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PREFACE

This book summarizes the results of more than 20 years of research on a fungus, Dec 1, which
was isolated in my laboratory, as a candidate to decolorize colored substances that are visible
xenobiotic pollutants and cause serious environmental problems.

Various studies have attempted to improve or change environments using biological activity,
but practical examples of this technique are rare. This is mainly because of the lack of basic
information and the lack of optimization in reactor systems. In this book, one possibility of
using a single microorganism to resolve environmental issues related to colored substances is
demonstrated.

This book is composed of six chapters, and various aspects of isolated Dec 1, including its
scientific analysis and the optimization of the engineered production of enzymes responsible
for decolorization, are provided in it.

The features and characteristics of Dec 1 included in this book are as follows:

1. Dec 1 has been isolated as a fungus for dye decolorization. It has been finally identified as
the non-white rot fungus, Thanatephorus cucmerins Dec 1.

2.  The  decolorization  spectrum  of  Dec  1  is  vast,  indicating  that  Dec  1  produces  multiple
enzymes that are responsible for decolorization.

3. New peroxidase DyP, Aryl Alcohol Oxidase (AAO), Manganese Peroxidase (MnP), and
Versatile Peroxidase (TcVP1) have been purified from Dec 1 and characterized.

4.  The  gene,  dyp,  has  been  cloned  from  Dec  1  and  expressed  in  the  fungus,  Aspergillus
oryzae.

5. Recombinant DyP (rDyP) has been shown to be almost identical to DyP.

6.  The  unique  characteristics  of  DyP  have  been  verified  using  crystallization  and  X-ray
analysis.

7.  The  immobilization  of  rDyP  has  been  found  to  be  successful  only  when  using  a  new
mesoporous material as a carrier.

8.  The  enhanced  production  of  DyP  has  been  attempted  using  liquid  culture,  Solid-state
Culture (SSC), repeated-batch culture, and fed-batch culture.

9. To overcome the problems involved in these culture methods, an Air Membrane Surface
(AMS) reactor has been introduced, and increased rDyP production has been confirmed.

10. The final level of rDyP production has been found to be more than a half million-fold
higher than the original level of DyP production by T. cucumeris Dec 1.

11. Dec 1 has demonstrated efficient decolorization of molasses waste, kraft pulp bleaching
effluent, and oxygen-delignified bleaching effluent.

12. As substrates for Dec 1 growth, complex media, including rice bran powder, wheat bran

  i



 ii

powder,  and  molasses,  have  been  used,  and  the  advantages  of  each  medium  have  been
described.

I believe that this book will provide researchers in this field with a useful resource to support
current knowledge on biological decolorization and will provide students with a logical and
practical scheme for approaching colored substance treatment. During my time as the Director
of  the  Resources  Recycling  Process  Laboratory,  at  the  Chemical  Resources  Laboratory,
Tokyo Institute of Technology, many researchers and graduate and undergraduate students at
the campus and in private companies have helped to accomplish these results. I am indebted
to the following researchers for giving me the opportunity to study Dec 1 and for offering
many valuable suggestions:  Drs.  Y. Sugano, M. Hirai,  T.  Sato,  M. Iwamoto,  T.H. Lee,  N.
Uematsu,  and  J.  Sugiura.  l  am  also  grateful  to  the  following  graduate  and  undergraduate
students: S.J. Kim, M. Shakeri, N. Shintani, T. Shimokawa, K. Sasaki, Y. Matsushima, A.
Ichiyanagi, R. Muramatu, R. Sasaki, N. Suzuki, and C. Matsuo.

I  especially  thank  Professors  T.  Imanaka,  Professor  Emeritus  of  Kyoto  University,  and  J.
Takahashi, Professor Emeritus of Obihiro University of Agriculture and Veterinary Medicine,
for their cooperation on this book.

Makoto Shoda
Emeritus of Tokyo Institute of Technology

316,1-4-2 Shin-Ishikawa, Aobaku
Yokohama, Japan
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CHAPTER 1

Introduction

Several colored effluents, including dyes, molasses, and pulp bleaching effluents,
are  released  into  environments,  and  efficient  treatments  of  these  colored
substances are urgent because severe regulation has been established worldwide.
Conventional  treatment  methods  have  several  disadvantages,  such  as  energy
consumption  or  the  risk  of  treated  products.  On  the  other  hand,  biological
treatment  has  advantages  over  conventional  chemical  and  physical  treatment
because  the  products  after  treatment  are  relatively  safer  and  the  utilization  of
energy is  smaller  than other  methods.  However,  in  biological  methods,  finding
efficient  microorganisms  and  utilizing  them  under  optimal  conditions  are  key
challenges.

A fungus, strain Dec 1 was isolated in our laboratory, exhibiting a wide spectrum
of degradability for colored substances [1]. This fungus was initially identified as
Geotrichum candidum Dec 1, but finally reidentified as Thanatephorus cucumeris
Dec 1.  In  this  book,  the  characteristics  of  Dec  1  have  been  described  not  only
from the  basic  biochemical  points,  but  also  from an  engineering  point  of  view
associated with its application for the decolorization of dyes, molasses, and pulp
bleaching effluents.

More than 5×104 tons of dyes are used annually in Japan [2], and 10 to 15% of
these  dyes  are  estimated  to  be  discarded  into  the  environment  [3].  As  colored
effluents  from  major  textile  and  dyestuff  industries  are  recalcitrant  to
biodegradation, the treatment of these effluents in wastewater treatment systems is
mainly  based  on  physical  and/or  chemical  procedures,  such  as  adsorption,
concentration,  chemical  transformation,  and  incineration.  Although  these
treatment methods are effective, they have several shortcomings, such as high cost,
formation of hazardous byproducts, and intensive energy requirements. Therefore,
biological  degradation  methods  are  receiving  attention  as  better  alternatives.
Several  strains  as  dye-degrading  microorganisms  have  been  reported,  such  as
 white-rot fungi Phanerochaete chrysosporium [4, 5],  Pleurotus ostreatus

Makoto Shoda
All rights reserved-© 2024 Bentham Science Publishers
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[6],  Coriolus  versicolor  [7],  and  Streptomyces  spp  [4].  The  effectiveness  of
microbial treatment depends on the survival, adaptability, and stable activity of
the selected microorganisms in the treatment environment.

The newly isolated strain, Dec 1 decolorized various reactive dyes, including azo
and  anthraquinone  dyes,  as  shown  in  Chapter  2.  The  involvement  of  several
extracellular  enzymes,  such  as  Lignin  Peroxidase  (LiP)  and  Manganese
Peroxidase  (MnP),  was  suggested  by  the  broad  decolorization  spectrum of  this
strain.  LiP,  MnP,  Laccase  (Lac),  and  Horseradish  Peroxidase  (HRP)  have  also
been reported to have the ability to decolorize various dyes [8 - 14]. Among them,
MnP  from  P.  chrysosporium  is  a  representative  enzyme  and  plays  a  major
decolorizing  role  in  the  presence  of  manganese  ions  [15,  16].  However,  Mn-
oxidizing  peroxidases  isolated  from  Bjerkandera  adusta  and  Pleurotus  eryngii
decolorized with multiple azo dyes, regardless of the presence of manganese ions
[17]. Those enzymes were able to oxidize Mn2+ to Mn3+ at pH 5 and also oxidized
aromatic compounds, such as Veratryl Alcohol (VA), a typical substrate of LiP, at
pH 3, regardless of the presence of Mn2+ [18, 19]. Therefore, these enzymes that
expressed  both  LiP-like  and  MnP-like  characteristics  were  named  MnP–LiP
hybrid peroxidase or manganese-independent peroxidase or Versatile Peroxidases
(VPs).

The enzymes responsible for the dye-decolorizing activity of Dec 1 were purified.
Their characteristics are clarified in Chapter 3. One of them is a new peroxidase,
DyP  that  is  a  glycoprotein  with  a  molecular  mass  of  60  kDa,  showing  a  high
ability to decolorize anthraquinone dyes [20].

The culture broth of Dec l showed the ability to oxidize Veratryl Alcohol (VA),
but  DyP  did  not  degrade  VA  [21],  suggesting  Dec  1  to  produce  Aryl  Alcohol
Oxidase (AAO) [22]. Therefore, a veratryl alcohol-oxidizing enzyme was purified
from the culture broth of Dec 1, and its enzymatic characteristics and roles in dye
decolorization have been characterized in vivo, as elucidated in Chapter 3.

Dec  1  showed  complete  decolorization  of  anthraquinone  dye,  Reactive  Blue  5
(RB  5)  in  vivo.  However,  this  phenomenon  was  not  observed  in  vitro  by  DyP
alone.  DyP changed  the  color  of  RB5 from dark  blue  to  a  light  reddish-brown
colored  substance  composed  of  an  azo  complex  mixture.  Based  on  this
observation, for the complete decolorization of Dec 1, the involvement of other
enzymes  in  addition  to  DyP  has  been  suggested.  Then,  a  novel  Versatile
Peroxidase (VP) from Dec 1, named TcVP1, was isolated and characterized. The
first  complete  in  vitro  decolorization  of  an  anthraquinone  dye  using  DyP  and
TcVP1 [23] is described in Chapter 3.
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DyP has two specific characteristics. The first characteristic is its high ability to
decolorize anthraquinone dye at around pH 3 and it lacks an important histidine
residue that is involved in other fungal peroxidase tertiary structures. Instead, DyP
includes aspartic acid and arginine [24], as described in Chapter 4.

The  second  characteristic  is  that  DyP  belongs  to  a  novel  DyP-type  peroxidase
family.

Peroxidases  are  classified  into  two  types:  animal  and  plant  peroxidase
superfamilies. The plant peroxidase superfamily is further categorized into three
classes according to the origin [25]. Class I peroxidases are prokaryotic, and the
representatives  are  Cytochrome  C  peroxidase  (CCP)  and  Escherichia  coli
Peroxidase (ECP) [26, 27]. Class II peroxidases are secretory fungal peroxidases
and  the  representatives  are  Arthromyces  ramosus  Peroxidase  (ARP),  Lignin
Peroxidase  (LiP),  and  Manganese  Peroxidase  (MnP)  [28  -  30].  Class  III
peroxidases are classical, secretory plant peroxidases, and the representatives are
Horseradish Peroxidase (HRP) and Turnip Peroxidase (TP) [31, 32]. According to
this classification, DyP belongs to class II. However, the characteristics of DyP
are different from those of class II peroxidases. Thus, to clarify the classification
of DyP, the gene encoding DyP was cloned from the cDNA library of Dec 1, and
the primary structure of DyP was compared with those of other peroxidases. This
analysis  revealed  DyP  as  a  unique  peroxidase  among  previously  reported
peroxidases.  The  detail  is  provided  in  Chapter  4.

Cloning the cDNA of the dyp gene was successful, and the gene encoding DyP
was transformed into the host, Aspergillus oryzae, under the control of the amyB
promotor.  The  massive  production  of  rDyP  using  recombinant  A.  oryzae  is  of
primary interest in order to use crude rDyP directly for decolorization. This aspect
is described in Chapter 4.

A. oryzae was selected as a host because this fungus is recognized as a safe host
and  it  has  a  high  growth  rate  and  can  secrete  gram-per-liter  quantities  of
heterologous  proteins  [33].

As the productivity of original peroxidase, DyP, by Dec 1 was extremely low, the
enhanced  productivity  of  rDyP  was  tried.  First,  the  production  of  rDyP  by
recombinant A. oryzae was enhanced, but it was still not found to be satisfactory
[34, 35]. Most common bioprocesses for large-scale production of chemicals use
batch culture, which has the advantages of stable nongrowth-associated product
formation,  maintenance  of  genetic  stability,  and  a  relatively  low  risk  of
contamination [36]. Especially when natural substrates are chosen, complex solid
particles are involved in the substrates, and continuous cultivation complicates the
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CHAPTER 2

Characteristics  of  a  New Fungus  Isolated  for  Dye
Decolorization

Abstract: As a dye-decolorizing microorganism, a fungus, identified as Geotrichum
candidum Dec 1, was isolated from the soil. Re-identification of this fungus revealed it
to  be  Thanatephorus  cucumeris  Dec  1  abbreviated  as  Dec  1.  A  crude  extracellular
enzyme  solution  was  prepared  from  the  culture  of  Dec  1,  and  the  enzyme  solution
showed a broad decolorization spectrum of dyes in the presence of H2O2, indicating the
existence  of  multiple  enzymes,  including  peroxidases.  Dec  1  decolorized
approximately  12  g/1  of  the  dye,  Reactive  Blue  5  (RB5),  without  a  decline  in  the
decolorizing activity at the inhibitory concentration for most of the microorganisms,
indicating the resistant property of Dec 1 to a high concentration of the dye RB5. Dec 1
expressed decolorizing activity in the presence of carbon sources and oxygen.

Keywords:  Geotrichum  candidum  Dec  1,  Thanatephorus  cucumeris  Dec  1,
Peroxidase,  Reactive  Blue  5,  Veratryl  Alcohol,  Azo  dye,  Anthraquinone  dye.

1. ISOLATION OF A NEW DECOLORIZING FUNGUS

1.1. Methods

1.1.1. Isolation of Dye-decolorizing Microorganisms

For the isolation of dye-decolorizing bacteria and fungi, the following media were
used: GPY agar for the isolation of bacteria and PDA media for the isolation of
fungi. GPY agar medium consists of glucose, Polypeptone, yeast extract, KH2PO4,
MgSO4.7H2O, and agar (pH=7).  PDA medium contains potato extract,  glucose,
and agar (pH=5.6). Each of the following dyes, Reactive blue 114, Acid blue 324,
and Dispersive blue 79, were mixed with the media shown above, and microbial
colonies  that  appeared  on  the  media  and  formed  transparent  dye  zones  on  the
media  were  purified.  Each  purified  microorganism  was  used  to  confirm  dye
decolorizing  ability  by  the  method  described  below.

Makoto Shoda
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1.1.2. Structures of the Dyes Used

Table 1 lists the dyes and simplified structures of the dyes used. The simplified
structures  of  Reactive  Blue  5  (RB5)  are  AQ-1[1-amino-4-(3-amino-4-
sodiumsulfonoanilino)-2-sodium  anthraquinone  sulfonate]  and  AQ-2  (l-amino-
4-methylamino-2-sodium anthraquinone sulfonate). The simplified compound of
Reactive  red  33  is  AZ-1[1-hydroxy-6-methylamino-3-sodium  naphthalene
sulfonate-2-azo-(4'methoxy-2'sodium  benzene  sulfonate)].  Fig.  (1)  shows  the
structures of some dyes and the model compounds used. The simplified structure
of AQ-2' is 1,4-diamino-2-sodium anthraquinone sulfonate.

Fig. (1).  Structure of representative dyes (a-d) and the model compounds of RB5 and Reactive red 33 (e-h)
used. (a) Reactive blue 5; (b) Reactive red 33; (c) Acid red 73; (d) Dispersive red 60; (e) AQ-1; (f) AQ-2; (g)
AZ-I; (h) AQ-2’ [1].
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Table 1. Degree of decolorization of various dyes by T. cucumeris Dec 1 on PDA medium after 4 day
incubation at 28°C.

Color Index Chromophore Initial Concentration
(ppm)

Decolorized
Diameter (cm)a Relative Valueb

Reactive blue 5 Anthraquinone 100 8.5 1

Reactive blue 19 Anthraquinone 100 8 0.94

Reactive blue 114 Anthraquinone 100 7.5 0.88

Reactive blue 182 Azo 100 8 0.94

Reactive black 5 Azo 100 8 0.94

Reactive red 33 Azo 100 7 0.82

Reactive red 120 Azo 100 5.5 0.65

Reactive red 123 Azo 100 6.5 0.77

Reactive red 187 Azo 100 4 0.47

Reactive red 202 Azo 100 6.5 0.77

Reactive red 225 Azo 100 6 0.71

Reactive orange 13 Azo 100 3.5 0.41

Reactive orange 30 Azo 100 4 0.47

Reactive violet 23 Azo 100 7.5 0.88

Reactive yellow 2 Azo 100 3.5 0.41

Acid red 73 Azo 100 6.5 0.77

Acid blue 324 Azo 100 7 0.82

Disperse red 60 Anthraquinone 100 3 0.35

Disperse blue 79 Azo 100 n.d. n.d.

AQ-1c Anthraquinone 100 7.5 0.88

AQ-2c Anthraquinone 100 8.5 1

AZ-1d Azo 100 6 0.71
a Decolorized diameter after 4 day incubation.
b Reactive value of diamater to diameter of Reactive blue 5.
c Model chemicals of Reactive blue 5.
d Model chemicals of Reactive red 33.
n.d.Not detected.

1.1.3. Decolorization Using the Purified Dec 1 on PDA Medium

Dyes were mixed with PDA medium and the isolated Dec 1 mycelia were placed
on the  center  of  the  PDA plate  containing  each  dye;  the  plates  were  incubated
until their transparent surface appeared.
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CHAPTER 3

Characterization  of  Multi-Enzymes  Produced  by
the  Fungus,  Dec  1,  Responsible  for  Dye
Decolorization

Abstract:  A  peroxidase,  DyP,  produced  by  the  fungus  Dec  1  having  the  ability  to
decolorize dyes was purified. DyP contains 17% sugar comprising GlcNAc and Man.
The molecular mass of DyP was estimated to be 60 kDa and the isoelectric point (pl)
was determined to be 3.8. DyP degraded various dyes, and also phenolic compounds of
2,6-dimethoxyphenol  and  guaiacol.  However,  veratryl  alcohol,  abbreviated  VA,  a
substrate  of  lignin  peroxidase,  was  not  degraded  by  DyP.

Molasses was utilized by Dec 1 to produce DyP as carbon and energy source. Within
10  g/l  of  molasses  concentration,  decolorization  activity  of  Dec  1  toward  RB5
gradually  increased.  However,  at  more  than  20  g/l  of  molasses  concentration,  the
inhibitory effect on the decolorizin g activity of Dec 1 was observed. As the activity of
purified  DyP  was  inhibited  by  10  g/l  of  molasses  concentration,  this  indicates  that
molasses has a stimulative effect on the decolorization activity of Dec 1, but has an
inhibitory effect on the DyP activity.

Dec  1  also  produced  Aryl  Alcohol  Oxidase  (AAO).  The  role  of  AAO in  the  Dec  1
decolorization process of dyes has been observed to be as follows: the first role was
that H2O2 was produced by AAO oxidation of Veratryl Alcohol (VA) to veratraldehyde
and then utilized by the peroxidase DyP. In the cultivation of Dec l, the presence of
H2O2  and  veratraldehyde  has  been  detected.  The  second  role  was  that  the
polymerization of products produced by DyP oxidation of a simplified RB5, AQ-2’,
was prevented by AAO. This was confirmed by the result that the molecular weight of
the products was reduced in the mixed decolorization of DyP and AAO.

A new versatile peroxidase named TcVP1 was purified from the Dec 1 culture. Purified
TcVP1 behaved as Manganese Peroxidase (MnP) at pH 5, and the enzyme functioned
as a Lignin Peroxidase (LiP) at pH 3. As TcVP1 decolorized preferentially azo dyes,
co-application of TcVP1 and DyP conducted complete decolorization of anthraquinone
dye, RB5, in vitro to colorless products.

Keywords:  Peroxidase,  DyP,  Anthraquinone  dye,  Aryl  alcohol  oxidase,
Thanatephorus cucumeris Dec 1, Versatile oxidase, TcVP1, Simplified RB5, AQ-
2’,  Veratryl  alcohol,  VA,  Veratraldehyde,  Hydrogen  peroxide,  Molasses,
Manganese  peroxidase,  MnP,  Lignin  peroxidase,  LiP.
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1. NEW PEROXIDASE, DYP

1.1. DyP Purification

The purification steps for a new peroxidase, DyP, are shown in Table 3. The total
DyP  activity  in  the  supernatant  derived  from Dec  1  cultivation  increased  from
24U to  420  U  after  ultrafiltration  with  a  YM 40  membrane  treatment.  Fig.  (8)
shows the main peak of DyP activity after the Butyl Toyopearl chromatography
treatment.

Table 3. Purification steps for peroxidase, DyP, from cell-free culture of Dec 1 [20].

Purification Step
Protein Total Activity Sp Act Activity Yield Purification

(mg) (U) (U/mg) (%) (fold)

Supernatant 88 24a 0.28a 1

Ultrafiltration (YM 10) 28 4.2 × 102 15 100a 55

Super Q chromatography 7.8 3.0 × 102 34 71 140

Butyl Toyopearl chromatography 1.5 85 57 20 210
Sp Act: specific activity.
a: The activity yield was calculated based on the value after the YM 10 treatment.

Fig. (8).  Purification of peroxidase, DyP, produced by Dec 1 during Butyl Toyopearl chromatography. A
solid line is a linear gradient of 0.8 to 0 M (NH4)2SO4 in citrate buffer.
Symbols: ●, DyP activity; ○, absorbance at 280 nm [20].

Fractions 86 to 99, corresponding to the left half of the main peak, were called
purified DyP having a specific activity of 57 U/mg of protein, as shown in Table 3.
SDS-polyacrylamide gel electrophoresis determined the molecular mass of DyP
as 60 kDa. That value was significantly larger than those reported previously [105
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-  107],  ranging  from  40  to  44  kDa.  The  Isoelectric  point  (pI)  of  DyP  was
determined  as  3.8  by  isoelectric  point  electrophoresis.

1.2. Spectral Characteristics of DyP

Fig. (9) shows the spectral characteristics of purified DyP. A Soret band appeared
at  406  nm,  representing  the  absorption  peak  of  peroxidase,  and  the  molar
extinction  coefficient  of  the  band  was  almost  the  same  as  those  of  other
peroxidases  previously  reported  [108  -  110].  The  A406/A280  RZ  value,  which
represents the purity and spectral characteristics of DyP, was 1.6 at pH 5. After
H2O2 oxidation of the purified DyP, the peaks at 406 and 510 nm shifted to 400
nm and 530 nm, respectively. Then, Na2S2O4 was added to reduce DyP that was
oxidized  by  H2O2,  and  a  peak  at  556  nm appeared,  as  can  be  seen  in  the  inset
figure in Fig. (9). This confirms that DyP has a heme-pyridine complex, meaning
that  its  prosthetic  group  is  protoheme.  DyP  holds  a  single  heme  because  the
estimated  heme  content  is  0.6  per  mole  of  DyP.

Fig. (9).  Spectral characteristics of the following three DyPs: purified DyP, DyP oxidized by H2O2, and DyP
reduced by Na2S2O4. The inset shows reduced DyP in the form of a heme-pyridine complex observed at 556
nm [20].

1.3. Substrate Specificity of DyP

Table 4 shows the decolorization by DyP of four azo dyes, three anthraquinone
dyes, and three simplified model compounds of RB5, AQ-1, AQ-2, and AQ-2'.
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CHAPTER 4

Enhanced  Productivity  of  a  New  Peroxidase  DyP
by  Genetic  Manipulation  and  by  Cultivation
Methods

Abstract: A novel peroxidase, DyP gene, dyp, was cloned from a cDNA library of a
newly isolated fungus, Dec 1. The open reading frame consisting of 1494 nucleotides
indicated a primary translation product of 498 amino acids, and the Molecular mass
(Mr) was estimated as 53,306. X-ray diffraction data using crystallized DyP revealed
DyP to have a unique tertiary structure differing from that of most other well-known
peroxidases. The analyzed amino acid sequence of DyP did not share homology with
any other peroxidases except that of a peroxidase derived from Polyporaceae sp.

Mature cDNA encoding dyp was fused with the Aspergillus oryzae α-amylase promoter,
amyB,  and  recombinant  DyP  was  produced.  The  total  activity  of  the  purified
recombinant DyP, rDyP, was produced. The total activity of rDyP, was about 400-fold
higher than that of the native DyP derived from Dec 1.

The  further  productivity  enhancement  of  rDyP  was  carried  out  using  the  following
different cultivation methods and different media.  Recombinant A. oryzae  holding a
DyP gene, dyp, was grown using the repeated batch method. When a synthetic liquid
medium  containing  maltose  as  a  carbon  source  was  used  in  repeated  batch  culture,
production of high-level rDyP activity continued for 26 repeated cycles of every 1-day
batch.

When  the  production  of  rDyP  by  A.  oryzae  was  carried  out  using  complex  media
containing rice bran powder both in liquid repeated-batch and in fed-batch cultures,
average rDyP productivities were similar in the two batch cultures.

The  Solid-state  Culture  (SSC)  was  also  attempted  for  the  production  of  rDyP  by
recombinant  A.  oryzae  using  wheat  bran  as  a  solid  medium and  the  productivity  of
rDyP was compared to that in the liquid cultures. The maximum productivity of rDyP
in SSC reached 5.3g per kg wheat bran, and this productivity value was equivalent to
the  productivity  using a  56  kg liquid  culture.  When the  unit  of  the  productivity  per
gram  carbon  of  the  medium  was  introduced,  the  productivity  in  SSC  was  4.1-fold
higher than that in the liquid cultures.

In order to overcome the disadvantages of SSC and liquid culture, Dec 1 was grown in
an  Air  Membrane  Surface  (AMS)  reactor.  Although  the  growth  of  Dec  1  in  AMS
culture was almost the same as that  in liquid culture at  optimum temperatures,  DyP
productivity, DyP activity, and Aryl Alcohol Oxidase (AAO) activity in AMS culture
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were  18-,  232-,  and  108-fold  higher  than  those  in  liquid  culture,  respectively.  The
advantage of  AMS culture of  Dec 1 1over  SSC and liquid culture has been proven,
particularly in the production of DyP.

A  biofilm  was  formed  in  the  AMS  culture  of  Dec  1  and  the  relationship  between
biofilm formation and DyP and MnP was analyzed. Two new DyP isozymes, DyP2 and
DyP3,  were  purified  from  the  Dec  1  culture  in  the  AMS  reactor,  and  they  were
characterized  and  compared  with  the  characteristics  of  rDyP.

Keywords: Aspergillus oryzae, Air-membrane surface reactor, Biofilm formation,
Crystallization,  Decolorizing peroxidase gene (dyp),  DyP isozymes ,  Fed-batch
culture,  Recombinant  DyP  (rDyP),  Repeated-batch  culture,  Rice  bran  powder,
Solid-state  culture,  Wheat  bran  powder,  X-ray  diffraction,  α-amylase  promoter
(amyB).

1. CLONING OF DYP GENE FROM DEC 1

The cloning and sequencing of  gene,  dyp,  derived from Dec 1  cells  are  briefly
described as follows [139]:

A peroxidase, DyP, derived from strain Dec 1 was partially digested by trypsin,
and oligonucleotides encoding the two peptide fragments were synthesized for use
as  primers  for  Polymerase  Chain  Reaction  (PCR).  Then,  the  amplified  DNA
fragment by PCR was used as a probe for plaque hybridization using the cDNA
library of Dec 1 derived from lambda phage λgt 10 [140]. The target gene was
ligated to the plasmid pUC18 and sequenced.

Plaque hybridization produced eleven positive clones. The Molecular mass (Mr)
of  DyP was  previously  determined as  60,000.  As  this  DyP contains  17%(w/w)
saccharides, the Mr of the polypeptide was modified as 49,800 [20]. Therefore, an
open  reading  frame  corresponding  to  approximately  460  amino  acid  residues
holding 1380 nucleotides was searched. PCR was carried out using the positive
clones to estimate the size of each fragment and, one of them, clone 92 with1600
bp was digested into 2 fragments by EcoRI and was ligated into the BamHI site of
pUC18 and named pB92.

The pB92 contained an open reading frame consisting of 1494 nucleotides. The
primary  translation  product  of  this  open  reading  frame  was  composed  of  498
amino acids and the molecular mass was estimated as 53,306. The value has been
found  to  be  reasonable  with  respect  to  the  molecular  mass  of  DyP.  As  all
predicted  amino  acid  sequences  of  the  5  oligopeptides  obtained  from  DyP  by
trypsin digestion were found in this frame, the nucleotide sequence of this frame
was judged to be the dyp gene encoding DyP in Dec 1.
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2. CHARACTERISTICS OF DYP AS A PEROXIDASE

So far, all peroxidases have been categorized into animal peroxidase family and
plant  peroxidase  family.  The  plant  peroxidase  family  is  further  classified  into
three  classes,  classes  I  to  III,  according  to  the  origin.  As  fungal  peroxidases
belong  to  class  II  peroxidases,  DyP  should  belong  to  the  class  II  peroxidases.
However,  the  characteristics  of  DyP  have  been  clarified  to  be  significantly
different  from  those  of  other  known  peroxidases  [20,  139].

The first characteristic of DyP is as follows: the nucleotide sequence of the gene,
dyp,  and  its  primary  translation  product  has  no  homology  with  any  other
peroxidases. One exception is a nucleotide sequence of peroxidase, cpop21 from
Polyporaceae sp., which is registered under accession no. U77073 in GenBank,
EMBL, and DDBJ. However, no characteristics of cpop21 have been published
and thus, a detailed comparison between cpop21 and dyp is impossible.

The second characteristic of DyP is that all heme-containing peroxidases have two
conserved His residues and one conserved Arg residue. One His residue is named
proximal histidine and functions as the axial ligand for the heme. The other His
residue is  called distal  histidine and Arg residue is  known as essential  arginine
residue, being responsible for charge stabilization in the reaction between heme
and  H2O2  [20,  141,  142].  As  all  these  three  residues  are  conserved  in  all
peroxidases, these residues have been considered essential for peroxidase activity,
and there are no exceptions to this rule. Fig. (28) shows amino acid sequences of
some well-known class II peroxidases together with DyP. It is clear that DyP has
no heme-binding region, which is common to the plant peroxidase family [139].
Furthermore, His residue, which is responsible for heme binding, and is located at
residue 51 of the amino acid sequence deduced from the cDNA of dyp, has been
lost by N-terminal processing, as shown in Fig. (28). Therefore, DyP should have
a heme-binding site different from those of other peroxidases, and thus the heme
binding of DyP should be specific for Dec 1.  Therefore,  the recombinant rDyP
obtained from A. oryzae should not express enzyme activity because it lacks heme.
However, both original DyP and rDyP actually work as peroxidase. This suggests
that  there  should  be  a  novel  heme-binding  region  other  than  the  characterized
region in the plant peroxidase family.
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CHAPTER 5

Dye  Decolorization  by  Immobilized  Recombinant
rDyP and Turnover Capacity of rDyP

Abstract:  For  an  efficient  application  of  the  soluble  recombinant  enzyme  of  rDyP,
immobilization  of  the  enzyme  was  caried  out  to  enhance  and  stabilize  catalytic
efficiency of rDyP. Although several conventional immobilization methods have been
attempted  for  rDyP,  no  methods  have  been  successful.  Therefore,  new  catalysts
developed  for  exhaust  gas  removal  were  employed.  They  were  silica-based
mesocellular  foams  and  two silica-based  porous  materials,  FSM-16 and  AISBA-15,
which were chemically synthesized. Immobilization of rDyP on them was carried out
and  immobilization  efficiency  was  assessed.  The  overall  efficiency  was  defined  as
adsorption  efficiency  x  activity  efficiency  to  find  the  maximum  efficiency.  The
efficiency of rDyP immobilized on FSM-16 and AISBA-15 was maximum at pH 5 and
pH 4, respectively. FSM-16 showed advantages over AISBA-15 in terms of stronger
affinity  for  rDyP due  to  its  anionic  surface  and  much lower  leaching  of  rDyP from
FSM-16. When the rDyP immobilized on FSM-16, an anthraquinone dye, RBBR, was
decolorized in repeated-batch mode, and eight sequential batches were possible, while
rDyP immobilized on AISBA-15 enabled only two batches.

For evaluation of the practical potential of rDyP, the turnover capacity of rDyP was
introduced. In order to minimize H2O2 inactivation for rDyP activity, four H2O2 supply
methods were attempted and the turnover capacity of each method was compared. The
continuous fed-batch supply of H2O2 and the stepwise fed-batch supply of the dye gave
the maximum turnover capacity of 20.4. At this turnover capacity, one liter of crude
rDyP solution containing 5,000 U could decolorize up to 102 g dye in 10h.

Keywords:  AISBA-15,  Adsorption,  FSM-16,  Immobilization,  Inactivation  by
H2O2,  Leaching,  Mesoporous  materials,  Overall  efficiency,  Remazol  Brilliant
Blue  R,  Recombinant  DyP,  rDyP,  Turnover  capacity.

1. IMMOBILIZATION OF RDYP ON MESOPOROUS MATERIALS

1.1. Properties of Newly Synthesized Mesoporous Materials

The synthesis and characteristics of newly synthesized mesoporous materials of
FSM-16  and  AISBA-15  have  been  described  in  detail  previously  [186,  187].
Table  26  presents  the  structural  and  chemical  properties  of  two  synthesized
materials,  FSM-16  and  AlSBA-15.
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Table 26. Structural and chemical properties of FSM-16 and AISBA-15 [186].

Pore Volume
(cm3/g)

Pore Diameter
(nm)

Specific Surface
Area (m2/g)

External Specific
Surface Area (m2/g) Si/Al

FSM-16 1.9 5.4 1108 66 -

AISBA-15 1.29 10.6 918 22 30
-: not measured., Si/Al: silicate/aluminum

1.2. Effect of pH on Adsorption and Activity Efficiency of rDyP Immobilized
on the Mesoporous Materials

The adsorption efficiency is defined as [(Ai – Ar)/Ai] x 100

Where,  Ai  is  the  initial  rDyP  activity  before  immobilization  and  Ar  is  the  last
rDyP activity after immobilization.

The  expected  activity  of  rDyP  is  defined  as  (Ai  –  Ar)/concentration  of  the
material.

The  activity  efficiency  is  defined  as  (measured  rDyP  activity/expected  rDyP
activity)x100.  Thus,  the  overall  efficiency  that  reflects  the  overall  activity
performance  of  the  immobilized  rDyP  is  defined  as  adsorption  efficiency  x
activity  efficiency.

The immobilization procedure have been described previously [186]. rDyP was
immobilized on the mesoporous materials under different pHs. Table 27  shows
the result  of  FSM-16.  The adsorption efficiency of  rDyP on FMS-16 increased
when pH declined from 6 to 3, and expected efficiencies were higher at pHs 3 and
4. Table 28 shows the result of MISBA-15. Although adsorption efficiency was
98% when rDyP was immobilized at pH 3, it was only 20% at pH 6. From the two
tables,  it  is  obvious  that  the  expected  efficiency  of  rDyP  on  FMS-16  was
significantly higher than that on AISBA-15. However, the activity efficiency of
rDyP on AISBA-15 was higher than that on FSM-16 at pH 4, 5, and 6. Therefore,
in  order  to  evaluate  the  overall  efficiency,  adsorption  efficiency  x  activity
efficiency was defined. As a result, the maximum values of the overall efficiency
were  28%  at  pH  5  for  FSM-16  and  43%  at  pH  4  for  AISBA-15.  The  actual
measured activity of rDyP was the maximum, being 2800 U/g-FSM-16 at pH 5, as
shown in Table 27.
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Table  27.  Characterization  of  rDyP  immobilization  on  1  g  FSM-16  under  different  pH  conditions
(initial rDyP activity used = 10,000U) [186].

pH
Adsorption
Efficiency Expected Activity Measured Activity Activity

Efficiency
Overall

Efficiency

(%) (U/g-FSM-16) (U/g-FSM-16) (%) (%)

3 98 9800 933 9.5 9.3

4 97 9700 1833 19 18

5 83 8330 2800 34 28

6 66 6600 2100 32 21

Table 28. Characterization of rDyP immobilized on 1 g AISBA-15 under different pH conditions at the
initial rDyP activity of 10,000U [186].

pH
Adsorption
Efficiency Expected Activity Measured Activity Activity

Efficiency
Overall

Efficiency

(%) (U/g-AISBA-16) (U/g-AISBA-16) (%) (%)

3 98 9830 833 8.5 8.3

4 97 4360 1933 44 43

5 17 1660 1600 96 16

6 20 1960 1433 73 15

1.3. Leaching of Immobilized rDyP from Mesoporous Materials

As leaching of immobilized rDyP from mesoporous materials reduces the activity
of immobilized rDyP, the leaching degree of immobilized rDyP was evaluated by
washing the immobilized rDyP repeatedly in buffer solution. Fig. (45A) shows the
change in rDyP activity immobilized on FSM-16 after leaching under different pH
conditions.  The  rDyP  activity  decreased  by  more  than  57%  at  pHs  5  and  6.
However, no changes in activity of rDyP were observed at pHs 3 and 4. Fig. (45B)
shows the result of AISBA-15. The decrease in the activity of rDyP on AISBA-15
was more significant compared to that on FSM-16. No change in activity of rDyP
on FSM\16 was observed at pHs 3 and 4.
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CHAPTER 6

Application  of  Dec  1  for  Decolorization  of  Other
Colored Substances

Abstract: Molasses is a primary carbon source, especially in the microbial industry;
however, molasses includes many colored substances, like melanoidins, which become
concentrated by the Maillard reaction after sterilization [41]. Thus, these remain in the
Molasses Wastewater (MWW) after use. For effective treatment of MWW, biological
methods  are  attracting  attention.  Section  1-10,  in  the  previous  Chapter  3,  showed
molasses to be available as a carbon source for the growth of Dec 1, and that partial
color  removal  of  molasses  by  Dec  1  was  possible.  The  enhanced  color  removal  of
molasses by Dec 1 was conducted using a jar fermenter system consisting of fan-type
agitators and a pressure swing adsorption oxygen generator. The oxygen-enriched air
supply  was  effective  not  only  in  obtaining  the  highest  decolorization  degree  of
molasses,  but  also  the  highest  activity  of  peroxidase,  DyP  for  the  decolorization  of
several dyes.

By simultaneous decolorization of molasses and an anthraquinone dye, RB5, the degree
of decolorization of molasses reached 87%, and thus, the maximum decolorization rate
of the dye,  RB5, was achieved.  However,  the decolorizing activity of  purufied DyP
toward molasses was significantly lower than that of culture broth of Dec 1 due to the
inhibitory effects of molasses on DyP, but the inhibition was reduced in the progress of
degradation of  molasses by growing Dec 1 concentration.  Dec 1 degraded molasses
containing substances with a wide range of molecular weights prepared by ultrafiltered
fractions of molasses. As Dec 1 was not able to utilize sucrose, sucrose in the molasses
was  hydrolyzed  with  invertase  to  utilize  all  sugars  in  molasses.  As  a  result,  the
decolorization  of  molasses  and  rate  of  decolorization  of  the  dye,  RB5,  by  Dec  1
reached the highest level.

A long and stable decolorization of molasses was attempted using both suspended and
immobilized cells of Dec 1. In semi-batch cultivation using suspended cells of Dec 1,
80%  decolorization  of  molasses  and  a  stable  DyP  activity  were  maintained  for
approximately four weeks. When repeated batch cultivation of Dec 1 cells immobilized
on polyurethane foam was applied, a longer and stable decolorization of molasses as
well as stable DyP activity lasted for more than eight weeks.

Dec 1 was applied for the decolorization of kraft pulp bleaching effluent, abbreviated
as E-effluent when glucose was supplemented. The color removal of E-effluent and the
reduced  amount  of  Absorbable  Organic  Halogens  (AOX)  reached  78%  and  43%,
respectively.  The  average  molecular  weight  of  colored  substances  in  molasses  was
reduced  to less  than 3000 from  the original  5600. The  contribution  of  extracellular
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enzymes,  such  as  Peroxidase  (DyP)  and  Manganese  Peroxidase  (MnP),  to  the
decolorization of the kraft pulp bleaching effluent was observed in the later stage of
decolorization.

Dec  1  decolorized  up  to  72%  of  Oxygen-delignified  Bleaching  Effluent  (OBE).
Biobleaching  of  Oxygen-delignified  Kraft  Pulp  (OKP)  was  conducted  at  2%  pulp
concentration. The brightness of OKP increased by 13% and the kappa value of OKP
decreased  by  4  points  only  for  3  days.  However,  at  25% of  pulp  concentration,  the
brightness of OKP increased only by 4% and the kappa value decreased by 3 points
during  a  12-day  incubation  period  mainly  because  of  oxygen  limitation.  When  the
culture  after  OBE decolorization  was  used  for  bleaching  of  OKP,  the  brightness  of
OKP  increased  to  62.7%  at  2%  pulp  concentration.  In  the  decolorization  and
biobleaching, the involvement of DyP and MnP was confirmed. From these results, the
potentiality of Dec 1 for the decolorization of kraft pulp wastewater and biobleaching
of kraft pulp in paper mills can be observed.

Keywords: Absorbable organic halogens, Immobilization on polyurethane foam,
Kraft  pulp  bleaching  effluent,  Kappa  value,  Molasses,  Oxygen-delignified
bleaching  effluent,  Oxygen-delignified  kraft  pulp,  Pressure  swing  adsorption
oxygen generator, Repeated-batch cultivation, Ultrafiltered fractions of molasses.

1. DECOLORIZATION OF MOLASSES BY DEC 1

1.1. Methods

1.1.1. Decolorization Methods

The crude molasses used contained 33% sucrose, 6.5% glucose, 7.5% fructose,
and 0.57 g Kjeldahl nitrogen/kg (w/w) [42]. The crude molasses was diluted to 50
g/1 and 20 g of glucose, 0.5 g of ammonium tartrate, 1 g of KH2PO4, and 0.5g of
MgSO4  .7H2O (per 1 liter) were supplemented. This medium was referred to as
the molasses medium. The dye used for measuring the DyP activity was Reactive
Blue 5 (RB5).

The  decolorization  degree  of  the  molasses  (%)  was  calculated  by  the  methods
reported previously [44, 46, 121].

A conventional jar fermenter (nominal volume=7 liter) was modified by removing
some gears in the fermenter to simplify the inside and to avoid adhesion of Dec 1
to the solid parts. Three fan-type propellers were prepared to agitate the culture
broth homogeneously and two top propellers and one bottom propeller were fixed
for the broth to flow in opposite directions.

The sampling of the culture broth was aseptically carried out using a pump and
the loss of the broth was supplemented by a fresh molasses medium, which was
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fed  by  another  pump.  Oxygen-enriched  air  prepared  by  a  pressure  swing
adsorption  oxygen generator avoided oxygen  limitation. By a Dissolved Oxygen
(DO) sensor, DO concentration was maintained.

1.1.2. Determination of the Activity of DyP

The  decolorizing  activity  of  DyP  in  the  supernatant  prepared  from  the  culture
broth of Dec 1 was determined in a mixture of the supernatant,  H2O2,  and dye,
RB5, in citrate buffer (pH3.2) at the maximum absorbance wavelength of 600 nm
of the dye [1]. The decolorizing rate was expressed as a concentration difference
for  the  dye  between  two different  times  in  the  culture  broth  per  unit  time,  and
expressed as mg /1/ min.

1.2. Results

The effect of aeration and agitation in a reactor was investigated. The air supply
rate  was  fixed  at  0.4  vvm  (volume  of  air/volume  of  medium/minute),  and  the
agitation speed was changed from 150 to 250 rpm (rotation per minute). At 150
rpm, the growth of Dec 1 was slow, which may be mainly due to the low oxygen
transfer  rate.  When the  agitation  speed increased to  250 rpm to  supply  enough
oxygen,  large  pellets  of  Dec  1  with  2  mm  in  diameter  were  formed,  and  the
decolorization rate of the molasses reduced significantly. At 180 rpm, the small
mycelial pellets of Dec 1 were homogeneously dispersed and the enhancement of
the  decolorizing  activity  and  DyP  activity  was  observed.  At  a  fixed  agitation
speed  of  180  rpm,  different  air  supplies  were  tested  to  obtain  efficient
decolorization conditions. Fig. (55) shows the results. The decolorization degree
of  molasses  (Fig.  55a)  and  DyP  activity  (Fig.  55b)  were  the  highest  when
enriched  60%  oxygen  was  supplied  at  0.4  vvm.  Under  this  condition,  the
absorbance of the cell-free culture broth at 475 nm changed from 2.5 at 0 day to
0.5 at 10 days, suggesting the steady decolorization of molasses.

The growth of Dec 1 (Fig. 55c) at 60% oxygen supply or air supply at 0.4 vvm
was similar. The apparent growth in the later days reflected the fast consumption
of glucose, as shown in Fig. (55d). Although the activity of DyP increased in 6
days, the contribution of DyP to the decolorization of molasses was found to be
small. The details are provided in the next section 6-2.
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