality [20, 21]. Education critics express concerns about ChatGPT, including cheating risks, unethical applications, and assessment effects, with cultural biases from Englishcentric data, and complex ethical issues in AI teaching [22, 23].

CHEMICAL REPRESENTATION OF ATOMS AND MOLECULES IN COMPUTER-UNDERSTANDABLE FORMAT

Traditional molecular portrayals utilize structure diagrams, but computer processing necessitates computer-interpretable forms with topological or spatial features [24, 25]. Three types of present representations include weighted graphs, vectors and tensors, and discrete representations like text, with common techniques including atomic coordinates, graph representations, SMILES, and InChI.

Molecular Graph Representation

The adjacency matrix A illustrated in Fig. (1) indicating bond presence between nodes in a molecular graph, uses a binary system (aij = 1 for bond, aij= 0 for no bond). Node identity is conveyed through a node features matrix X, and bond identity through an edge features matrix E, both with customizable feature encodings. While common, one-hot encoding is not mandatory, but note that these matrices are not compact, scaling with the square of the number of atoms [26].

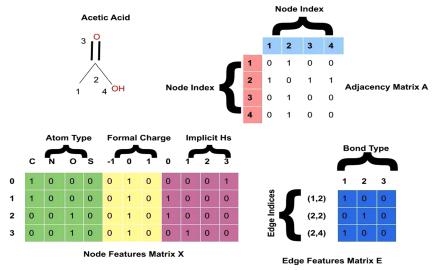


Fig. (1). SMILES Representation.

Molecular representations, particularly graphs, offer a 2D structure for 3D data, recording spatial information in edge features and node characteristics matrix. This feature surpasses linear notations and makes molecular subgraphs interpretable, distinguishing them from text notations like SMILES. Edge-specific information, like bond length, can be recorded in the edge features matrix (E) or node characteristics matrix (X) [27].

AI Tools for Teaching-Learning Chemistry

Saman Raza^{1,*}, Satya¹, Tahmeena Khan² and Manisha Singh³

¹ Department of Chemistry, Isabella Thoburn College, Lucknow, U.P., India

² Department of Chemistry, Integral University, Lucknow, U.P., India

³ Department of Education, Integral University, Lucknow, U.P., India

Abstract: Artificial Intelligence (AI) is quickly becoming ubiquitous, with applications in all spheres of life. The education sector is also not untouched, in fact students are now relying on AI tools for studying, doing homework, making assignments and reports, and preparing for exams. Teachers are also using AI tools to enhance classwork and assessments. The use of AI in chemistry education is rapidly growing and many AI tools are proving to be quite useful in this regard. However, chemistry being a vast subject with lots of concepts, laws, formulae, reactions, and applications, requires deep understanding and comprehension, which is a challenge for these tools as they are not always accurate and consistent in providing answers. The present chapter gives a brief account of the uses of AI in chemistry, with teaching-learning chemistry, in particular. It explores the advantages and disadvantages of using AI in chemistry education and how AI can be incorporated in classrooms.

Keywords: Artificial Intelligence, Chatbots, Chemistry education, ChatGPT, Generative AI.

INTRODUCTION

Artificial intelligence is defined as machine-based intelligence. When a computer exhibits cognitive behavior related to humans, such learning or problem-solving is referred to by this term [1]. That is, a machine that replicates human intelligence could be considered artificial intelligence [2]. It plays a crucial role in the technology sector, enabling cost-effective data collection and analysis within a secure environment [3].

With diverse applications ranging from natural language processing to search algorithms, reasoning, strategy formulation, machine learning, and deep learning,

^{*} Corresponding author Saman Raza: Isabella Thoburn College, Lucknow, U.P., India; E-mail: samanmahek@gmail.com

174 Artificial Intelligence: A Multidisciplinary Approach

AI has the capacity to adapt objects to meet its specific requirements [4] (Fig. 1). In the engineering and chemical fields, AI, along with well-established technologies like machine learning, proves beneficial for learning and predicting novel material properties [6].

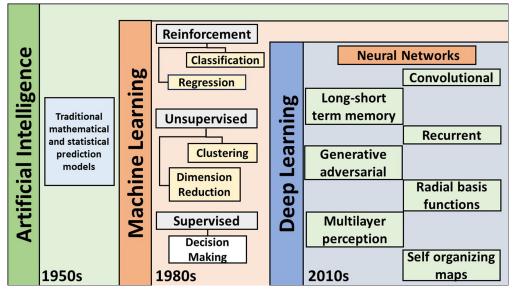


Fig. (1). The timeline for AI development and its related fields [5].

In 1950, Alan Turing introduced the idea of employing computers to simulate intelligent behaviour and critical thinking. This concept gave rise to the renowned "Turing test," a method Turing proposed to assess the capability of computers to exhibit human-like intelligence [7]. John McCarthy further defined artificial intelligence (AI) six years later as "the science and engineering of making intelligent machines" [8].

AI holds an important role in everyday life, achieving notable breakthroughs in areas like image and speech recognition, as well as natural language processing. World-class players in Go and Chess have been defeated by computers, demonstrating some of the advancements in the area. Alpha Go, having learned from playing against itself, defeated the greatest Go player in the world, whereas Deep Blue, using a set of hard-coded rules and brute force computer power, defeated world chess champion Kasparov in 1997 [6].

TYPES OF AI

AI encompasses various subfields, analogous to specialties in chemistry, including machine learning (ML), neural networks, natural language processing

AI Tools for Teaching

(NLP), deep learning (DL), robotics, and computer vision (Fig. 2) [9]. ML involves utilizing specific features to recognize patterns, enabling analysis of situations. The machine can subsequently "learn" from this information and apply it to similar future scenarios.

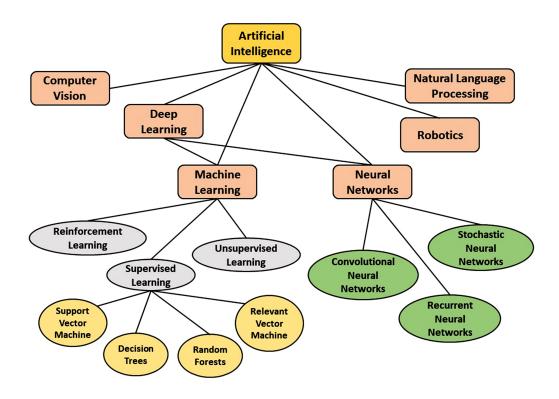


Fig. (2). An overview of the primary domains within artificial intelligence, along with their respective subdivisions [9].

This predictive capability finds application in exploring chemical spaces, predicting molecular properties and structures. ML has developed into what is now often referred to as deep learning (DL), involving algorithms that construct an artificial neural network (ANN) capable of independent learning and decision-making, mirroring aspects of the human brain [10, 11].

Natural Language Processing (NLP) finds application in extracting and assessing chemical details from scientific literature [12]. The process of computer vision

Transformation in the World of Commerce and Economics through AI

Umang Tandon^{1,*}, Apoorva Tandon² and Tarang Mehrotra³

¹ Department of Commerce, Isabella Thoburn College, Lucknow, U.P., India ² B.Tech Computer Science KIET Group of Institution, Ghaziabad, India ³ INMATEC Institute of Ghaziabad, Ghaziabad, India

Abstract: This chapter constitutes a comprehensive exploration of the far-reaching impact of Artificial Intelligence (AI) on the domains of commerce and economics. It conducts a thorough analysis, meticulously concentrating on the intricate aspects of analytics and decision-making. Within this dynamic landscape, the research not only elucidates the transformative role of Artificial Intelligence in predictive and descriptive analytics but also delves into its nuanced contributions to tracking market trends, risk mitigation, and the enhancement of operational decision-making processes. Examining the economic implications of Artificial Intelligence, the chapter goes beyond a cursory overview, providing a detailed understanding of documented instances where Artificial Intelligence has led to heightened productivity and subtle yet impactful shifts in labour dynamics. By grounding its analysis in real-world examples, the study aims to uncover the intricacies of how Artificial Intelligence is actively reshaping traditional economic paradigms, potentially ushering in a redefined fabric of commerce. Recognizing the pivotal role of Artificial Intelligence in driving efficiency and innovation, the research places a heightened emphasis on addressing inherent biases embedded within AI models. It advocates not only for the identification of these biases but also proposes meticulous rectification processes to ensure the fostering of fairness and equity in AIdriven decision-making. The study acknowledges ethical dimensions associated with the integration of Artificial Intelligence, highlighting the imperative for responsible Artificial Intelligence development and deployment, especially in economic settings. Furthermore, the paper identifies the essence of the AI-driven era in commerce and economics, foreseeing a landscape where Artificial Intelligence becomes indispensable for informed decision-making. It not only outlines the current landscape but also proposes future lines of inquiry to guide ongoing research. This paper, therefore, stands as a substantive and forward-thinking resource for scholars, practitioners, and policymakers alike, seeking to navigate and understand the evolving intersection of Artificial Intelligence, commerce, and economics.

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers

^{*} Corresponding author Umang Tandon: Department of Commerce, Isabella Thoburn College, Lucknow, U.P., India; E-mail:umangtandon2311@gmail.com

Economics through AI

Keywords: Artificial Intelligence, Analytics, Commerce, Decision-making, Economics, Integration, Labor dynamics.

INTRODUCTION

In the tapestry of contemporary commerce and economics, the emergence of Artificial Intelligence (AI) has woven intricate patterns of transformation, disrupting conventional paradigms and propelling industries into a new era of strategic possibilities. AI has transcended its role as mere technology, becoming an indispensable force strategically integrated into the fabric of businesses [1]. This integration is notably exemplified in the retail landscape, where AI-driven recommendation systems have evolved beyond mere transactional tools [2]. They have become architects of personalized marketing endeavours, dynamically shaping consumer behaviour within the complex milieu of the modern marketplace [3].

Furthermore, the advent of generative AI has introduced a revolutionary dimension to this landscape. Unlike traditional AI models that rely on predefined algorithms and datasets, generative AI leverages machine learning to create new content, such as text, images, and even music. This capability has immense potential in marketing, where generative AI can craft personalized advertisements and content at scale, enhancing customer engagement and driving brand loyalty [22]. Moreover, in product development, generative AI can expedite innovation cycles by generating design prototypes, thus reducing time-to-market and fostering competitive advantage [24].

The dynamic landscape extends its reach into the domain of economics, where the astute observations of Chen and other researchers highlight the growing prominence of AI in economic modelling and forecasting [4]. The other work illuminates the transformative potential of predictive analytics, offering businesses and policymakers unprecedented insights into market trends and economic indicators [5]. The fusion of advanced analytics and economic acumen not only sharpens strategic decision-making but also establishes AI as a formidable catalyst for redefining the contours of the economic landscape.

A panoramic exploration further reveals the versatility of AI, transcending industry boundaries to revolutionize decision-making processes. In the intricate dance between data and strategy, AI emerges as a conductor, orchestrating operational decisions within businesses [6]. Its capacity to swiftly process vast datasets not only expedites decision-making but fundamentally transforms its nature, imbuing it with unprecedented accuracy and efficiency. This transformative impact extends to risk mitigation strategies, where AI fortifies organizations against economic uncertainties through sophisticated analytical frameworks [4]. Yet, amidst this transformative wave, ethical considerations carve an imperative space in the discourse. The ethical dimensions of AI, examined by Nair, emphasize the pressing need for responsible AI development [7]. Their work calls attention to the necessity of mitigating biases embedded within AI models, advocating for a delicate equilibrium between technological innovation and ethical imperatives. This ethical underpinning is echoed in the reflections of a research study where the ethical challenges posed by AI integration in economic settings, urge for a nuanced equilibrium in the confluence of technological prowess and ethical stewardship [8].

In essence, this introduction unravels against the backdrop of a rapidly evolving narrative wherein AI is not merely a technological artefact but an orchestrator of transformative change. From the intricate dance of personalized marketing and predictive analytics in retail to its profound implications on economic modelling and decision-making processes, AI beckons us to decipher its nuanced impact comprehensively. This research endeavours to delve into the intricate facets of this transformative force, aiming to unveil the nuanced ways in which AI shapes economic paradigms.

The scope of this research encapsulates a multifaceted exploration of the impact of Artificial Intelligence (AI) on commerce and economics. Embracing a comprehensive review of existing literature, the study will traverse the domains of predictive analytics, operational decision-making, risk mitigation, and the ethical dimensions associated with AI integration. It will encapsulate not only the immediate economic implications but also extend its purview to the societal and ethical considerations entwined with AI-driven evolution.

Key points guiding the study within this scope include:

Predictive Analytics

A nuanced analysis of how AI augments predictive modelling, with a focus on its applications in forecasting market trends and economic indicators.

Operational Decision-Making

Investigating the transformative role of AI in expediting and enhancing decisionmaking processes within businesses.

Strategic Integration

Unraveling how AI strategically integrates into business frameworks, drawing from examples of successful applications in personalized marketing and economic forecasting.

CHAPTER 9

Transforming English Pedagogy with Artificial Intelligence: Enroute to Enhanced Language Learning

Leena Rajak¹, Sangeeta Chauhan^{1,*} and Sonu Bara¹

¹ Department of Education, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, U.P., India

Abstract: In an increasingly interconnected and digital era, the role of artificial intelligence *i.e.* AI in education has gained significant attention. This chapter explores the transformative potential of AI in the realm of English pedagogy, by offering a comprehensive route to enhance language learning through the integration of cuttingedge technology of today's era. Taking about AI without discussing Generative AI, the content will not be completed and the present chapter will also be incomplete since Generative AI (GAI) finds wide-ranging practical applications in fields as diverse as natural language processing and drug development, as well as the creative sectors. Pedagogically, Generative AI (GAI) enables individualized learning by generating learning materials that are specially designed to meet the needs of each learner. The traditional approaches to teaching English have often been constrained because of the limited, time, resources, and also individualized attention paid to it. AI, with its advanced abilities to adapt, personalize and provide immediate feedback, has the ultimate potential to bring a revolution in the way English is taught and learned. This particular route of language learning begins by examining the foundational elements of AI-driven language education, such as Natural Language Processing (NLP) algorithms and machine learning models. These technologies may help us to create reliable and brilliant virtual tutors and automated assessment tools that can cater to the unique needs and abilities of each learner through analysis. Also, the route dives deeper into the key significance of content personalization. An AI-developed system can conduct a deeper analysis of students' strengths and weaknesses, allowing personalized and detailed lesson plans and exercises moulded especially for the betterment. A personalized and adaptive content delivery ensures that students remain engaged and motivated, as they receive materials scripted by the AI, which are both challenging and fitted as per their individual needs. This paper also emphasizes the importance of AI-powered assessment tools, which would enable the objective of an accurate evaluation of students' language skills, which may also reduce the subjectivity in grading and also level up the assessment process. The paper also points out the concerns, which are related to

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers

^{*} Corresponding author Sangeeta Chauhan: Department of Education, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P., India; E-mail: c.sangita27@gmail.com

Transforming English Pedagogy

Artificial Intelligence: A Multidisciplinary Approach 217

artificial intelligence. Implementing AI in education highlights the need for robust data protection and also the well-being of the learners. It also emphasizes the importance of professional development of educators so that language learning becomes effective from both sides. In conclusion, this chapter, provides a circumstantial route for the transformation of English pedagogy through AI, offering solutions to existing challenges in language education. By including AI-driven platforms, and assessment tools, virtual tutors help in providing an effective learning environment. The integration of AI into English pedagogy represents a promising future in the language learning field making the language learning process interesting.

Keywords: Artificial Intelligence, AI-driven system, Language skills, Natural language processing.

INTRODUCTION

In the contemporary landscape of education, the integration of technology has become a catalyst for transformative change. One such revolutionary advancement is the incorporation of Artificial Intelligence (AI) into English pedagogy, marking a paradigm shift in the way language learning is approached. This dynamic fusion of technology and education has the potential to redefine the traditional methods of teaching English, offering a more personalized, efficient, and engaging learning experience [1]. English language proficiency is a cornerstone of global communication and an essential skill in the interconnected world. As the demand for English language proficiency continues to grow, educators are confronted with the challenge of catering to diverse learning styles and adapting to the evolving needs of learners [2]. In this context, AI emerges as a powerful ally, providing innovative solutions to enhance language learning by leveraging its capabilities in natural language processing, machine learning, and adaptive learning systems. This exploration delves into the transformative journey of English pedagogy with the infusion of Artificial Intelligence, examining the key enablers, challenges, and the potential impact on language acquisition [1, 3]. By embracing AI in English education, educators can unlock new dimensions of interactive, personalized, and data-driven learning experiences, fostering a generation of proficient communicators equipped for success in the globalized digital era. As we embark on this transformative journey, the synergy of human intellect and artificial intelligence promises to chart a course toward a future where enhanced language learning is not just a goal but a reality [4].

What is Artificial Intelligence (AI)?

AI is an abbreviation for Artificial Intelligence. It refers to the creation of computer systems capable of performing tasks that would normally require human intelligence. Learning, thinking, figuring out solutions, perception, detection of

speech, and language comprehension are examples of these tasks [5]. AI is divided into two types: narrow or weak AI, which has been created to carry out certain tasks, and wide or strong AI, which strives to accomplish every intellectual undertaking that a human being can do. AI can be implemented in a variety of ways, involving systems that use rules, algorithmic learning, and sophisticated learning [4]. Machine learning is a subset of artificial intelligence that entails training a model on data to generate predictions or judgments without being explicitly programmed for a task. Deep learning, a subtype of machine learning, employs neural networks with several layers to learn and interpret data. AI is used in a variety of industries, including healthcare, banking, self-driving cars, natural language processing, picture and audio recognition, and others. AI is likely to play an increasingly important role in different facets of our daily lives as technology advances.

GENERATIVE ARTIFICIAL INTELLIGENCE (GAI)

A notable development in artificial intelligence is generative AI, which is defined by its capacity to produce new material-text, graphics, music, and more-that is frequently identical to content produced by humans. This area of artificial intelligence uses complex models, such as Transformer-based models like GPT (Generative Pre-trained Transformer) and Generative Adversarial Networks (GANs) that produce data using deep learning techniques. Introduced by Goodfellow et al. (2014), GANs are made up of two neural networks, the discriminator and the generator, that are trained concurrently using adversarial processes to enhance the output quality that is produced [27]. Transformer models, on the other hand, can handle big datasets and complicated patterns with efficiency because, as Vaswani et al. (2017) have shown, they analyze input sequences in parallel using self-attention functions [29]. Generative AI finds wide-ranging practical applications in fields as diverse as natural language processing and drug development, as well as the creative sectors, where it is utilized to create art and music. Still, creative AI has promise and presents social and ethical issues. AI-generated material raises issues with intellectual property and the creation of deep fakes, which may be used to produce realistic-looking but inaccurate information (Solaiman et al., 2019) [28]. According to academics, strong ethical frameworks and regulatory actions are necessary to reduce these hazards. Though its wider effects on society will need to be carefully considered, generative AI has the potential to foster creativity and innovation as it develops.

CHAPTER 10

Revolutionizing Learning Landscapes: Unleashing the Potential of AI in the Realm of Academic Research

Waseem Zahra^{1,*} and Gunjan Rautela²

¹ Department of Teachers' Education, Mahila Vidyalaya Degree College, Lucknow, U.P., India ² State Council of Education Research and Teaching, Lucknow, U.P., India

Abstract: Artificial Intelligence (AI) has become a game-changer in education, transforming how we learn, and improving the way we conduct research. By using smart algorithms, machine learning, and data analysis, AI is applied in diverse areas, such as intelligent tutoring systems, personalized learning platforms, and automated grading systems. This article explores why it is crucial to use Artificial Intelligence (AI) in academic research nowadays. With research questions getting more complex and lots of data to handle, traditional methods struggle to keep up. AI comes in as a game-changer, helping researchers by doing routine tasks, sorting through big datasets, and finding important patterns. In academic research, AI has proven invaluable. It helps researchers explore complex topics, gain insights, and streamline the overall research process. With its ability to analyze large sets of data quickly, recognize patterns, and offer insights, AI speeds up research significantly. The point is that AI is becoming a must-have tool for universities and researchers. We need it to make our research better, spark new ideas, and keep up with the ever-evolving world of academic exploration. This research article illustrates the development of AI in research and the comparison between AI data analysis and conventional data analysis. This article tries to explore various AI tools and techniques used in academic research, discusses the diverse applications of AI in academic research, outlines the benefits, addresses challenges, and considers ethical considerations in using AI for academic research.

Keywords: Academic research, AI data analysis, Analytics, Artificial Intelligence (AI), Ethical considerations, Machine learning, Predictive analysis, Potential, Recommendation system techniques.

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers

^{*} Corresponding author Waseem Zahra: Department of Teachers' Education, Mahila Vidyalaya Degree College, Lucknow, U.P., India; E-mail: waseemzahra85@gmail.com

INTRODUCTION

Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that typically require human intelligence. AI is defined as "Computers which perform cognitive tasks, usually associated with human minds, particularly learning and problem-solving" [1]. These tasks include learning, reasoning, problem-solving, perception, and language understanding. AI systems are designed to analyze and interpret data, adapt to changing situations, and improve their performance over time. Machine learning, a subset of AI, enables systems to learn from experience and data, allowing them to make predictions or decisions without being explicitly programmed for each task. AI applications range from virtual assistants and autonomous vehicles to healthcare diagnostics and educational tools, illustrating its diverse impact across various industries. Artificial Intelligence (AI) and other emerging technologies are having a dramatic impact on how we live our lives [4]. We now live in a technological age marked by the Fourth Industrial Revolution, also referred to as Industry 4.0 [2, 3]. This revolution is expected to bring about rapid changes in industries, technology, societal norms, and procedures as a result of increased interconnectivity and intelligent automation. Recent years have seen a notable increase in interest in the application of Artificial Intelligence (AI) in academic research.

The research landscape is being revolutionized by this disruptive technology, which is driven by machine learning algorithms and data analytics. Artificial Intelligence (AI) holds the potential to speed scientific discovery and improve the calibre of research outputs by empowering researchers to process enormous amounts of data and extract insightful information. AI algorithms also assist in forming hypotheses, interpreting data, and finding new connections that might be missed using traditional methods. Additionally, AI-driven tools make research more efficient by automating routine tasks [5]. This means researchers can dedicate more time to the creative and complex aspects of their work. As AI continues to advance, it has the potential to open up new possibilities in academic exploration, encouraging innovation and contributing to the growth of knowledge. This intersection of AI and education aims to leverage advanced computational techniques to analyze, support, and optimize learning and teaching experiences.

ACADEMIC RESEARCH

Academic research is a systematic investigation into a specific problem or situation, undertaken with the intention of discerning pertinent facts and opinions that can contribute to resolving the identified issue or effectively addressing the given situation. It is like a big adventure where smart people go on a mission to discover new things. Imagine you're a detective looking for clues to solve a

244 Artificial Intelligence: A Multidisciplinary Approach

mystery, but instead of solving crimes, researchers solve puzzles about everything from plants and animals to human behaviour and history. It all begins when these researchers notice something they do not understand or want to learn more about. They read a lot of books and articles to see what others have already figured out. This helps them ask the right questions and set a clear goal for their research. Then comes the fun part – they decide how they are going to find the answers. Some might do experiments, some ask people questions, and others dig into old records like history detectives. They use tools and special methods to gather information and figure out what it all means. Once they have their findings, researchers share them with others by writing papers or giving talks. This sharing helps everyone learn new things and build on what we already know. In a nutshell, academic research is like a big puzzle-solving adventure where curious minds explore, discover, and share their findings to make the world a better place to live.

THE ADVANCEMENT OF AI IN ACADEMIC RESEARCH IN THE 21st CENTURY

The roots of AI in academic research can be traced back to the mid-20th century when pioneers like Alan Turing laid the theoretical groundwork for machine intelligence. John McCarthy (1927–2011) organized the Dartmouth Conference in 1956, which is often regarded as the birth of AI as a field. In the workshop proposal, McCarthy used the term Artificial Intelligence for the first time in 1956 [6]. However, it was not until the late 20th century that AI technologies began to make significant inroads into academic research. The 21st century witnessed a paradigm shift in Academic research, driven by advancements in machine learning and computational power. Researchers started harnessing the potential of neural networks and deep learning algorithms to analyze vast datasets, uncover patterns, and make predictions. This marked the beginning of a new era in which AI became an integral part of academic investigations across disciplines. Large university research funders are starting to investigate how Artificial Intelligence (AI) might change the world and how they can use AI to support innovative research techniques, procedures, management, and assessment [7, 8]. Given these functionalities, it is anticipated that AI will exhibit its greatest utility in handling the procedural aspects of reviews, particularly excelling in tasks characterized by mechanical rigor rather than those demanding a more creative touch [9].

Educational research has undergone a significant transformation in recent years, with Artificial Intelligence (AI) playing a pivotal role in reshaping the landscape of teaching and learning. AI technologies have proven to be invaluable tools for educational researchers, offering new avenues for data analysis, personalized learning experiences, and enhanced decision-making. These opportunities also

Future Trends and Innovations in Artificial Intelligence

Samiya Farooq^{1,*} and Pooja Mishra²

¹Department of Business Administration, Isabella Thoburn College of Professional Studies, U.P., India

² Department of Commerce, Isabella Thoburn College, U.P., India

Abstract: As we navigate the dynamic landscape of education in the 21^{st} century, the role of Artificial Intelligence (AI) in teaching and learning continues to evolve, presenting exciting possibilities and challenges. The future of Artificial Intelligence will transform the educational landscape, offering unprecedented opportunities for personalized, efficient, and engaging learning experiences. The young individual's education levels impact a country's progress. AI will transform tradition al schooling in the future. As robots and technology have mostly replaced skilled labourers, manufacturing industries no longer need them. The educational system has the potential to be extremely effective and customised to a person's personality and abilities. This chapter explores the future trends and innovations at the intersection of AI and education, aiming to provide a forward-looking perspective for educators, policymakers, and researchers. The future of AI in education is examined by emerging technologies, from advancements in natural language processing to the integration of augmented and virtual reality; these innovations promise to enhance the educational experience by fostering immersive and interactive learning environments. In conclusion, a critical aspect explored is the collaborative nature of AI and human educators. Big data analytics plays a role in shaping educational strategies and decision-making, leveraging vast amounts of data generated by students, educators, and institutions.

Keywords: AI, Artificial Intelligence, Educational system, Innovations, Technology.

INTRODUCTION

Applications of Artificial Intelligence (AI) in education are becoming more common and have drawn a lot of attention in recent years. With a two- to threeyear adoption period, Artificial Intelligence (AI) and adaptive learning technolo-

* Corresponding author Samiya Farooq: Department of Business Administration, Isabella Thoburn College of Professional Studies, U.P., India; E-mail: samiyafarooq11@gmail.com

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers gies are highlighted as significant advancements in educational technology in the 2018 Horizon study (Educause, 2018). The research states that experts forecast a 43% growth in AI in education between 2018 and 2022. However, the Horizon Research 2019 Higher Education Edition projects an even greater growth in AI applications connected to teaching and learning.

The growth of AI applications in higher education brings with it new ethical considerations and risks, notwithstanding the immense benefits that AI might give to help teaching and learning. For instance, administrators may find it enticing to switch from teaching to automated AI solutions that are profitable during budget constraints. Academic professionals, teaching assistants, student counsellors, and administrative personnel can worry about their professions being taken over by chatbots, expert systems, and intelligent tutors. Although Artificial Intelligence (AI) has the potential to improve learning analytics, these systems require massive amounts of data, including private student and faculty information, which presents significant privacy and data protection concerns.

Though computer science and engineering are the fields that gave rise to Artificial Intelligence (AI), other academic fields like philosophy, cognitive science, neurology, and economics have had a significant influence. There is not much consensus among AI researchers on a common definition and understanding of AI and intelligence in general, because the field is interdisciplinary. In the rapidly evolving landscape of education, the symbiotic relationship between technology and pedagogy has reached a pivotal juncture. At the forefront of this transformative wave stands Artificial Intelligence (AI), a groundbreaking force poised to redefine the contours of education in unprecedented ways. As we navigate the intricate interplay between AI and education, this chapter embarks on a journey to unravel the future trends and innovations that promise to revolutionize the educational sector.

In recent years, AI has emerged as a catalyst for change, offering a spectrum of possibilities to enhance the learning experience, streamline administrative processes, and personalize education on a scale previously unimaginable. Fig. (1) represents Evolution of AI.

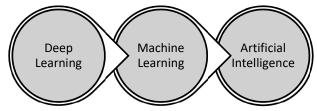


Fig. (1). Evolution of Artificial Intelligence.

Future Trends and Innovations

Artificial Intelligence: A Multidisciplinary Approach 267

As we peer into the future, we encounter a landscape where intelligent tutoring systems adapt seamlessly to individual learning styles, where data analytics illuminate patterns for informed decision-making, and where virtual reality transforms classrooms into immersive learning environments. The fusion of machine learning, natural language processing, and advanced analytics has birthed a suite of tools capable of not only automating routine tasks but also fostering creativity, critical thinking, and collaboration among students. From adaptive learning platforms and intelligent assessment tools to predictive analytics shaping student success, AI navigates the uncharted territory where innovation intersects with education. Regarding the education sector, it shouldn't raise too much of a red flag because it has always been stated that social interaction with people is a prerequisite for learning effectively.

There are now many definitions of Artificial Intelligence in literature. "Artificial Intelligence is that activity devoted to making machines intelligent, and intelligence is that quality that enables an entity to function appropriately and with foresight in its environment" [1].

Other definitions of AI include [2]:

• AI is "the field of computer science dedicated to solving cognitive problems commonly associated with human intelligence, such as learning, problem-solving, and pattern recognition."

• AI is "the theory and development of computer systems able to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages."

AI-related projects are being started worldwide in large numbers. The introduction of AI to the market was described by Gartner as a promising technology in its annual report on emerging technologies. The paper states that "the payoff for digital initiatives through 2025 will drive the ability to use AI to enhance decision-making, reinvent business models and ecosystems, and remake the customer experience." Furthermore, they established that while some organisations have progressed in piloting or deploying solutions to AI, 59% of organisations are likely to advance AI plans. That might apply to a variety of fields, such as education.

However, it should be noted that the main driver behind the industry's desire to employ AI is its economic viability, as it requires a lesser number of personnel and lower wage costs. This is one of the primary issues with AI use in the workplace. Recently, Elon Musk [3] and Stephen Hawking [4] have both issued warnings about the dangers of AI.

SUBJECT INDEX

A

Active learning processes 47 Agile regulatory processes 68 AI 80, 82, 206, 216, 219 -adopting companies 206 -assisted teaching 80, 82 -developed system 216 -generated resources 219 AI-based 97, 183, 284 assessment systems 284 earthquake monitoring 97 tutoring systems 183 AI-enabled 100, 281, 283 educational system 283 personalised learning 281 tools 100 AI-powered 148, 167, 185, 199, 201, 204, 207, 208, 229, 230, 234, 246, 247, 274 adaptive learning systems 148, 167 algorithms 199, 201, 207 application 185 data analysis tools 246, 247 platforms 229, 230, 234 robots 208 systems 204 technologies 246, 274 tutoring system 148 Air quality monitoring techniques 120 Algorithmic techniques 140 Algorithms 52, 149 data mining 149 network propagation 52 Alzheimer's disease 63 ANI technologies 12 Anthropogenic disasters 96 Applications 132, 181, 281 cosmological 132 food delivery 281 renewable-energy 181 Architecture 149, 155 -free visualisation technique 155

transformer 149 Artificial 12, 94, 97, 98, 128, 131, 132, 134, 138, 139, 140, 141, 144, 175 narrow intelligence (ANI) 12 neural network (ANN) 12, 94, 97, 98, 128, 131, 132, 134, 138, 139, 140, 141, 144, 175 super-intelligence (ASI) 12 Artificial intelligence 4, 19, 84, 178, 179, 251, 269.271 algorithms 178 chatbot 19 in education (AIEd) 84, 269, 271 systems 4 techniques 179, 251 Astrophysics, contemporary 132 Automated monitoring 90 Automation, intelligent 243 Autonomous robots 12

B

Bayes's law 154 Biochemical pathway 182 Biodiversity conservation 117 Boltzmann constant 135 Buchwald-Hartwig 157, 178 coupling process 178 cross-coupling 157

С

Calculations, automates stoichiometry 177 Carbon footprint 124 Cardiac conditions 60 Cardiovascular 63, 116 diseases 63 problems 116 Chatbots 173, 182, 184, 186, 187, 233, 238, 266, 274, 276, 281 generative 186 Cheminformatics techniques 179

Tahmeena Khan, Manisha Singh & Saman Raza (Eds.) All rights reserved-© 2024 Bentham Science Publishers

288

Subject Index

Chemistry 38, 153, 156, 177, 182, 186, 188 computational 38, 182 organic 153, 156, 177, 186, 188 problem-solving 186 Chronic obstructive pulmonary disease (COPD) 116 Cognitive 9, 83, 173 activities 83 behavior 173 computing 9 Communication 164, 231 abilities 164 skills, effective 231 Computational techniques 44, 55, 140, 247 Computer 26, 156, 175, 254 -aided drug designing (CADD) 26 techniques 156 vision 175, 254 Convolutional neural networks (CNNs) 93, 97, 131, 132, 161, 177 Cosmic background explorer (COBE) 133 Cryo-electron microscopy 69

D

Data 26, 67, 83, 257 mining 26, 83, 257 Security Measures 67 Data quality 64, 66 assurance 66 issues 64 Density functional theory (DFT) 158, 180 Devices, mobile 224 Disease(s) 27, 28, 40, 41, 51, 52, 53, 54, 55, 63, 71, 116, 258 chronic obstructive pulmonary 116 outbreaks 258 DNA sequencing 46 Drought 98 Drug(s) 52, 53, 54, 59, 60, 72 cardiovascular 60 delivery systems 72 -disease associations 52, 53, 54 metabolism 59, 60 Drug development 29, 47, 57, 68, 72, 73, 74, 75, 160, 179, 216, 218 process 57, 73 programs 179

Artificial Intelligence: A Multidisciplinary Approach 289

Drug discovery 28, 38, 39, 40, 42, 49, 55, 57, 64, 66, 69, 73, 148, 160, 161, 176, 178, 179, 183 process 28, 40, 42, 49, 178 research 148 DrugBank data 28 Dust storms 99 Dynamic(s) 69, 141, 143, 219 biological processes 69 chaotic 141 learning process 219 system 143

Е

Earthquake 97 early warning (EEW) 97 monitoring 97 Economic 197, 205, 210 efficiency 210 growth 205 outcomes 205, 210 ramifications 197 Ecosystems 90, 91, 92, 93, 102, 115, 213, 238, 239, 267 sound language learning 238, 239 virtual coral reef 93 Education 86, 273 officials 86 -related information 273 Education system 82, 280, 281, 282 electro-mechanized 282 global 280 Educational 82, 219, 229 activities 229 data 219 system monitoring 82 Electric vehicles 123 Electrocatalysts 181 Electron fraction 135 Electronic health records (EHRs) 52, 55 Emission(s) 116, 118, 119, 123, 133, 136 automobile 116 industrial 118 reducing 123 reduction plans, efficient 119 Empirical Bayes methods 31 Energy 17, 96, 132, 180 consumption 17 dark 132

290 Artificial Intelligence: A Multidisciplinary Approach

Engagement, sustained 230, 237 Enterprise adoption 203 Entropy regularization 50 Environments 9, 16, 80, 81, 91, 92, 95, 96, 141, 148, 164, 207, 224 artificial 81 augmented 224 dynamic business 207 Environmental 38, 81, 89, 93, 95, 96, 115, 117, 124 analytical tools 89 decision support systems (EDSS) 95, 96 management tasks 96 monitoring 115, 117, 124 protection behaviours 81 stressors 93 toxicology 38 Epistemology 5, 6, 7, 8

F

Fingerprints 30, 39, 42, 95, 154, 157 chemical 39, 154 utilized reaction 157 Force 196, 253, 266 groundbreaking 266 transformative 196, 253 Forecasting, economic 196, 200, 210 Fragment-based 46, 56 drug design 56 virtual screening 46 Frameworks, technical 9 Free-electron fraction 137 Fuel moisture content (FMC) 94 Fuzzy 93, 97 inference 93 logic 97

G

Game elements 229, 230 Gamification platforms 237 Gamified platforms leverage elements 239 GenAI evaluation tools 88 Gene(s) 33, 70, 72, 73 diting 70, 72, 73 expression data 33 Generation 13, 43, 47, 49, 85, 100, 116, 161, 217, 225, 238, 239 chemical reaction 161 Generative 13, 17, 46, 47, 48, 82, 100, 119, 128, 162, 163, 176, 180, 195, 201, 202, 205, 207, 208, 218, 219, 220, 250, 251, 252 adversarial networks (GANs) 13, 17, 47, 128, 180, 218, 219 AI (GenAI) 13, 46, 47, 82, 119, 162, 163, 176, 195, 201, 202, 205, 207, 208, 218, 219, 220, 250, 251, 252 networks 46 pre-trained transformer 13, 48, 100, 218 tools 163 Genes, potential disease-associated 41 Genetic 59, 61, 63, 74 biomarkers 59 disorders 74 information 61 risk factors 63 Genomic data analysis 60 Global 134, 272 EoR signal 134 industry analysis 272 **GPT**derivatives 256 Gravitational instability 133 Greenhouse effect 116

Η

Healthcare services 17 High-throughput screening 41 Hubble's law 133 Human resources, developing 272 Hybrid Monte Carlo methods 140

I

Image recognition software 12 Immersion 92 Immersive learning approach 224 Immunotherapeutic approaches 69 Infectious diseases 60, 63 Infusion, transformative 205 Intelligence 1, 2, 3, 4, 9, 10, 12, 15, 17, 21, 59, 173, 221, 254, 266, 267 cognitive 9 computational 4, 59, 221 decision-making 10 machine-based 173 Intelligent 84, 229, 232, 242, 259, 267, 268, 269, 277

Khan et al.

Subject Index

tutoring systems 84, 229, 232, 242, 259, 267, 268, 269, 277 virtual reality (IVR) 84 Interactive learning 92, 265, 273, 276 approach 273 environments (ILE) 92, 265, 276 Ionospheric absorption effect 136 IoT devices 120, 121

L

Landscape 194, 195, 198, 200, 201, 203, 205, 209, 210, 211, 217, 222, 224, 225, 238, 239, 262, 266, 267 commercial 211 contemporary 217 economic 195, 205, 210 employment 209 ethical 198 Language 3, 16, 17, 20, 21, 36, 81, 100, 216, 217, 222, 223, 224, 225, 226, 227, 228, 232, 237, 239, 254, 256, 277, 283 generating 21 learners 223, 225, 227, 228, 232 natural 3, 81 processing tool 100 skills 216, 217, 222, 232, 239 translation 36, 100, 254, 256 Language education 216, 217, 224, 225, 229, 230, 232, 234, 235, 236, 237, 238, 239 sensitive 235 Language learning 216, 217, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238 applications and chatbots 238 apps 222 field 217 management systems 226 process 217 progress 229 software 222 tools 234 traditional 223 ACDM model of cosmology 133 Learners, transport 237 Learning 226, 227, 232, 275, 276 environment complement 232 management systems (LMS) 226, 227, 275, 276 Leveraging regression analysis 38

Artificial Intelligence: A Multidisciplinary Approach 291

Long short-term memory (LSTM) 48, 94, 132, 142 Longitudinal data analysis 64

Μ

Machine 16, 89, 244, 280 intelligence 244 language 280 translation 89 vision 16 Machine learning 21, 27, 29, 30, 31, 32, 35, 40, 41, 43, 45, 46, 52, 53, 57, 62, 82, 121, 128, 129, 159, 180, 195, 198, 199, 247, 254, 273, 275, 276 algorithms 27, 29, 30, 31, 32, 35, 40, 41, 43, 53, 273, 275, 276 algorithms process 121 applications in drug design 27 filters 45 leverages 159, 195 methods 21, 82, 180, 247 techniques 29, 52, 57, 62, 128, 198, 199, 254 techniques 46 technology 129 Markov Chain Monte Carlo technique 128 Massive open online courses 273 Materials genome initiative (MGI) 181 Medications, psychotropic 60 Metamorphosis 208 Meteorological drought 98 Microbiome 71 -targeted therapies 71 Molecular docking algorithms 44

Ν

Nanoscale systems 140 Natural language 16, 18, 20, 36, 52, 54, 148, 149, 174, 175, 216, 217, 218, 219, 229, 233, 237, 238, 254, 256, 276 processing (NLP) 16, 18, 20, 36, 52, 54, 148, 149, 174, 175, 216, 217, 218, 219, 229, 233, 237, 238, 254, 276 toolkit 256 Natural resources, managing 91 Network(s) 35, 40, 43, 48, 51, 54, 94, 115, 120, 121, 123, 130, 131, 132, 142 drug-target interaction 54

292 Artificial Intelligence: A Multidisciplinary Approach

propagation 54 protein-protein interaction 40, 51, 54 sensor 115, 120, 121, 123 Neural network(s) 12, 16, 94, 128, 131, 139, 141, 144, 175 artificial 16, 94, 128, 131, 139, 141, 144, 175 techniques 12 Neurological disorders 63 Non-linear 32, 37, 141 equations 141 QSAR 37 relationships 32 systems 141

0

Operational decision-making processes 194, 201, 203 Optical satellite imaging 98 Organic electronic materials 181

P

Pathways, metabolic 182 Photovoltaics, organic 157 Planck's constant 135 Pollutants 116, 118, 121, 122 atmospheric 116 traffic-related 118 Pollution, environmental 81 Polypharmacological effects 58 Polypharmacology analysis 56 Principal component analysis (PCA) 30 Properties 37, 38, 39, 42, 46, 47, 49, 50, 51, 92, 158, 159, 160, 176, 177, 178, 181, 183 chemical 176 electronic 37 environmental 92 mechanical 181 Protein-ligand docking 44 Proteomic databases 28

Q

Quality assurance measures 66 Quantitative structure-activity relationship (QSAR) 36, 37, 38, 43, 58, 160, 181 Quantum 69, 72, 157, 182 chemistry computations 182 computing 69, 72 mechanics (OM) 157

R

Radio frequency interference (RFI) 136 Rayleigh-Jeans law 134 Recurrent neural networks (RNNs) 46, 48, 93, 97, 98, 128, 131, 132, 141, 142, 143, 144 Reinforcement learning (RL) 14, 17, 27, 47, 49, 50, 51, 129, 130, 255 Reservoir computing 128, 142, 144 Resources 2, 3, 19, 28, 35, 80, 120, 129, 165, 183, 184, 216, 226, 247, 258, 259, 260, 271 computational 35, 260 computing 165 energy 80 financial 2, 3, 120 Retrosynthetic analysis 155 Revolutionary mRNA vaccines 72 Revolutionize(s) 47, 73, 167 healthcare 73, 167 drug discovery processes 47 Revolutionizing vaccine development 73 Risk(s) 59, 60, 96, 97, 116, 149, 194, 196, 197, 201, 206, 207, 210, 259, 266, 271, 276 cheating 149 disease 59 mitigating 197, 201, 207 mitigating financial 207 mitigation 194, 196, 197, 201, 206, 207 scenarios 207

S

Silico docking 42 Singular spectrum analysis (SSA) 98 Skills 219, 234 cognitive 219 language production 234 Smart traffic management systems 123 Social 221, 224 norms 224 relationships 221 Software, computer-aided 177 Spectroscopic analysis 148, 167

Khan et al.

Subject Index

Spectrum, electromagnetic 136 Speech recognition systems 9, 16 Support vector machines (SVM) 17, 32, 33, 43, 52, 54, 63, 98, 99, 160 Suzuki 178 cross-coupling 178 -Miyaura reactions 178

Т

Target proteins 42, 44, 45, 46 Technological training 281 Technologies 20, 61, 69, 70, 71, 73, 75, 243, 250, 255, 265, 267 blockchain 20, 70, 255 emerging 69, 71, 73, 75, 243, 265, 267 genomic 61 printing 70 transformative 250 Thermomechanical condition 95 Tools 195, 199 transactional 195 transformative 199 Traditional 27, 235 drug discovery 27 drug discovery methods 27 language teaching methods 235 Transfer learning techniques 58

V

Virtual 72, 74, 91, 92, 93, 183, 187, 188, 207, 223, 224, 225, 237, 238, 251, 274 environments 91, 92, 93, 207, 223, 251 labs 183, 187 language tutoring 225 language tutors 237 reality (VR) 72, 74, 183, 188, 224, 237, 238, 274

Х

X-ray 69, 137 free electron lasers 69 heating 137 Xenobiotic metabolism 179

Tahmeena Khan

Dr. Tahmeena Khan is currently working as an Assistant Professor in the Department of Chemistry at Integral University, Lucknow. A gold medalist in her master's program, she specializes in Inorganic Chemistry. She focused on Magnetic Resonance Spectroscopy and Magnetic Resonance Imaging for her M.Phil., and worked on the automated 3D structure determination of proteins for her dissertation. For her doctoral degree, she studied mixed ligand-metal and mixed metal-ligand complexes of thiosemicarbazones and their therapeutic properties. She has seventeen years of teaching experience, has supervised several M.Sc. dissertations, and is currently guiding Ph.D. scholars. Dr. Khan has over sixty research publications and thirty book chapters to her credit. She has also edited five international books and several conference proceedings. Dr. Khan is a life member of several academic bodies. Her research interests include exploring inorganic materials for medicinal and environmental applications.

Manisha Singh

Dr. Manisha Singh is currently working as an Assistant Professor in the Faculty of Education at Integral University, Lucknow. She completed her doctoral degree in Education on the topic, 'Humanising Epistemic and Pedagogic Discourses in Science Education,' funded by the University Grants Commission, New Delhi, India. Her academic qualifications include a Ph.D. in Education, a Master's in Education (M.Ed.), a Bachelor's in Education (B.Ed.), a Master's in Chemistry (M.Sc.), and a Bachelor's in Science (B.Sc.). She holds UGC-NET/JRF certification to her credit. Dr. Singh has published research papers on various aspects of science education, such as gamification in science education, redefining science education, science education with a humanistic twist, STEAM education, and more. She has presented research papers at numerous international and national conferences. Her areas of interest include the epistemology of science, pedagogy of science, science education, STEAM education, and education.

Saman Raza

Dr. Saman Raza is currently working as an Assistant Professor in the Department of Chemistry at Isabella Thoburn College, Lucknow. She specializes in Organic Chemistry. After clearing the NET-JRF, she pursued her doctoral degree at the Central Drug Research Institute, Lucknow. The title of her thesis was 'Design, Synthesis, and Evaluation of Thiazolidines as Novel PPAR γ Modulators.' Her research focused on the design and synthesis of complex organic molecules. Dr. Raza has thirteen years of teaching experience in Organic Chemistry at both the undergraduate and postgraduate levels. Her area of interest is Medicinal Chemistry, and she has several research publications in reputable journals.