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PREFACE 
 

Some time ago, after a long career, I asked myself what quantum mechanics is. 

Starting an investigation with the basic laws of Plank-Einstein and de Broglie, I 

came to the conclusion that a quantum system is completely described only by 

two dynamic equations in the two conjugate spaces of the coordinates and 

momentum, and more than that, with the Lagrangian instead of the Hamiltonian 

as it is considered in the Schrödinger equation. With the Lagrangian in the time-

dependent phase of the wave packet describing a quantum particle in the 

coordinate space for a certain energy, we obtain this phase as a function of the 

coordinate velocity, which leads to the equality of the wave/group velocities with 

this velocity. More than that, when the relativistic Lagrangian, as a function of the 

coordinate velocities, is considered, this equality remains. On this basis, the two 

wavefunctions in the two conjugate spaces can be considered as amplitudes of 

matter distributions. We obtain the mass quantization rule as the equality of the 

mass of a particle and as the integral of its density, with the mass as a dynamic 

characteristic in the time-dependent phases of its wavefunctions. In this way, 

quantum mechanics and general relativity became a single theory. In this 

framework, we obtain a cosmological model describing the main characteristics of 

our universe, such as the Big Bang, inflation, redshift, dark matter, and dark 

energy, which is in full agreement with the theory of relativity. These subjects 

have been approached in the third volume of this book. 

In this book, we reconsider this new quantum-relativistic theory in the more 

general case of the field-dressed particles. For such a field, we obtain the Lorentz 

force and the Maxwell equations in general relativity. We obtain quantum 

dynamic equations and wavefunctions for a field-dressed particle-antiparticle 

system, entirely describing the relativistic effects. We use Dirac’s formalisms for 

quantum mechanics and for general relativity. We revise the Fermi golden rule 

with applications to quantum electrodynamics. In this theoretical framework, we 

consider the quark dynamics under the action of the four forces acting in nature 

and obtain a grand unified theory. In this way, we avoid the huge ontological and 

cosmological difficulties raised by the Schrödinger-Heisenberg description, 

which, however, remains a brilliant approximate description and formalism, 

perfect for the steady states and, for one hundred years, has been leading to the 

spectacular results of our civilization and today is used in very important 

application fields.  

                  Eliade Stefanescu 

Advanced Studies in Physics Centre of the Romanian Academy 

Academy of Romanian Scientists, Bucharest, Romania 
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ABSTRACT 

 

Fundamental subjects of quantum mechanics and general relativity are presented 

in a unitary framework. Based on the fundamental quantum laws of Planck-

Einstein and De Broglie, a quantum particle is described by wave packets in the 

conjugate spaces of the coordinates and momentum. With the time-dependent 

phases proportional to the Lagrangian, the group velocities of these wave packets 

are in agreement with the fundamental Hamilton equations. When the relativistic 

Lagrangian, as a function of the metric tensor and the matter velocity field, is 

considered, the wave velocities are equal to the wavefunction coordinate velocity, 

which means that these waves describe the matter propagation. The equality of the 

integrals of the matter densities over the coordinate and momentum spaces, with 

the mass in the Lagrangian of the time-dependent phases, which describes the 

particle dynamics, represents the mass quantization rule. Describing the 

interaction of a quantum particle with the electromagnetic field by a modification 

of the particle dynamics determined by additional terms in the time-dependent 

phases, with an electric potential conjugated to time and a vector potential 

conjugated to the coordinates, Lorentz’s force and Maxwell’s equations are 

obtained. With Dirac’s Hamiltonian and operators satisfying the Clifford algebra, 

dynamic equations similar to those used in the quantum field theory are obtained, 

but with an additional relativistic function, depending on the velocity and the 

matter-field momentum. We obtain particle and antiparticle wavefunctions 

describing matter and anti-mater distributions. Unlike the conventional Fermi’s 

golden rule, in the new theory, the particle transitions are described by the 

Lagrangian matrix elements over the Lagrangian eigenstates and the densities of 

these states. Transition rates are obtained for the two possible processes, with the 

spin conservation or with the spin inversion. In this framework, we consider 

Dirac’s formalism of general relativity, with the basic concepts of the Christoffel 

symbols, covariant derivative, scalar density and matter conservation, the 

geodesic dynamics, curvature tensor, Bianci equations, Ricci tensor, Einstein’s 

gravitation law, and the Schwarzschild metric tensor. From the action integrals for 

the gravitational field, matter, electromagnetic field, and electric charge, we 

obtain the generalized Lorentz force and Maxwell equations for general relativity. 

It is shown that the gravitation equation is not modified by the electromagnetic 

field. For a black hole, the velocity and the acceleration of a particle are obtained. 

At the formation of a black hole, as a perfectly spherical object of matter 

gravitationally concentrated inside the Schwarzschild boundary, the central matter 

explodes, and the inside matter is carried out towards this boundary, reaching 
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there only in an infinite time. Based on this model, we conceive our universe as a 

huge black hole, with its essential properties, such as the Big Bang, inflation, low 

large-scale density, redshift, quasi-inertial behavior of the distant bodies, dark 

matter, and dark energy, entirely explained by the general relativity. For a 

quantum particle in a gravitational wave, we obtained a rotation of the metric 

tensor perpendicular to the propagation direction of this wave, with the angular 

momentum 2, which we call the graviton spin, and a rotation of the particle 

matter, with a half-integer spin for Fermions and an integer spin for Bosons. We 

apply this theory to a two-particle and a particle-antiparticle collision, as well as a 

two-body decay of a quantum particle. In this framework, we also obtain a unitary 

description of the four forces acting in nature. A system of equations for the quark 

coordinates in a proton is obtained.  

Keywords: Antiparticle, Black hole, Big bang, Bianci equations, Blue quark, 

Blue gluon, Covariant derivative, Clifford algebra, Contravariant coordinate, 

Christoffel symbol, Covariant coordinate, Curvature, Colour space, Dirac 

hamiltonian, Density of states, Dirac spin operators, Down quark, Einstein’s 

equation of gravitation, Fermi's golden rule, Feynman diagram, Four-vector, 

Flavour space, Group velocity, Geodesic equation, Graviton spin, Green quark, 

Green gluon, Gell-mann operators, Grand unified theory, Heisenberg picture, 

Hamiltonian, Schwarzschild metric tensor, Lorentz force, Lagrange equations, 

Lagrangian, Metric tensor, Maxwell equations, Nucleon, Pauli spin operators, 

Quantum electrodynamics, Quantum flavour-dynamics, Quantum 

chromodynamics, Redshift, Ricci tensor, Red quark, Red gluon, Schrödinger 

picture, Scalar potential, Spin, Spinor, Schwarzschild singularities, Schwarzschild 

boundary, Strong interaction, Two-body collision, Two-body decay, Time-space 

interval, The least action, Up quark, Vector potential, Vertex, Inflation, Vacuum 

impedance, Virtual photon, Wave packet, Wave velocity, Weak interaction. 
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CHAPTER 1 

Introduction 

Quantum mechanics is a fundamental theory that helps us understand the world we 

live in. However, the mechanisms described by this theory are difficult to 

understand due to the peculiar principles of Heisenberg’s uncertainty and wave-

particle duality. These principles lead to significant difficulties for physicists and 

philosophers, essentially by changing the fundamental notion of understanding. 

More than that, this theory seems to contradict the theory of relativity, which also 

stands at the basis of understanding our world. As quantum mechanics is based on 

the Schrödinger and Heisenberg pictures, essentially coming from the Planck-

Einstein law of particles described by oscillations in time, with the de Broglie law 

of oscillations in the coordinate space obtained as a consequence, we avoid these 

difficulties by taking into account the two laws on the same footing, which are in 

agreement with the general theory of relativity.  

Quantum mechanics describes important phenomena of atomic, nuclear, and solid-

state physics, as well as quantum optics, mainly by the dynamic equations of the 

system of interest. However, the realistic phenomena can be properly described 

only in the framework of open quantum physics, where the interaction with the 

surroundings is taken into account [1]. This is a difficult job, and the initially tried 

empirical approach leads to violations of the quantum principles, such as the 

positivity of the density matrix, the uncertainty principle, and the zero-point motion. 

However, based on the axiomatic approach of the complete positivity of a 

dynamical map, Lindblad succeeded in obtaining a correct master equation [2], 

which became generally accepted by its successful application to deep inelastic 

collisions by Sandulescu and Scutaru [3]. This equation has been applied to 

numerous other physical systems of interest [4-11]. By a more physical approach, 

this equation has been reobtained by Alicki and Lendi from the dynamics of the 

total system of the system of interest and environment [12]. However, this equation, 

which provides a correct description of the quantum dynamics as a function of the 

system operators, has the deficiency of including unspecified phenomenological 

parameters. In the framework of a microscopic theory, we obtained a quantum 

master equation for a system of fermions in a complex dissipative environment of 

other fermions, bosons, and a free electromagnetic field [13-16]. On this basis, we 

discovered a new physical principle of a spontaneous entropy decrease, as a 

resonance effect, in a molecular system coupled with a coherent electromagnetic 
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field, contrary to the second law of thermodynamics asserting that the entropy can 

only increase [17], and invented semiconductor devices converting the 

environmental heat into usable energy [18-23]. 

It is remarkable that, while the quantum system of interest is a part of our universe, 

also including other physical coordinates, our physical universe itself is only a part, 

a hypersurface of the total universe, also including other coordinates, where this 

hypersurface is curved according to general relativity [24]. While the coupling of a 

system of interest with the rest of the physical universe is described by the 

coefficients of the quantum master equation, the coupling of the physical universe 

with the total universe is also described by a set of coefficients, the metric tensor, 

and mass. In the following chapters of this paper, we show that quantum mechanics 

[25] and general relativity [26] can be understood as a unitary theory [27-32], where 

a wavefunction describes the mass density of a quantum particle in the two 

conjugate spaces of coordinates and momentum and not only the probability density 

of a punctual quantum entity in the coordinate space, as in the conventional 

quantum mechanics.  

In Chapter 2, we describe a quantum particle as a distribution of matter in the two 

conjugate spaces of coordinates and momentum according to general relativity. In 

Chapter 3, we consider a field interacting with a quantum particle by a scalar 

potential conjugated to time and a vector potential conjugated to the coordinates as 

in the Aharonov-Bohm effect and obtain the Lorentz force and the Maxwell 

equations. In Chapter 4, we consider a quantum particle in an electromagnetic field 

with Dirac’s Hamiltonian and Dirac’s operators satisfying the Clifford algebra. We 

obtain a wavefunction in the coordinate space as a propagation operator, depending 

on the coordinates, momentum operator, and electromagnetic potential, applied to 

a time-dependent wavefunction as an integral over the momentum space. For the 

inverse momentum-dependent wavefunction, we also obtain a propagation 

operator, depending on momentum coordinate operators and the vector potential, 

applied to a time-dependent wavefunction as an integral over the coordinate space. 

From the corresponding dynamic equations in the coordinate and momentum 

spaces, which, compared to the similar equations of the quantum field theory [33, 

34], include an additional relativistic function depending on the velocity, we obtain 

wavefunctions for a particle-antiparticle system, such as charged matter 

distributions in the electromagnetic field. In Chapter 5, we obtain the particle matter 

density as the diagonal element over the coordinate states of the density operator 

defined by the time-dependent states. The dynamic equation of the density operator 

takes a form depending on the particle Lagrangian instead of the Hamiltonian as in 

the conventional quantum equation. Thus, we reformulate Fermi’s golden rule with 
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transition matrix elements of the Lagrangian and the densities of the Lagrangian 

states. We obtain the transition rates of a quantum particle in a quasi-continuum of 

states for two possible processes: spin conservation or spin inversion. In Chapter 6, 

we consider Dirac’s formalism of general relativity for a physical universe as a 

four-dimensional hypersurface in the total universe, including a larger number of 

coordinates [24]. With the action integrals for the gravitational field, mass, 

electromagnetic field, and electric charge in Chapter 7, we obtain a generalization 

of the Maxwell equations and Lorentz’s force for general relativity. In Chapter 8, 

we consider a black hole as a large quantity of matter gravitationally concentrated 

inside its Schwarzschild boundary. We find that outside the black hole, the matter 

is attracted, but only up to a distance three times the Schwarzschild radius. Between 

this distance and the Schwarzschild radius, any object is repelled so that it reaches 

this radius only in an infinite time. At the formation moment of a black hole, an 

explosion of the central matter may arise, carrying out this matter towards the 

Schwarzschild boundary. At that moment, a central quantum particle is crushed up 

in the momentum space, exploding in the coordinate space. At the Schwarzschild 

boundary, a quantum particle is crushed up in the coordinate space, and with any 

fluctuation in this boundary, the quantum particle is brought back with a quasi-

infinite momentum. In Chapter 9, we consider our universe as a large black hole in 

the infinite, everlasting universe. This way, its essential characteristics, such as Big 

Bang inflation, the small large-scale matter density, the quasi-inertial behavior of 

distant bodies, the redshift as a gravitational effect, dark matter, and dark energy, 

are unitarily described. In Chapter 10, from a harmonical oscillation of the 

coordinates, described by the covariant d’Alembert equation, under the action of a 

gravitational wave, we derive the gravitational wave equation for the metric tensor 

as a d’Alembert equation with total derivatives. From the wavefunction of a 

quantum particle, essentially depending on this tensor, we obtain the dynamic 

equation of this particle in a gravitational wave. For a metric tensor of the first order 

in the coordinates, the quantum particle is accelerated in the direction of 

propagation of the gravitational wave. For a metric tensor of the second order in the 

coordinates, the quantum particle oscillates in the direction of oscillation of the 

gravitational wave, perpendicularly to its direction of propagation. For a first-order 

metric tensor, we obtain an invariant describing a rotation of this tensor 

perpendicularly to the direction of propagation with spin 2, which we call the 

graviton spin. We also obtain a matter rotation perpendicularly to the direction of 

propagation that we call the particle spin, with a half-integer value for a particle 

that is called a fermion and an integer spin for a particle that is called a boson. In 

Chapter 11, we consider applications to quantum electrodynamics. We obtain 

explicit expressions of the transition rates for two-body collisions and decays. In 

Chapter 12, we consider the four fields acting in nature: the gravitational field as a 
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CHAPTER 2 

Quantum Particle Distributions of Matter 

THE FUNDAMENTAL EINSTEIN AND DE BROGLIE EQUATIONS AND 

THE SCHRÖDINGER DYNAMIC EQUATION 

As it is well-known, quantum mechanics is based on the Planck-Einstein empirical 

theory, asserting that matter is composed of harmonic oscillators, with the universal 

constant 2h   as a proportionality coefficient of the energy  ,H p r E  with 

the frequency 2  , 

E h   , (2.1) 

which are described by wavefunctions of the form 

i i

i2 i
Et Ht

t t

E e e e e 
 

     . 
(2.2) 

According to the de Broglie empirical law, a quantum particle in motion with a 

momentum p is described by a wavefunction, with this momentum proportional to 

the wave vector, 

p k , (2.3) 

which is of the form 

i

i
pr

kr

p e e   . (2.4)
 

Thus, for a free quantum particle, from the wavefunctions (2.2) and (2.4), we obtain 

a wavefunction  

 
i

pr Ht

p E e  


  , (2.5)

 

describing a propagation with the velocity 
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r H

t p

 


 
. (2.6) 

From the wavefunction (2.5), we obtain the Hamiltonian operator 

iH
t





, 

 
(2.7)

 

and the momentum operator 

ip
r


 


. (2.8)

 

From the wavefunction (2.5) with the Hamiltonian operator (2.7), we obtain the 

Schrödinger famous equation standing on the basis of the conventional quantum 

theory, 

     i , , ,r t H r p r t
t
 





. (2.9)

 

In the classical approximation, the Hamiltonian 

       
2

,
2

p
H r p T p U r U r

M
    , (2.10)

 

and the momentum operator (2.8), the Schrödinger equation (2.9) takes the explicit 

form 

     
2 2

2
i , ,

2
r t U r r t

t M r
 

  
   

  
, (2.11)

 

which, in a steady state with an energy E , is  

         
2 2

2
,

2
H r p r U r r E r

M r
  

 
    

 
. (2.12)
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This equation stands at the basis of important application fields of atomic, nuclear, 

and solid-state structures, matter-field systems, and recent developments in open 

systems [1-23]. With the general solution of the Schrödinger equation (2.11), 

 
 

 
i

,

0,
H r p t

r t e r 


  (2.13) 

from the matrix elements of an arbitrary operator A , 
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One obtains the time-dependent Heisenberg operator  

 
   

i i
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A t e Ae

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which satisfies the Heisenberg equation 
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From this equation for the coordinates and momentum operators, with the 

commutation relation 
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(2.16)
 

We obtain the mean-value equations 
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CHAPTER 3 

Electromagnetic Field 

QUANTUM PARTICLES IN THE ELECTROMAGNETIC FIELD AND 

THE PARTICLE-FIELD HAMILTONIAN 

Since the electromagnetic field is much stronger than the gravitational one, we 

consider a charged quantum particle in a flat space, with an electric charge e  

interacting with an electromagnetic field with an electric potential  U r  and a 

vector potential  ,A r t ,  described by wavefunctions of the form (2.43), 

 
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(3.1) 

with a Lagrangian of the form (2.41), for the electric potential  U r  conjugated to 

time, and the vector potential  ,A r t  conjugated to the coordinates, as in the 

Aharonov-Bohm effect, 

     
2

2

2
, , 1 ,

r
L r r t Mc eU r eA r t r

c
     . (3.2)

 

In this case, the canonical matter field momentum 

     
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

, (3.3)
 

is the sum of the electromagnetic momentum  ,eA r t  with the mechanical 

momentum 
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2

2
1
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p
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

. (3.4)
 

With these expressions, we obtain the matter-field Hamiltonian 
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(3.5) 

with the energy formed from the mechanical energy, proportional to the rest energy 
2Mc   and Lorentz’s factor, 

2

2

2
1

m

Mc
E

r

c





, 
 

(3.6)
 

and the potential energy of the particle in the electromagnetic field 

   eU r eU r , (3.7) 

where, for the convenience of further calculations, we used the notation  

, mE E cE , that we call the normalized energy, which in fact, has the dimension of 

a momentum. To obtain the canonical expression of the Hamiltonian (3.5), from 

(3.4), we calculate the normalized velocity as a function of the momentum, 

2 2 2

r p

c M c p



, 

 

(3.8)
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as the denominator of the Hamiltonian (3.5) is 

2

2 2 2 2
1

r Mc

c M c p
 


. 

 

(3.9)
 

We obtain the canonical expression of this Hamiltonian, 
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(3.10) 

where we used the notations  ,H P r  for the normalized Hamiltonian, and E  for 

the normalized energy. From the conservation of the energy E , which means a 

constant term 

     
2

2 2 2, 2 , , constP eA r t P ePA r t e A r t       , 
 

we obtain a conservative canonical matter-field momentum P  perpendicular to the 

vector potential  ,A r t  as a vector rotating with a constant amplitude  ,A r t , 

   , 0, , constPA r t A r t  . (3.11) 

At the same time, from the conservation of the canonical matter-field momentum 

(3.3), we notice that the particle momentum p , of the quantum particle in the 

electromagnetic field includes a rotational component  ,eA r t  perpendicular to 

the translational component P . With the Hamiltonian (3.10), the wavefunctions 

(3.1) of a quantum particle in an electromagnetic field are 
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CHAPTER 4 

Quantum Particles in an Electromagnetic Field 

QUANTUM PARTICLE WAVEFUNCTIONS IN ELECTROMAGNETIC 

FIELD AND DYNAMIC EQUATIONS 

We consider a quantum particle in an electromagnetic field with the wavefunction 

(3.12) 
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(4.1) 

as functions of the matter-field Hamiltonian (3.10), with Dirac’s relativistic 

Hamiltonian and the canonical matter-field momentum (3.3), 
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(4.2)
 

depending on the Dirac spin operators  , which satisfy the anticommutation 

relations 

  2, 2 , 1        . (4.3) 

For a free quantum particle, we consider the momentum four-vector 

 0 , jp p H p   , of the invariant length of the rest momentum, 

2 2 ˆ̂
1Mc H p p p g p p p  

        , 
(4.4) 

on the Dirac operators satisfying the Clifford algebra 
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 , 2g     , (4.5) 

which, for a flat space, 

00 11 22 331, 1, 0g g g g g 

 
      , (4.6) 

is 
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2 20 0 00, 0, , 0, 1, 1i i j i iig g            . (4.7) 

It is remarkable that the operators   are functions of the operators  , 

0 †

0 0 0, ,i i i

i i             , (4.8) 

which with the algebra (4.3) leads to the Clifford algebra (4.7), 
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(4.9)

 

With the Hamiltonian (4.2), the particle wavefunction (4.1) in the coordinate space 

takes the form 
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(4.10)
 

as a time-dependent wavefunction 
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with a propagation operator of the particle in the electromagnetic field, depending 

on the coordinates, 
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as the product of the particle propagation operator  

i
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with the field propagation operator 
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With the Hamiltonian (4.2), the wavefunction (4.1) in the momentum space with 

the wavefunction (4.10) in the coordinate space, 
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takes the form  
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of a time-dependent wavefunction 
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CHAPTER 5 

Quantum Particle Transitions in the Electro-

magnetic Field and Fermi’s Golden Rule 

THE DENSITY MATRIX OF A QUANTUM PARTICLE AS A 

DISTRIBUTION OF MATTER 

The mass (2.38) of a quantum particle, in an electromagnetic field with a 

wavefunction (4.10), is obtained as an integral of the matter density 

           
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

P P  
(5.1) 

which is the product of the mass with a real density function, as the length of the 

time-dependent wavefunction four-vector 

     †, , ,t tr t r t r t   . (5.2) 

This function takes the form of a diagonal matrix element over the coordinate states 
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
 

(5.3) 

of the density operator 

  t tt   . (5.4) 

We consider a quantum particle in an electromagnetic field, with a time-dependent 

wavefunction satisfying the dynamic equation of the form (4.21) in the coordinate 

space, with a Lagrangian  ,L P r and a Hamiltonian  ,H P r , 
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With the normalization relation 

3d 1r r r  , (5.6) 

we consider the transition matrix element of an arbitrary operator A , from a state 

  with a wavefunction r  , to another state   with a wavefunction r  , 

d dA r r r A r A r r        . (5.7) 

From this expression, we obtain the relation between the two representations of this 

operator, as an operator applied to the state vector  and an operator applied to 

the wavefunction r  , 

r A A r  . (5.8) 

With this expression, the dynamic equation (5.5) takes the form 
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with its conjugated form 
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By multiplications of these two equations with the conjugate state vectors, 
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(5.11) 

and summation of the two equations, we obtain the dynamic equation of the density 

operator (5.4), 
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FERMI’S GOLDEN RULE FOR QUANTUM PARTICLE TRANSITIONS 
IN LAGRANGIAN STATES  

We consider the dynamic equation (5.12) for a system with the Hamiltonian 

 0 ,H P r and a perturbing potential  V r with an arbitrary strength  ,  
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which, in the interaction picture,  
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takes the simpler form 
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Taking into account the effect of this perturbation as a series expansion of the 

density operator with the strength of this perturbation, 

                         0 1 2 0 1 22 2i
... , ...t t t V t t t t

t
        


         
   

 (5.16) 

we obtain a system of equations for the terms of this operator generated by this 

perturbation, 

   

         

         

0

1 0

2 1

0

i
,

i
,

...

t
t

t V t t
t

t V t t
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

 

 







 
 


 
 

 

 

 
(5.17)

 

 

with the solutions 
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CHAPTER 6 

Dirac’s Formalism of General Relativity 

TIME-SPACE INTERVAL AND THE METRIC TENSOR 

The fundamental law of general relativity, and of physics in general, is the four-

dimensionality of the physical space, with the time-space coordinates 

𝑥 = (𝑥𝛼) = (𝑥0 = 𝑐𝑡, 𝑥1, 𝑥2, 𝑥3) = (𝑥0 = 𝑐𝑡, 𝑥𝑖), (6.1) 

satisfying the invariance condition of any time-space interval ds , 

2 2 2d d d d d ds c g x x g x x   

  
 

    , (6.2) 

for any transformation between two arbitrary systems of coordinates, S  , with the 

metric symmetric tensor g , and S  , with the metric symmetric tensor g   . For 

the two inverse transformations, 

,

, , ,

d d d

d d d d .

x
x x x x

x

x
x x x x x x x

x


   




      

  


 

  

 






 


 

 

(6.3) 

we obtain the following relationship: 

, ,x x  

  


  . (6.4) 

For a flat space, defined by a time-space interval (6.2) of the form 

2 2 2 2 2 2 2 22 0 1 2 3 2 0 1 2 3d d d d d d d d d ds x x x x s x x x x
            , (6.5) 

we consider two systems of coordinates with parallel axes moving to one another 

in the direction 
1 1x x


, as the transformation relations between these coordinates 

are of the same form: 
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 

 

0 0 0 1

1 1 0 1

2 2

3 3

,

,

.

x x x x

x x x x

x x

x x

 

 













  

 

 (6.6)

 

With these expressions, from the equality (6.5) of the two time-space intervals,  

   

2 2 2 2

2 2

2 2 2 2

2 0 1 2 3

2 2
0 0 0 1 1 0 1 1 2 3

,0 ,1 ,0 ,1

0 1 2 3

d d d d

d d d d d d

d d d d .

s x x x x

x x x x x x x x x x

x x x x

     

   

   

   

     

   

 

 

 

we obtain the system of the following equations: 

0 2 1 2

,0 ,0

0 2 1 2

,1 ,1

0 0 1 1

,0 ,1 ,0 ,1

1

1

0.

x x

x x

x x x x

 

 

   

 

  

 

  

 

(6.7)
 

The transformation of the differentials of the two time-space coordinates in motion, 

0 0 0 0 1

,0 ,1

1 1 0 1 1

,0 ,1

d d d

d d d ,

x x x x x

x x x x x

 

 

 

 

 

 
  

 

with the first two equations (6.7), is 

0 1 2 0 0 1

,0 ,1

1 1 0 0 2 1

,0 ,1

d 1 d d

d d 1 d .

x x x x x

x x x x x

 

 

 

 

  

  
  

 

(6.8)
 

At the same time, with the third equation (6.7),  

0 21
,1,10 1 1

,1 ,0 ,00 1 2
,0 ,0

1

1

xx
x x x

x x



  

 


 


. 
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we obtain the equation  

0 2 1 2

,1 ,0

1 1
1 1

x x 

   , 
 

which reduces to the equality 

0 1

,1 ,0x x  . 
(6.9) 

With this expression, equations 6.8 become 

1

,00 1 2 0 1 1 1 2 0 1

,0 ,0 ,0
1 2

,0

1

,01 1 0 1 2 1 1 2 1 0

,0 ,0 ,0
1 2
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d 1 d d 1 d d
1

d d 1 d 1 d d .
1
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x x x x x x x x

x

   

  



   

  



 
      
  

 
      
  

 

 

 

(6.10)
 

From these equations, we obtain the velocity of the system S   in the system S  as 

1

11
,0

0 1 2
d 0 ,0

d

d 1x

xx
v

x x



 

 


, (6.11)
 

and the coefficient of equation (6.10) is a function of this velocity, 

1 2

,0
1 2 2

,0

1 2

,0

1 1
1

1
1

1

x
x v

x







  





. 
(6.12)

 

With these expressions, we obtain the Lorentz transformation: 

0 1
0

2

1 0
1

2

d d
d

1

d d
d .

1

x v x
x

v

x v x
x

v

 

 











 

 

(6.13) 
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CHAPTER 7 

Quantum Particles in Gravitational and 

Electromagnetic Fields 

GRAVITATIONAL AND ELECTROMAGNETIC FIELDS’ ACTIONS 

We describe the interaction of a quantum particle with an electromagnetic field in 

the curved space of a gravitational field, by the invariant action integrals with the 

gravitational field, 

4dgI R g x  , (7.1) 

mass, 

4dmI g x   , (7.2) 

electromagnetic field, 

4dI F F g x

  , (7.3) 

the function of a potential A , 

, , : :F A A A A           , (7.4) 

electric charge  

4dqI A j g x

   , (7.5) 

the function of the charge flow density,  

j v  , (7.6) 

and the electromagnetic potential A . 
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GRAVITATIONAL ACTION INTEGRAL 

For the gravitational field action integral (7.1), from the expression (6.86) of the 

curvature tensor,  

, ,R      

               ,  

by the contraction   , we obtain the Ricci tensor 

, ,R R R      

                   , (7.7) 

with the symmetry of the second term obtained from expression (6.74), 

 ,
,

ln g

 


   .  

With the Ricci tensor (7.7), we obtain the total curvature as the difference of two 

terms, 

R g R R L



   , (7.8) 

i.e., the first-order term, 

 , ,R g   

   

    , (7.9) 

and the second-order term, 

 L g     

        . (7.10) 

In the gravitation action integral (7.1), by the partial integration, we eliminate the 

differentials of the Christoffel symbols in the term (7.9), 

       
, ,

, , , ,
,

R g g g g g

g g g g g g g g

   

   

       

   
   

       

         
 

 

 (7.11) 

leading to the reduction of this term into an expression depending only on 

derivatives of the metric tensor, 
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   
, ,

R g g g g g   

 
 

       . (7.12) 

With the expressions (6.74), 

 
,

g g




    , (7.13) 

and (6.50), we also eliminate the differentials of the metric tensor in the first term, 

 

 

 

, ,,
,

,

g g g g g g g g g g g g

g g g g g

g g g g

      

   

   

  

     

  

          

       

       

 

 

(7.14)
 

and by an index contraction, also in the second term, 

 
,

g g g g    

 


      g  

   g g g 

     . (7.15)
 

With these terms, from expressions (7.12) and (7.10), we obtain 

 
 

 

2

2 2 ,

R g g g g

g g

g L

         

     

     

   

    

   

           

     

     

 

 

(7.16)
 

as the total curvature (7.8) is 

2R R L L L L     . (7.17) 

With this expression, the gravitational action (7.1) is of the form of a time-integral 

4 0 1 2 3d d d d dgI x x x x x   L L , (7.18) 
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CHAPTER 8 

Black Hole Matter Dynamics 

PARTICLE DYNAMICS IN A BLACK HOLE 

In equations (6.166) and (6.167), we remark the two singularities, 0r  , and the 

Schwarzschild radius 0 2r r m  as the integration constant (6.146) of the 

differential equation (6.140), given by the mass of the matter inside the boundary 

determined by this radius, which is the source of the gravitational potential (6.148). 

We consider a radial motion 

2 3d d
0

d d

x x

s s
  . (8.1)

 

According to the geodesic equation (6.83) for the time coordinate acceleration in 

the time-space interval,   

 

2 0 0 1 1 0 0 1
0 0 00

01 10 0012

0 1 0 1
00 00

00,1 01,0 01,0 00,1

0
00 00

d d d d d d d
2

d d d d d d d

d d d d

d d d d

d d
.

d d

x x x x x x x
g

s s s s s s s

x x x x
g g g g g g

s s s s

g x
g

s s

     

     

 

 

 

(8.2) 

With the relation (6.166) between the contravariant and covariant metric elements, 

00

00

1
g

g
 , (8.3)

 

we obtain the equation 

2 0 0 0

00
00 002

dd d d d
0

d d d d d

gx x x
g g

s s s s s

 
   

 
, (8.4)

 

for the time coordinate velocity 
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0
0 d

d

x
v

s
 . (8.5)

 

By integration, we obtain the equation 

0

00 0g v k , (8.6) 

with the integration constant 0k . With the fundamental equation (2.31),  

2 20 1

00 11 1g v g v  , (8.7) 

for a particle attracted in the central gravitational field considered here, we obtain 

the radial velocity in the proper time,  

1/2
0

1 0

11

1
0

k v
v

g

 
   

 
. (8.8)

 

With the relation obtained from the Schwarzschild expression (6.166) for the two 

metric elements considered here, 

00

11

1 2
1

m
g

g r
    , (8.9)

 

and equation (8.6), we obtain the radial velocity 

 
1/2

1/2
1 2 2

0 00 0

2
1

m
v k g k

r

 
       

 
, (8.10)

 

as the velocity of the time coordinate in the proper time is 

0 0

2
1

k
v

m

r





. (8.11)
 

From these expressions, we obtain the particle velocity in the local time,  
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1/21 1
2

00 0

0

d 1 2 2
1 1

d

x v m m
k

x v k r r

   
        

   
. (8.12)

 

With the integration constant 0 1k  , for satisfying the boundary condition  

1

0

d
lim 0

dr

x

x
 . (8.13)

 

The radial velocity (8.12) takes the explicit form 

1/2

0 0

0

d
1

d

r rr

x r r

  
    

  
, (8.14)

 

depending on the Schwarzschild radius 0 2r m , which, according to (6.146), is 

27 1

0 2
2 2 1.4849 10 m KgG G

G
r m M M

c

       
. (8.15)

 

In a gravitational field with spherical symmetry of a body with the mass GM , we 

obtain a particle acceleration 

2

1/22
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1/2 1/2 1/2

0 0 0 0 0 0 0
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          

      
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1
1 .
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r r
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(8.16)

 

For a smaller mass GM , as the mass of our planet, 
245.972 10 KgGM   , with a 

Schwarzschild radius (8.15), 
27 24 3

0 1.4849 10 5.972 10 8.868 10 mr        , 
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CHAPTER 9 

Our Universe as a System of Visible Bodies 

Our previous results, namely, the beginning of a black hole with an explosion of 

the central matter, a bang followed by a continuous displacement of the inside 

matter towards the Schwarzschild boundary, but reaching this boundary only in an 

infinite time, suggest that our universe, characterized by Big Bang, inflation, and a 

small large-scale density, is, in fact, a large black hole in the total everlasting 

universe. From the radius of our universe as a black hole, 0 2r m , evaluated as 

264.4 10 m  [37], significantly larger than the radius of the observable universe, 

261.3055904 10 m , we obtain the total mass of this universe, 
2

533.0 10 KgG

c
M m

G
  

, mainly situated in the neighborhood of the Schwarzschild boundary, which is 

somehow in agreement with the empirical evaluation of the mass of the observable 

universe, 
531.5 10 Kg   [37]. Of course, the gravitational motion described by 

equations (8.34) - (8.50) is strongly perturbed by the electromagnetic and nuclear 

interactions, strongly excited by the explosion of the central matter described by 

the velocity (8.18), colliding the matter around, and spreading this matter 

throughout the whole universe. This matter, mainly traveling towards the 

Schwarzschild boundary of the universe but reaching this boundary only in an 

infinite time, is slightly decelerated in the total gravitational field of this universe, 

according to equation (8.19) for a rather large radius, 

2 2

2 2

d 2 2
3 1 2 1

d

r m m mc

t r r r

    
        

    
. (9.1)

 

For a particle with a radius 0 / 2r r m  , we obtain an acceleration approximately 

10 orders of magnitude smaller than the acceleration at the surface of Earth, 

2 2 16 2 2
9 2

2 26

d 9 10 m s
5 5 2.45 10 ms
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r c

t m


 

      


. (9.2)
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Of course, this acceleration is about 6 orders of magnitude smaller than the Earth's 

acceleration Ea  around the Sun on its trajectory with the radius 
9150 10 mEr   , 

which, with the velocity 

9
4 12 2 150 10 m

3 10  m s
1y 365d 24 h 60 min 60 s

E
E

r
v

   
   

  
, (9.3)

 

is 

2 8 2 2
3 2

9

9 10 m s
6 10  m s

150 10 m

E
E

E

v
a

r


 

   


, (9.4)
 

which is strongly perturbed by the large systems of celestial bodies traveling in all 

directions through the universe. These bodies, with external interactions much 

stronger than the gravitational interactions, spreading throughout the whole 

universe, tend to cancel the universal acceleration (9.2). When the Big Bang-

Inflation process is finished, the inside parts of the large black hole of our universe, 

formed of celestial bodies as are known now, begin to concentrate gravitationally, 

the initial energy of the Big Bang being dissipated by the strong electromagnetic 

and nuclear interactions. Evidently, the visible universe, corresponding to the age 

of our universe with the light velocity, is much smaller than the internal universe 

corresponding to this age with the much larger velocity of the Big Bang-Inflation 

process with the radius 0 0Ir r . An observable quantity is a redshift, which is a 

decrease in the frequency of the light with frequency 0 emitted by an atom at the 

radius 2r in the visible universe. The smaller frequency 1   at a smaller radius 1r , 

where this frequency is measured, can be understood from the Schwarzschild metric 

tensor (6.166) with the local time variation (8.44), with a Schwarzschild radius 0 Ir  

for the gravitational field of the internal universe,  
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(9.5)

 

which means a redshift 01 0 1 0 1 2 2 0 2 21                     

of the light emitted at the distance 2 1r r ,  

0 0 0 0 0 2 1
21 2 1

2 1 1 2 1 2
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1 1I I I I Ir r r r cr r rc c c

s r s r s r r s r r
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. (9.6)

 

The redshift variation with the distance of the emitting atom 2 1r r , 

01 021

2

1 1 1

d 2d

d d

Icr

r r s r

  
  

  
, as a gravitational effect,  is much larger than the redshift 

variation in a linear approximation 021

2 1 2

2d
,

d

Icr

r s r r



 

which is in agreement with a 

phenomenon considered in conventional cosmology as an effect of a dark energy, 

which would increase the expansion of our universe at far distances 2r , according to 

the Doppler effect. Here, we have taken into account that the velocity of our galaxy, 

much closer to the center of the universe, is much larger than the velocity of a far 

galaxy, approaching this center with a much smaller velocity.  

We consider a quantum particle in the proper time  , 
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(9.7) 

with the Lagrangian 
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CHAPTER 10 

Gravitational Wave, Graviton Spin, and Particle 

Spin 

GRAVITATIONAL WAVE 

Following Dirac [24], we consider a gravitational wave in the vacuum as a system 

of harmonic coordinates, which, by definition, are scalars satisfying the covariance 

of the d’Alembert equation, 

: 0x  , (10.1) 

with the explicit form  

   : , , ,:
0g x g x g x x       

    
    . (10.2) 

Since  , ,
0x 

  
  , we obtain the coordinate variations as functions of the 

gravitational curvature, as described by the Christoffel symbols, 

0g  

  , (10.3) 

or 

 , , ,

1
0

2
g g g g g 

           , (10.4)
 

which is 

, ,

1
0

2
g g g

   

 
  

 
. (10.5)

 

By differentiating this equation with x and neglecting the second-order terms, we 

obtain a second-order differential equation as: 
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, ,

1
0

2
g g g

   

 
  

 
, (10.6)

 

and, by the interchange of the indices  and  ,  the similar equation can be written 

as: 

, ,

1
0

2
g g g

   

 
  

 
. (10.7)

 

From the sum of these equations, with the null Ricci tensor (6.136), a gravitational 

field propagating in the vacuum can be described, which, with these notations, is 

calculated as: 

, , , ,2 0R g g g g g

        

 
     

 
. (10.8)

 

For the description of the gravitational waves, we obtain the d’Alembert equation 

with total derivative for the metric tensor, which is the gravitational potential, 

similar to the d’Alembert equation (10.1) - (10.2) with covariant derivatives in 

harmonic coordinates, 

, 0g g

   . (10.9) 

QUANTUM PARTICLES IN A GRAVITATIONAL WAVE 

We consider a quantum particle in a gravitational wave as: 
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(10.10) 

with the Lagrangian function as: 

  2,L x x Mc g x x   

  . 
(10.11) 
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For simplicity, by taking into account that such waves could be generated only by 

heavy celestial bodies, we consider only slow velocities, 

0 1ix x . 
(10.12) 

This means that the velocities in the local time t  are approximately equal to the 

velocities in the proper time  ,  x v  , as the expression (10.11) is the square root 

of the fundamental invariant (2.31), 

0 1I g v v g x x   

   . (10.13) 

From (10.11), with (10.13) and a time-space diagonalization for the momentum in 

the local time, we obtain the simpler expression as: 
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(10.14) 

The force acting on a quantum particle in the gravitational field, as a time derivative 

of the momentum (10.14), is also obtained as the wave/group velocity of the 

wavefunction (10.10) in the momentum space, with the Lagrangian (10.11) and the 

approximate relation (10.13),  

2 2
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Multiplying this expression with 
kjg and taking into account the inequality (10.12), 

we obtain the gravitational acceleration proportional to the gradient of the metric 

tensor element 00g as a gravitational potential as follows: 

00,

1

2

k kj

jx g g . (10.15) 
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CHAPTER 11 

Applications to Quantum Electrodynamics 

ELECTROMAGNETIC INTERACTION BY PHOTON EXCHANGE 

In agreement with quantum electrodynamics [34], the electromagnetic interaction 

between two charged quantum particles can be conceived by an exchange of 

photons, as described in Chapter 3. The dynamics of a particle, in the proper time 

of the collisional time-space domain, can be described by the dynamic equation 

(2.54) with a null velocity, 0r  , as a Schrödinger-like equation, with a 

Hamiltonian 0H  for a basis of eigenstates k , 

0 ,k k k j k jkH E      , (11.1) 

 and an interaction potential  ,V r t , 

     0i , , ,r t H V r t r t
t
 


    

, (11.2) 

with a solution 

     
i

,
kE t

k k

k

r t c t r e  . (11.3)
 

Depending on the dynamic amplitudes  kc t , from (11.2), we obtain the dynamic 

equation as: 

i i i i

0

d
i +i

d

k k k kE t E t E t E t
k

k k k k k k k k

k k k

c
e E c e H c e Vc e
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 
   

 
   , (11.4)

 

which, with the eigenstate equation (11.1), is 

 
i i

d i

d

k kE t E t
k

k k k

k k

c
e c t V e

t
   , (11.5)
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For the final state f , from the scalar product f k , we obtain the time-variation 

of the corresponding dynamic amplitude,  

 
 

id i

d

f kE E tf

k

k

c
c t f V k e

t

 

  , (11.6)
 

as a sum of transitions k f  determined by the transition matrix elements of 

the interaction potential, f V k , with the dynamic amplitudes  kc t . These 

amplitudes can be readily obtained from equation (11.5) in the first-order 

approximation for the initial state i ,  

 
i i i
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d
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 

  . 
 

By the scalar product with the state k and time integration, we obtain the dynamic 

amplitudes  

 
 

 
i
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i
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k i

k i

E E t
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e
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 , 

 

(11.7)
 

as determined by the transition matrix elements of the interaction potential  

k V i . With this expression, the time-variation of the final state dynamic 

amplitude (11.6) takes the form as 

   
i id 1 1

d

f i f iE E t E E tf

fi

k i k

c f V k k V i
e T e

t E E

   

   


 , (11.8)
 

depending on the transition matrix element 

fi

k i k

f V k k V i
T

E E



 . (11.9)

 

From (11.8), we obtain the dynamic amplitude of the final state f  reached in the 

time T , 
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T
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which means a transition probability 

   
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With a time origin at the middle of the transition time interval T  and the transition 

frequency 

f iE E



 , 

(11.12) 

we obtain the transition rate in a final state f , 
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With this expression, we obtain the transition rate to all the accessible final states 

as a function of the density of the n  final state as 
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(11.14) 

which is the Fermi’s golden rule with the transition matrix element (11.9). This 

matrix element is considered for a transition i f with an intermediate state k
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CHAPTER 12 

Grand Unified Theory – Gravitational Electro-

magnetic- Flavor- and Chromo Dynamics as a 

Single Theory 

GRAVITATIONAL, ELECTROMAGNETIC, WEAK, AND STRONG 

FIELDS  

In chapter 2, we describe a black quantum particle in the two conjugate spaces of 

the coordinates  ix  and momentum  jp , by the distribution of matter amplitudes 

(2.34), 
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(12.1) 

in the proper time  , depending on the general relativistic Lagrangian (2.32), 

  2,L x v Mc g v v   

  , (12.2) 

which, in the metric tensor g , includes the gravitational field. However, since the 

electromagnetic field is much stronger than the gravitational one, in chapter 3, we 

describe a particle with an electric charge e  in the approximation of the special 

relativity by wavefunctions of the same form 
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(12.3) 
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with the particle field Lagrangian, including an electromagnetic field with the 

potentials    , ,U r A r t , 
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and the momentum  

   , , ,P L r r t p eA r t
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

, (12.5)
 

as the sum of the mechanical momentum 
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, (12.6)
 

with the electromagnetic momentum  ,eA r t . From the conservation of the particle-

field momentum ,P and energy E , with the canonical Hamiltonian, 
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(12.7) 

for the electromagnetic field dressing the quantum particle, called photon, we 

obtained the properties  
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With these conservative functions, the two wavefunctions (12.3) take the form 
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with the property 
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which means a description of the particle matter distribution. 

In the two-dimensional flavor space, we distinguish the up and down states of a 

quark, 
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With electric charge  

2

3
ue e  and 

1

3
de e  , (12.12)

 

in the linear electromagnetic space, and the flavor charges 
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in the flavor space. In this two-dimensional space, we define a basis of 22 1 3   

Hermitian operators, represented by the Pauli pseudospin matrices, 
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CHAPTER 13 

Conclusion 

We reformulated quantum mechanics for particles as distributions of matter with 

intrinsic mass. First of all, we put on the same footing, the two empirical theories 

of Planck-Einstein and de Broglie, which describe oscillations in time and space of 

a quantum particle. In this way, we obtained a description of a quantum particle by 

two conjugate wave packets in two conjugate spaces with the coordinates and 

momentum, which was in perfect agreement with the Schrödinger equation only 

for the steady states. Essentially, to be in agreement with the fundamental Hamilton 

equations, in these wave packets, we had to consider the frequency proportional not 

to the Hamiltonian as in conventional quantum mechanics but to the Lagrangian. 

For an electron, this proportionality of the wavefunction frequency to the 

Lagrangian is easily understandable from Einstein’s law of the photoelectric effect: 

the energy E    of a photon extracting an electron from an atom has to cancel 

the negative potential energy of this electron in the atom,   0,U r  by providing 

the positive energy  U r  to extract the electron, plus the kinetic energy T  of this 

electron, which means a resonant process, with the frequency   /T U    of the 

electron time-oscillation. Using the relativistic Lagrangian, we obtained 

wave/group velocities equal to the wavefunction coordinate velocity, which means 

that these waves describe the motion of the wave packet as a whole, which further 

means that these waves represent the matter dynamics. More than that, this means 

that the integral of the matter density of this wave packet, as an amplitude, must be 

the same as the mass in the Lagrangian of the phase describing the dynamics of this 

wave, which is the mass quantization. The two conjugate wavefunctions are 

described by Schrödinger-like equations in the two conjugate spaces of the 

coordinates and of the momentum but with additional terms depending on velocity. 

As a dark quantum particle is described by two conjugate wave packets in two 

conjugate spaces of the coordinates and momentum, with time-dependent phases 

proportional to the relativistic Lagrangian, we describe a charged particle 

interacting with an electromagnetic field by additional Lagrangian terms, with an 

electric potential conjugated to time, and a vector potential conjugated to the 

coordinates. From the wavefunction in the momentum space, we reobtained 

Lorentz’s force as a function of electric and magnetic fields satisfying the Maxwell 



Conclusion Open Quantum Physics, Vol. 4    217 

 

equations. For the two dynamic equations in the two coordinate and momentum 

spaces, we reobtained the two Dirac equations for a free particle of the quantum 

field theory, but with an additional relativistic function depending on the velocity 

and the physically understandable solution of a particle-antiparticle system in an 

electromagnetic field, as two finite distributions of matter and antimatter departing 

one another. Based on these equations, we reformulated the Fermi golden rule, 

including the velocity dependence of the matrix elements and of the density of 

states, and calculated the transition densities for the two possible processes, with 

spin conservation and with spin inversion. 

We considered Dirac’s formulation of general relativity of the physical space as a 

hypersurface in the total space, including a larger number of dimensions. On this 

basis, we describe the matter dynamics at the formation of a black hole. We 

obtained that, according to the general theory of relativity, the matter has not the 

tendency to concentrate at the black hole central part, as it is asserted in the 

conventional cosmology, but at the Schwarzschild boundary, which is physically 

more understandable: when a sufficiently large quantity of matter gravitationally 

concentrates inside the Schwarzschild boundary, the smaller central part of matter 

moves towards the larger matter part of the spherical crown surrounding the central 

region – in a gravitational interaction the lighter bodies move towards the heavier 

bodies. According to the general theory of relativity, the formation of a black hole 

begins with a bang, an explosion of the central part, with a velocity much larger 

than the light velocity, as the inner matter travels towards the Schwarzschild 

boundary but reaches this boundary only in an infinite time. We showed that at the 

formation of a black hole, a central quantum particle is crushed up in the momentum 

space, exploding in the coordinate space. Near the Schwarzschild boundary, a 

quantum particle is crushed up in the coordinate space, with a quasi-infinite 

momentum variation, as a force bringing the particle towards this boundary from 

the inside and from the outside of the black hole. A far outside the particle is 

attracted towards the black hole, but only up to three times the Schwarzschild 

radius. From the three times the Schwarzschild radius up to the Schwarzschild 

radius, the particle is repelled, reaching this radius with the null velocity and the 

null acceleration in an infinite time. In perfect spherical symmetry, no particle 

enters the black hole, and no particle exits the black hole. Of course, in the realistic 

case of a strongly perturbed black hole, as in collisions with outside celestial bodies, 

the Schwarzschild boundary is passed from the outside and from the outside. 

Accordingly, an old black hole, as the distribution of matter at the Schwarzschild 

boundary becomes thinner and thinner, finally dies, with this matter being spread 

in the surroundings by its collision with the surrounding bodies. 
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The black hole dynamics suggested that our universe is, in fact, a large black hole 

in the physical universe, spreading beyond its Schwarzschild limit as an infinite 

space inaccessible to our observations. This way, we understand the Big Bang and 

the inflation of our universe according to general relativity. Due to its large radius, 

we considered, according to the previous investigations, the acceleration of a body 

in the total gravitational field of our universe is ten orders of magnitude smaller 

than the gravitational acceleration on Earth, which means very small accelerations 

between any two observable distant bodies, thus behaving as quasi-inertial bodies. 

From the invariance of the time-space interval, we obtained the frequency variation 

of the light emitted by atoms placed at different distances in our universe, as the 

gravitational effect in the visible universe of matter remained after a long Big Bang-

Inflation process. For a quantum particle in our universe, we calculated the 

momentum as a function of radius by two methods, taking this particle in the proper 

time, and in the local time, and the total gravitational force in the universe. For a 

central particle, at the beginning of our universe, this force takes an infinite value, 

corresponding to the Big Bang. For a quantum particle fluctuating near the 

Schwarzschild boundary, this force takes large values, bringing the particle back to 

this boundary. Of course, after Big Bang, the total gravitational field of our universe 

has been strongly perturbed by nuclear and electric forces, as it is described by the 

present cosmology and astrophysics. Unlike the conventional science regarding our 

universe, Big Bang does not refer to the total universe with the total matter initially 

concentrated at a point but to the central part of a large agglomeration of matter, 

which, taking a spherical symmetry inside the Schwarzschild boundary, provokes 

an explosion of the central part, as the inner part of this matter receives gravitational 

energy towards the Schwarzschild boundary. However, in strong collisions, with 

external forces much stronger than the gravitational ones, this gravitational energy 

is dissipated, a system of bodies that we call the internal universe remaining inside 

the Schwarzschild boundary. The cosmological redshift can be understood 

according to general relativity only by taking into account the gravitational 

attraction between the bodies of the internal universe as a frequency shift due to the 

larger velocity of the observer, supposed to be placed closer to the universe centre, 

than the slower velocity of a light emitting body placed at a far distance from this 

centre. When, by gravitational attraction, the internal universe will take a 

sufficiently spherical symmetry, a new Big Bang-Inflation process will occur, 

sending a part of the inside matter towards the Schwarzschild boundary with a 

velocity much larger than the light velocity and a new internal universe will be 

formed by the matter bodies remaining inside. In this time, the Schwarzschild 

boundary will become thinner and thinner by outside collisions, being finally 

dispersed in the infinite everlasting universe – the definite end of our universe.  
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