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PREFACE

In the ever-evolving landscape of technology, the proliferation of Smart Home and Industrial
IoT  (Internet  of  Things)  devices  has  become  a  defining  hallmark  of  our  era.  These
interconnected gadgets promise unparalleled convenience, efficiency, and automation in our
daily  lives  and  industrial  processes.  From  smart  thermostats  that  regulate  our  home
temperatures to industrial sensors that optimize manufacturing processes, these devices have
transformed the way we interact with our environment. They hold the power to enhance our
lives and redefine our industries, but they also bring with them a complex set of challenges
that demand our immediate attention.

The  title  of  this  book,  "Smart  Home  and  Industrial  IoT  Devices:  Critical  Perspectives  on
Cyberthreats, Frameworks, and Protocols", encapsulates the essence of our exploration into
this technological realm. This book is an endeavor to shed light on the multifaceted landscape
of Smart Home and Industrial IoT devices, focusing particularly on the critical perspectives
that have emerged because of their proliferation.

At the heart  of  this  book lies  a  crucial  examination of  the potential  cyberthreats  that  have
surfaced  with  the  rapid  integration  of  these  devices  into  our  lives  and  industries.  The
interconnected  nature  of  IoT  devices,  while  offering  unparalleled  convenience  and  data-
driven  decision-making,  also  creates  a  myriad  of  security  vulnerabilities.  Cyberattacks  on
these devices can have far-reaching consequences, both at the individual level in our homes
and at the industrial scale in our factories. Understanding these threats and the strategies to
mitigate them is paramount in safeguarding our privacy, security, and economic stability.

Moreover, this book delves into the frameworks and protocols that underpin the functioning
of Smart  Home and Industrial  IoT ecosystems.  The selection and implementation of  these
frameworks play a pivotal role in determining the effectiveness of these devices. We explore
the standards, communication protocols, and architectural paradigms that drive IoT systems,
offering insights into the advantages and limitations of each approach.

The  critical  perspectives  presented  within  these  pages  are  not  intended  to  dissuade  the
adoption  of  Smart  Home  and  Industrial  IoT  devices  but  rather  to  inform  and  empower
individuals,  organizations,  and  policymakers.  By  delving  into  the  complexities  of  these
technologies,  we  can  make  more  informed  decisions,  build  more  resilient  systems,  and
harness  the  true  potential  of  the  IoT  revolution.

In  this  book,  we  bring  together  a  diverse  array  of  voices,  from  cybersecurity  experts  to
industry practitioners, to provide a comprehensive and holistic view of the Smart Home and
Industrial  IoT  landscape.  Our  aim  is  to  provide  readers  with  the  knowledge  and  insights
required to navigate the challenges and opportunities presented by these technologies.

As we embark on this journey through the world of Smart Home and Industrial IoT devices,
we invite readers to approach this exploration with a critical eye and an open mind. The future
of IoT is rich with possibilities, but it is also fraught with challenges. By gaining a deeper
understanding of the cyberthreats,  frameworks,  and protocols,  we can collectively shape a
safer, more efficient, and connected world for generations to come.

We hope this book serves as a valuable resource for all those intrigued by the ever-expanding
world of Smart Home and Industrial IoT devices and the critical perspectives that surround
them.

  i
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CHAPTER 1

Significance of IoT for Smart Homes and Cities

Abstract:  The  integration  of  the  Internet  of  Things  (IoT)  has  ushered  in  a
transformative era for both residential environments and urban landscapes, re-defining
the  way  people  live,  work,  and  interact  within  them.  This  chapter  delves  into  the
profound  significance  of  IoT  in  the  realm  of  smart  homes  and  cities,  exploring  the
multifaceted impact it has on enhancing efficiency, sustainability, and quality of life. In
the context of smart homes, IoT technology seamlessly intertwines household devices,
appliances,  and  systems,  creating  a  networked  ecosystem  that  enables  automation,
remote control, and intelligent decision-making. This interconnectivity offers residents
unprecedented levels of convenience, energy efficiency, and security while paving the
way  for  innovative  services  like  predictive  maintenance  and  health  monitoring.
Extending the scope to smart cities,  this chapter explains how IoT transforms urban
environments into dynamic, data-driven entities. Through an intricate web of sensors,
actuators,  and  data  analytics,  cities  can  optimize  resource  allocation,  traffic
management,  waste  disposal,  and  energy  consumption.  This  leads  to  reduced
congestion, improved air quality, and a more sustainable urban infrastructure. However,
the integration of IoT into the fabric of smart homes and cities also raises significant
challenges pertaining to data privacy, security, and interoperability. These complexities
necessitate  robust  governance frameworks and technological  solutions  to  ensure  the
responsible and secure implementation of IoT technologies.

Keywords:  Internet  of  things,  IoT,  Internet  of  everything,  IoE,  Internet  of
vehicles,  IoV,  Web  of  things,  WoT.

INTRODUCTION

According to forecasts by Thales, there will be 83 billion Internet of Things (IoT)
devices worldwide by 2024, up from 35 billion in 2020 [1]. According to Indian
Retailer,  IoT implementations will  account for 20% of all  devices by 2024 [2].
With  the  current  cloud  strategy,  this  rapid,  amazing,  and  unparalleled
development  is  not  sustainable.  Instead,  a  novel  computing  paradigm  that  can
handle data quickly and efficiently without compromising delivery or security is
needed. Applications based on the Internet of Things are producing unprecedented
amounts and types of privacy-sensitive data from the devices of billions of end
users. Concerns about low latency speeds, large burst rates, and geographically
dispersed sites have resulted in an alarming situation. To satisfy the ever-changing

Akashdeep Bhardwaj
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demands of end users, the next generation of cloud paradigms is anticipated to be
more  responsive  and  energy  efficient.  In  addition  to  IoT,  the  Internet  of
Everything (IoE) and Web of Things (WoT) are beginning to link commonplace
items and gadgets to cloud-hosted service apps [3, 4].

The  sustainability  of  cloud  and  smart  fog  delivery  services  is  impacted  by  the
growth of data centres, which also raises delivery costs and carbon footprints. For
edge computing, Cisco came up with the phrase “fog computing”. A developing
IoT paradigm is fog computing technology [5]. Centralized data processing would
be unable to scale up and meet the requirements of such fog environments, as fog
nodes and IoT devices generate data logs, and WoT and IoE bring every object
online. The solution suggested by the scientific and commercial communities to
deal  with  the  problems  is  fog  computing.  Fog  leverages  the  actual  end-user
device's  network  sensors  to  gather  information  and  enable  remote  monitoring.
Numerous  industries,  including  healthcare,  manufacturing,  retail,  finance,
consumer products, and communication applications, have seen a sharp increase
in  the  use  of  this  technology.  Corporates  throughout  the  world  are  frantically
looking for ways to run effective applications on IoT and fog technologies.

By providing computing, application connectivity, networking, storage, decision-
making, data processing, and management close to the IoT device producing the
data, smart fog computing closes the business gap between cloud and IoT devices.
To solve these concerns, other computing paradigms akin to smart fog computing,
such as Cloud of Things, edge computing, mist computing, or cloudlets, have also
been proposed. These fog computing requirements cannot be met by traditional
cloud systems. Current solutions call for transmitting data for processing from the
network edge IoT node to the data centre. As a result, latency increases as several
IoT devices' data streams take up available bandwidth and interfere with service
delivery. Because cloud computing is extended to the network's edge and reduces
latency and congestion,  smart  fog computing has emerged as the answer to the
Internet of Things. Delivery and security threats can be reduced by lowering the
amount of data sent over the Internet. A standard for fog computing with an open
architecture  is  being promoted by the  OpenFog Consortium [6].  This  approach
suggests  creating  multi-layered,  hierarchically  distributed  fog  clusters  with  a
swarm of computational clients and edge nodes. Higher-layer fog clusters gather,
and process data filtered from lower levels, while each cluster handles data from a
single geographic area of the device farm.

These tiers carry out distinct logical tasks like control, storage, monitoring, local
operations, and business decision-making. The network, storage, and computing
are extended to the network edge via this system-level architecture. To do this,
data must be delivered via intelligent edge devices rather than via the Internet to
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cloud data centres. This expedites decision-making and signifies a departure from
conventional  design  that  relies  on  cloud-based  apps  and  the  Internet.  The
following are necessary components of a successful fog computing architecture.

Low Latency: Performance can be significantly impacted by any delays in data●

processing,  data  transmission  to  the  cloud  data  centre,  and  data  return  to  the
application [7].
Applications  in  manufacturing  sector  that  monitor  health,  respond  to●

emergencies,  shut  down  production  floors  in  real  time,  or  restore  electrical
service  must  have  a  minimal  latency  of  even  milliseconds.
Bandwidth conservation: Large computing and storage resources are needed for●

Big  Data,  predictive  analytics,  and  data  mining;  these  resources  are  typically
found in the cloud. Noise and false positives are minimized in logs produced by
IoT devices and real-time systems, such as Boeing airplanes that produce 10 TB
of data in just 30 minutes of flight time or offshore oil rigs that can produce 500
GB of data in a  week.  Sending this  much data to the cloud from hundreds of
thousands of edge devices and nodes is not feasible [8].
Data  Security:  Both  in  transit  and  at  rest,  created  IoT  data  must  be  private,●

secure,  and  compliant.  On  the  unprotected  Internet,  cyber  security  risks  like
man-in-the-middle  assaults,  sniffers,  and  denial-of-service  attacks  are  serious
problems. Data privacy is largely governed by law. Industry legislation in some
nations prohibits offsite data storage, collecting, or disclosure for commercial
use,  such  as  the  USA's  Federal  Information  Security  Management  Act  2002,
Canada's  Personal  Information  and  Electronic  Documents  Act,  and  the  UK's
General Data Protection Regulation [9].
Standardize  Communications:  While  data  transfer  occurs  in  IoT  nodes  and●

devices via Bluetooth, Wireless, ZWave, or even BigZee, cloud devices interact
over TCP/IP Protocol using IP addressing.
Location of data processing: Analyzing data obtained near the device node can●

frequently be the difference between averting catastrophe or cascading failures.
Rugged IoT devices are necessary because fog nodes, which gather data from
IoT devices, are typically dispersed over a wide geographic area with a variety
of extreme weather conditions.

Over  the  Internet,  cloud  computing  providers  offer  hosted,  scalable  enterprise
applications.  IoT  is  largely  responsible  for  the  rapid  expansion  of  smart  fog
computing  technology,  which  localizes  physical  computing,  networking,  and
storage  together  with  analytics  and  machine  learning.  To  manage  the  fog  data
demand and delivery, cloud service providers such as Amazon, Google, Amazon,
IBM, and Microsoft have  enabled  cloud-based  delivery models  for SaaS,  PaaS,
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CHAPTER 2

New  Age  Attacks  on  Smart  Homes  and  Cyber-
Physical Systems

Abstract: As smart homes and cyber-physical systems become increasingly integrated
into our daily lives, they also become susceptible to new and sophisticated forms of
cyberattacks.  This  chapter  explores  the  emerging  landscape  of  new  age  attacks
targeting these interconnected environments. It delves into the diverse range of threats
that exploit vulnerabilities in smart home devices and their underlying cyber-physical
components. Through comprehensive analysis and case studies, this chapter sheds light
on  the  potential  consequences  of  such  attacks  and  emphasizes  the  importance  of
proactive measures to safeguard these systems. By understanding these evolving threats,
researchers, practitioners, and policymakers can collectively work toward fortifying the
security and resilience of smart homes and cyber-physical systems.

Keywords:  Cybersecurity,  Cyber-physical  systems,  New  Age  attacks,  Smart
homes,  Threat  landscape.

INTRODUCTION

The  proliferation  of  smart  homes  and  the  rapid  evolution  of  cyber-physical
systems have ushered in a new era of convenience, efficiency, and connectivity.
These interconnected environments, collectively known as the Internet of Things (
IoT) [1], have become integral to modern living, offering seamless control over
devices  and  services.  However,  this  heightened  interconnectivity  has  also
introduced unprecedented challenges in terms of cybersecurity. Traditional attack
vectors  are  being  eclipsed  by  a  wave  of  innovative  and  highly  sophisticated
threats, often referred to as New Age attacks. The advent of smart homes and the
rapid  proliferation  of  interconnected  cyber-physical  systems  have  heralded  a
transformative  shift  in  the  way  we  interact  with  our  environment.  These
innovative  ecosystems  seamlessly  integrate  everyday  devices,  appliances,  and
services, fostering convenience, efficiency, and enhanced quality of life. However,
as these systems grow more sophisticated, they also become susceptible

Akashdeep Bhardwaj
All rights reserved-© 2024 Bentham Science Publishers



New Age Attacks Smart Home and Industrial IoT Devices   25

to  a  new  breed  of  cyberattacks  that  exploit  the  intricate  interplay  between  the
digital and physical realms. This chapter delves into the intriguing realm of New
Age attacks,  shedding light on their  evolving nature and implications for smart
homes and cyber-physical systems.

Cyber-Physical  Systems  or  CPS  [2]  have  emerged  as  powerful  tools  for
addressing a wide array of challenges in interactions between devices and humans,
particularly  in  scenarios  where  devices  handle  only  a  subset  of  solution
parameters. This scenario is exemplified by air cooling split systems, which focus
solely  on  room  temperature  and  overlook  factors  like  humidity,  air  renewal,
filtration,  and  sanitization.  Furthermore,  traditional  remote  control-based
adjustments  for  air  cooling  split  systems  fail  to  accommodate  the  dynamic
complexities  of  real-world office  environments.  These complexities  encompass
fluctuating thermal loads due to factors like occupant count, equipment operation,
external weather conditions, and individual preferences. Securing cyber-physical
systems  poses  a  formidable  challenge,  given  their  intricate  composition
encompassing diverse technological components, designers, operators, and users.
Prior research has effectively illuminated the security complexities within such
systems,  highlighting  the  essential  role  of  usable  security  in  aiding  humans  to
make effective security decisions and take appropriate actions. This book chapter
centers  its  attention  on  the  realm  of  intelligent  cyber-physical  systems,
particularly  those  rooted  in  the  IoT.  These  intelligent  systems  are  designed  to
streamline  and  automate  a  multitude  of  functions,  all  while  concealing  the
underlying  complexity  of  end-users  as  illustrated  in  Fig.  (1).

Fig. (1).  Cyber-Physical Systems.

Cyber-physical systems encompass tangible systems or objects interwoven with
computational  capabilities  and data storage functionalities.  These CPSs rely on
the  interconnection  of  diverse  sensor  nodes,  which  communicate  among
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themselves  and  interface  with  components  like  actuators  and  microcontrollers,
thereby  orchestrating  the  behavior  of  the  physical  systems  using  intelligent
algorithms.  The  seamless  interaction  between  the  physical  and  cyber  domains
hinges  upon  the  efficacy  of  communication  and  networking  algorithms,  which
facilitate this symbiotic relationship. IoT constitutes an integral facet of CPS, with
sensor  nodes  forming interconnected  networks  where  data  is  relayed through a
multi-hop  approach,  ultimately  reaching  the  root  node.  In  the  context  of  smart
manufacturing,  the  Industry  Internet  of  Things  (IIoT)  [3]  and  Industry  Cyber-
Physical  System  (ICPS)  [4]  have  emerged  as  indispensable  components.  They
cater to the pressing needs of modern industrial operations. The proliferation of
intelligent  sensors  has  ushered  in  an  era  of  data  explosion,  yet  this  abundance
poses  multifaceted  challenges  within  the  real  industry  landscape.  These
challenges  encompass  the  intricate  task  of  constructing  vast  interconnected
networks  while  ensuring  data  security  and  devising  efficient  access  protocols.
Moreover,  the  data's  integrity  is  compromised  by  significant  noise,  a  common
occurrence in the context of industrial settings. Additional complexities involve
adept data storage, seamless integration with cloud services, and the imperative
for real-time analytics.

Traditional cyberattacks like viruses and data breaches have long been recognized
threats, but the rise of New Age attacks presents a formidable challenge. These
attacks leverage the convergence of technology domains to disrupt, manipulate, or
compromise  the  functionality  of  smart  homes  and  cyber-physical  systems.
Consider  the  example  of  a  smart  thermostat,  a  cornerstone  of  modern  home
automation.  A  New  Age  attack  might  involve  manipulating  the  thermostat's
settings  remotely  to  compromise  energy  efficiency  or  even  disrupt  the  heating
system, leading to discomfort for occupants and potential property damage. Such
attacks blur the lines between digital and physical impact, highlighting the need
for a comprehensive security framework.

This chapter embarks on a comprehensive exploration of these emerging threats,
focusing on their implications for smart homes and cyber-physical systems. While
conventional  attacks  like  malware  and  data  breaches  remain  concerning,  the
evolving threat landscape encompasses novel approaches that exploit the intricate
interplay between physical and digital realms. From supply chain vulnerabilities
to AI-driven attacks, from cross-domain exploits to adversarial machine learning,
this chapter aims to dissect these threats and illuminate their potential impact.

Through  the  lens  of  case  studies  and  in-depth  analysis,  we  will  navigate  the
intricate web of vulnerabilities that New Age attacks target. By delving into real-
world  instances  and  conceptual  frameworks,  we  seek  to  provide  researchers,
practitioners, and policymakers with a deeper understanding of the multifaceted
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CHAPTER 3

Smart  IoT  and  Machine  Learning-Based
Framework  for  Water  Quality  Assessment  and
Device  Component  Monitoring

Abstract: Water is the most important natural element present on earth for humans, yet
the  availability  of  pure  water  is  becoming  scarce  and  decreasing.  An  increase  in
population and a rise in temperatures are two major factors contributing to the water
crisis  worldwide.  Desalinated,  brackish  water  from  the  sea,  lake,  estuary,  or
underground  aquifers  is  treated  to  maximize  freshwater  availability  for  human
consumption. However, mismanagement of water storage, distribution, or quality leads
to serious threats to human health and ecosystems. Sensors and embedded and smart
devices  in  water  plants  require  proactive  monitoring  for  optimal  performance.
Traditional quality and device management requires huge investments in time, manual
efforts, labor, and resources. This research presents an IoT-based real-time framework
to perform water quality management, monitor, and alert for taking actions based on
contamination and toxic parameter levels and device and application performance as
the  first  part  of  the  proposed  work.  Machine  learning  models  analyze  water  quality
trends and device monitoring and management architecture. The results display how
the proposed method manages water monitoring and accesses water parameters more
efficiently than other works.

Keywords:  AI,  Embedded,  IoT,  Microcontroller,  Real  time,  Sensor,  Wireless,
Water quality monitoring.

INTRODUCTION

Just 2.5 percent or even less of the 71 percent of the water that coats the Earth's
surface is safe for consumption. This results in serious effects in terms of elevated
pollutant  concentrations  in  freshwater  sources  as  well  as  water  shortages  in
various parts of the world. Freshwater supplies are depleting at an uncontrollable
rate,  and  there  is  no  other  option  for  improving  the  situation than to track
and  sustain  the  highest  possible  level  of  water  bodies. There have been many
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developments  in  the  21st  century,  but  there  are  difficulties  in  tracking  water
quality worldwide for clean drinking water in real time due to rising emissions
and global warming. Water sources are dwindling, according to the Water Crisis
Report,  2020  [1].  Deaths  from  the  shortage  of  drinking  water  or  water-related
diseases  are  increasing,  and  over  850  million  people  worldwide  have  limited
access  to  clean  water  [2].

In  Africa,  19  million  residents  do  not  have  access  to  clean  water  [3].  In  India
alone, waterborne diseases are expected to cost about $600 million per year. In
India, less than 40% of the population has access to well-regulated drinking water.
Water poisoning, mostly due to fluoride and arsenic, is found in 2 million homes
[4].  Additionally,  contaminants  from  old  pipes  or  pollution  can  suddenly  and
unknowingly  enter  the  water  system,  putting  consumers  at  risk.  In  the  United
States,  nearly  227 billion liters  of  treated water  is  lost  each day due to  leaking
pipes [5]. Across England, every day nearly 3 billion liters [6] is lost due to old
leakage water pipes, which is equivalent to almost 1200 Olympic swimming pools.
Better  methods  for  monitoring  real-time  water  quality  need  to  be  established.
Given the strong digital presence in everyday life, several service utilities gather
data and track devices manually. This inefficient process leads to inaccurate and
incomplete measurements of  data and assets.  When upgrading,  utilities  need to
think about how to scale to thousands or even millions of sensors, water pumps,
meters,  and  valves.  With  advances  in  IT  infrastructure,  water  purification  and
desalination plants and systems can be integrated with IoT devices, sensors, and
embedded  systems  to  improve  the  storage,  monitoring,  and  alerting  for  water
quality and the devices involved.  Using machine learning,  systems and sensors
can gather data and generate alarms in real time to detect problems and reduce the
load  on  the  infrastructure  and  staff  who  currently  manage  the  processes.
Traditional  techniques  to  monitor  water  quality  include  a  manual  sampling  of
water  samples  from  various  sites.  When  handled  correctly,  the  infrastructure
update  can  unlock  new  insights  and  reach  unprecedented  levels  of  efficiency.

When  evaluating  how  to  start  updating  infrastructure  with  this  technology,
utilities  should  keep  in  mind  a  wide  range  of  possibilities  for  IoT  in  water
management. At the forefront, security should be a priority. A foreign attack on a
community’s system can cause irreparable damage. Processing data in an efficient
manner  involves  installation  and  monitoring  of  water  usage,  leak  detection,
advanced metering, and water quality for real-time data and situational awareness.
Highlights of this research are as follows:

Smart devices monitor, manage and alert real-time water quality, contamination,●

and toxic parameters.
Perform proactive monitoring and alerting of systems and devices involved.●



50   Smart Home and Industrial IoT Devices Akashdeep Bhardwaj

Machine  learning  models  to  analyze  water  quality  trends  and  device●

management architecture.
Random  forest  had  robust  results  and  achieved  an  accuracy  of  88%  with●

XGBoost of 0.85; even Naïve Bayes displayed the least accuracy of just 49%.

This  research  is  organized  in  sections.  Section  II  reviews  smart  water
management  solutions  and  Section  III  reviews  previous  research  works  and
implementations. Section IV presents the proposed framework using IoT; Section
V reviews the critical parameters to monitor and manage and Section VI presents
a machine learning model to analyze water quality trends and device management
architecture. Section VII presents the results obtained, and finally, the conclusion
with the future scope is presented in Section VIII.

SMART SOLUTIONS FOR WATER MANAGEMENT

Smart sensor devices aid in efficient and safe water management for consumers
and  workers  through  real-time  data  collection,  alerting,  and  actions  to  prevent
issues from occurring. Depending on the infrastructure, numerous processes can
be automated, real-time alert generation, and insights gathered for attaining high-
efficiency levels. Water industrial infrastructure having such devices and sensors
aids  in  delivering several  benefits  to  utilities  and their  teams when it  comes to
maintaining  physical  infrastructure  and  ensuring  the  safety  of  utility  workers.
With the influx of data, service teams manage remote infrastructure and reduce
physical  maintenance  on  site.  Service  teams  are  alerted  when  any  part  of  the
infrastructure  is  at  risk,  even  as  automated  processes  perform  the  necessary
changes proactively instead of sending service teams onsite to address the issues.

Water Processing, Storage, and Distribution

Water distribution affects the economic growth of every country; however, water
loss  due  to  leakage  is  prone  to  contamination.  This  affects  people's  health  and
welfare. According to a study released by the World Health Organization, about
2.2 billion global population does not have accessibility to drinking water. There
is  a  need  to  ensure  water  safety  and  waste  reduction  by  using  IoT.  There  are
several conventional techniques for collecting water datasets such as hydrologic
storage like moisture, streamflow, recharge, ocean-land-atmosphere fluxes, water-
land-air  quality  measures,  and  energy  demand  to  quantify  their  accuracy,  but
handling and tracking the data in real time is difficult due to the heterogeneity of
the data, the time it takes to obtain it, the resources needed for transmission, and
the  network's  coverage  and  accessibility.  With  new-age  technology,  tracking
water quality [7] in real time to receive alerts and perform proactive corrective
actions becomes possible.
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CHAPTER 4

Smart  Water  Management  Framework  for
Irrigation

Abstract:  The  demand  for  and  pressure  on  natural  resources  worldwide  is  rising,
placing  more  emphasis  on  the  availability  of  clean,  safe  drinking  water.  Modern
technologies like cloud computing, embedded systems, and smart sensors can provide
safe and effective control of the supply of drinking water for agriculture and consumer
usage. By combining proactive alerting, monitoring, and real-time data collection with
proactive management measures, problems are avoided before they arise. This study
offers a clever and safe foundation for future research aimed at improving the current
irrigation system. This is a low-cost irrigation strategy that uses smart device sensors
and  cloud  connectivity  to  give  automated  management  and  needs  according  to  the
environment and season. In order to address the operational failures, this also provides
alerting  scenarios  for  device  and  component  failures  as  well  as  water  leaks  by
immediately switching to an alternate mode and delivering alert messages about the
problems.

Keywords:  Cloud  computing,  IoT,  Internet  of  Things,  Smart  irrigation,  Smart
farming.

INTRODUCTION

Disruptive advancements in technology have permeated business settings, greatly
improving  people's  quality  of  life.  The  foundation  of  the  fourth  Industrial
Revolution  is  the  Internet  of  Things  and  smart  gadgets,  which  have  enormous
potential for automation and decision-making in the conventional agricultural and
industrial  sectors.  These  devices  also  have  intelligence  built  in  and  can  adapt
intuitively. With the use of smart devices and sensors, cloud computing, big data
processing online, and artificial intelligence characteristics, the Internet of Things
(IoT) offers the technological capacity to run and manage industrial infrastructure
automatically and more efficiently. Drinking water will be scarce in more than 50%
of metropolitan places worldwide by 2025, even  though  water  is  the  most
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valuable resource. To prevent this kind of situation and identify impending water
shortages, smart water management must be put into practice immediately.

Legacy SCADA (Supervisory Control and Data Acquisition) models operate most
of the world's water facilities today. Because of their practical constraints, these
industrial units are inefficient and mainly incapable of monitoring, detecting, or
operating  water  distribution.  According  to  UN  Scarcity  (UN  Scarcity,  decade,
2020) [1], by 2025, there will be a water deficit on every continent, with over 1.2
billion  people—roughly  one-fifth  of  the  world's  population—forced  to  live  in
water-scarce locations. One-fourth of the world's population, or 1.6 billion people,
do not have access to intelligent water management systems that can handle salty
water  from  rivers  and  subsurface  resources.  An  estimated  6  billion  gallons  of
treated  water  are  lost  yearly  in  the  US  alone  due  to  leaky  water  pipes  and
ineffective  distribution.

Consumers are also in danger from the monitoring of pollutants and toxins that
enter the water pipelines after treatment. Sensor-based solutions for smart water
management provide effective and efficient operations with no need for human
involvement.  By  using  IoT  sensors  and  linked  field  nodes,  which  enable
immediate  reaction based on current  weather  and landscape conditions,  remote
monitoring and smart water management may help optimize water consumption
and remove the difficulties associated with resolving issues with distant irrigation
systems. The optimization of resource usage and component monitoring are the
main advantages of implementing smart water management in water plants. Smart
water  management  offers  the  greatest  implementation  choices,  from  detecting
leaks  and water  waste  to  matching water  supply  demands  with  component  and
device up-times.

Energy conservation and efficient pumping are essential to guaranteeing a steady
supply of water for future generations, whether it is treated or potable. One major
burden  for  utilities  is  the  increasing  cost  of  electricity  due  to  inefficient  water
pumping.  It  may  represent  as  much  as  30%  of  total  operational  costs.  When
infrastructure is upgraded, utility firms may utilize IoT to improve the efficiency
of water management and increase worker and customer safety. The effort of staff
members who oversee physically examining every square inch of infrastructure
may be lessened by using these smart devices and sensors to help with real-time
data collection and alerts.  When determining how to start  implementing IoT in
water  management  to  modernize  infrastructure,  utility  firms  should  consider  a
wide  range  of  choices.  Security  needs  to  be  first  on  the  list  of  priorities.  An
infrastructure strike by a foreign power might have disastrous effects. To gather
real-time  data  and  enhance  situational  awareness,  it  will  also  be  essential  to
analyze data quickly. This starts with the installation of monitoring systems for
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water usage (Advanced Metering Infrastructure), leak detection, and water quality.
Scalability and management of the system should also be considered.

The fact that a lot of utilities still manually track devices and data may surprise
you, considering how much digital technology is used in our daily lives. Data and
asset  measurements  that  are  out-of-date,  inaccurate,  or  incomplete  might  be
produced using this outdated and ineffective technique. When upgrading, utilities
must  think  about  how  to  extend  to  hundreds,  or  perhaps  millions,  of  sensors,
water  meters,  and  valves.  The  infrastructure  improvement  achieves  previously
unheard-of  levels  of  efficiency and yields  fresh  insights.  If  different  corporate,
social,  and  technological  considerations  are  taken  into  consideration,  it  is
conceivable to give Internet of Things capabilities in water management scenarios.
The main benefits of utilizing IoT in water management are higher efficiency and
cost  savings  since  real-time  operational  control  enables  water  management
companies  to  make  wiser  decisions.

By  leveraging  real-time  data  from  sensors  and  actuators,  these  smart  devices
monitor and improve water management systems, increasing their efficiency and
reducing  energy  costs.  Lowering  water  management  costs  is  possible  with
increased  production,  methods,  and  appropriate  use.  Better  service  and  more
usage might be advantageous to businesses and consumers alike. By using sensors
and  connectivity  to  improve  asset  tracking  (devices,  machines,  tools,  and
equipment), businesses may gain information about their supply chains and assets.
They  can  promptly  recognize  assets  and  carry  out  routine  maintenance  on
important machinery and infrastructure. Any firm that wants to succeed must be
productive. Completing activities using sensor and IoT devices is facilitated by
real-time data collection, improved component and resource control, process and
service optimization, time and capacity reduction, and optimization. In turn, this is
narrowing the skill gap between needed and available, increasing labor efficiency.

The aim of  this  study is  to  explore  IoT water  management  systems that  utilize
algorithms  for  irrigation  farming  and  to  uncover  innovative  technologies  that
enhance  farming  efficiency  and  effectiveness.

LITERATURE REVIEW

Three hundred and seventy published studies were found by the author in peer-
reviewed  publications  such  as  IEEE,  ACM,  CMC,  Elsevier,  and  Springer.  To
identify  and  choose  the  articles  for  this  research,  the  authors  grouped  and
condensed  the  papers  based  on  research  on  smart  water  management,  IoT,
embedded  sensors,  devices,  and  cloud  computing.  The  literature  reviews  are
categorized according to the chosen keywords for this research in Table 1, and the
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CHAPTER 5

Secure  Framework  against  Cyberattacks  on
Cyber-Physical Robotic Systems

Abstract:  Robot-based  platforms  and  processes  have  integrated  the  security  and
efficiency of data into a comprehensive range of domains like manufacturing, industrial,
logistical, agricultural, healthcare, and Internet services. Smart cyberattacks have been
on  the  rise,  specifically  targeting  corporate  and  industrial  robotic  systems.  These
attacks are executed once the IoT, Internet, and organization integration is implemented
with the industrial units. The authors implemented security criteria-based indices for
Cyber-Physical systems (CPS) with industrial components and embedded sensors that
process the information logs and processes. The authors proposed an attack tree-based
secure  framework  that  does  not  include  every  CPS  device;  however,  it  takes  into
consideration the critical exploitable vulnerabilities to execute the attacks. The authors
categorized each physical device and integrated sensors based on logs and information
in a sensor indices device library. This research simulated the real-time exploitation of
vulnerabilities in CPS robotic systems using the proposed framework in the form of a
two-phased process. This validates the enhanced data security output of the integrated
sensor  and  physical  nodes  with  the  intelligent  monitor  and  controller  system health
monitor during real-time cyberattacks. This research simulated common cyberattacks
on cyber-physical controller servers based on cross-site scripting and telnet pivoting.
The authors gathered known and unknown vulnerabilities and exploited them with a
tree-based attack algorithm. The authors calculated the average time for cyberattackers
with different skills when trying to compromise CPS devices and systems.

Keywords:  Attack  framework,  Cyber-physical,  Robotic  security,  Robotic
platforms,  Telnet  pivot,  XSS.

INTRODUCTION

Given  the  extent  to  which  digital  technologies  and  physical  devices  have
infiltrated our lives, there is a belief that this closer integration with many other
disciplines  will  only  grow  to  new  heights  in  the  near  future.  The  new  age  of
Industrial  Revolution  4.0  is  largely  concerned  with  future  systems  of  digital
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manufacturing. In homes, smart sound, light and heating solutions, housekeeping
robots,  and  air  conditioning  systems  connect  and  integrate  with  computational
systems and devices. The transportation domain includes cars, planes, and electric
bicycles. Healthcare pacemakers, personal assistance robots, insulin pumps, and
smart prosthetics provide immense help to patients.  These technologies did not
exist  until  recently,  yet  now  they  offer  the  potential  to  save  and  improve  the
quality of life tremendously. Wearable fitness and health monitoring devices offer
the potential for a huge positive impact on healthy people as well as those with
physical or cognitive disabilities. Industry monitoring and control systems involve
the use of sensors and networks to observe large land or marine areas. Examples
from the energy sector include smart grids, windmills, and technologies to harvest
green energy. It is no exaggeration to imagine the entire planet Earth as a massive
cyber-physical ecosystem. However, highly sophisticated problems and hazards
arise  from  hostile  threats  and  Internet  attacks,  which  include  robotic  platform
malware, hijacks, and remote control.

Smart  industrial  production  systems  generate  goods  using  computer-integrated
processes, networks for intelligence, cybernetics, and mechatronics (Robotics and
Cyber-Physical Systems, 2019) [1]. CPS integrates physical dynamics, monitoring,
and  control  servers  with  software  application  components  and  networks.  This
smart  production  system  incorporates  real-world  physical  and  computer
components,  which  result  in  highly  monitored  and  controlled  states  and
parameters  for  optimum production.  These are  entwined to operate  at  temporal
and spatial states to monitor and control physical processes and vice versa. Smart
grids,  industrial  control  units,  driverless  cars,  automatic  pilot  avionics,
autonomous automobiles, and robotic systems [2] are some common examples of
CPS. CPS shares a relatively similar architecture to the Internet of Things (IoT)
but does not work in a standalone manner. CPS operates in an automated manner
with a higher level of coordination and processes as an interacting combination of
computational  components  and  physical  devices  such  as  actuators,  robots,
embedded sensors, and human machine interfaces in production facilities. Such
infrastructures  provide  technical  solutions  and  promote  new  efficient  human
engagement with various domain architecture and abstractions, such as consumer,
energy,  infrastructure,  environmental,  healthcare,  manufacturing,  military,
physical  security,  smart  cities,  transportation,  and  robotic  equipment  and
machinery.

To maximize the use of resources and system performance, CPS combines and
collaborates  computing  and  physical  processes  connected  to  the  Internet  or  an
internal secure data center. However, cyber threats and attacks through internal
networks or internet access jeopardize the security of physical and computational
interacting  elements.  These  smart  cybersecurity  attacks  infiltrate  CPS  via  the
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cyber  or  the  networked  component  to  attack  the  primary  controllers,  industrial
servers,  computers,  PLCs,  and  robotic  systems.  Secure  connection  to  external
networks  has  always  been  a  security  concern  for  CPS  deployments.  CPS
controllers suffer irreparable damage when attackers discover new ways to access
the  control  systems  to  alter  their  services  and  configurations.  Although  cyber
mitigation  systems  such  as  end-point  security,  anti-virus  shields,  or  network
intrusion detection devices have emerged as possible solutions for internal attacks,
smart cyberattacks and threats have been multiplying and getting sophisticated.
CPS suffers badly in this regard, as control and security are solely served by the
command-and-control  server  and  the  devices  are  often  secured  by  no  other
protection. Smart security attacks on the cyber layer to the CPS systems have an
intrinsic  causal  impact.  More  recent  cyberattacks  include  the  Colonial  Pipeline
attack  [3]  in  May  2021,  which  suffered  a  ransomware  attack  that  affected  the
computer  systems  and  equipment  managing  the  pipeline.  Company  operations
were halted as the Colonial Pipeline ransomware attack cost 75 bitcoin or US $
4.4 million. Stuxnet [4] and Aurora [5] attacks raised the need to recognize the
high-priority requirement of protection of critical physical infrastructures.

In  this  context,  CPS  is  a  fresh  field  for  research  for  designing  and  deploying
mitigation  measures  to  counter  and  mitigate  smart  cyberattacks.  Interest  in  the
security of industrial infrastructure has increased for collaborative robotic systems
working  on  vital  infrastructures  with  automatic  and  semi-automatic  assembly
processes globally.  In recent times,  attention to managing and mitigating cyber
risks by reducing security gaps posed by automation processes or manual actions
has gained huge consideration. Cyber safety and detection solutions are designed
for cyber-physical systems running on collaborative-networked ecosystems.

Highlights of this research include:

Unique taxonomy of cybersecurity attacks on cyber-physical systems: The novel●

aspect of this classification is to identify smart cybersecurity-related issues for
robotic industrial CPS applications. Research papers and vendor vulnerabilities
are categorized based on cyberattack causes, attacks, threat vectors, threats, and
risks involved.
Secure framework to enable safe and secure human-robotic system collaboration●

in  industrial  environments:  The  proposed  secure  CPS  framework  can  help
reduce  threats  such  as  information  breaches,  data  transfers,  or  alternations  in
device logs from smart cyberattacks on the computational nodes, devices, and
interfaces connecting various physical components.
Algorithms  for  determining  the  anomalies  in  the  sensor  logs  due  to  smart●

cyberattacks.
Detect DoS attacks by focusing on the anomaly values due to denial-of-service●
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CHAPTER 6

Multinomial Naïve Bayesian Classifier Framework
for Systematic Analysis of Smart IoT Devices

Abstract:  Machine  learning  and  artificial  intelligence-based  sentiment  analysis  are
crucial for companies to automatically predict whether the customers are happy with
their  products.  In  this  paper,  a  deep learning model  is  built  to  analyze thousands of
reviews of Amazon Alexa to predict customer sentiment. The proposed model can be
directly applied to any company that  has an online presence to automatically detect
customer  sentiment  from  their  reviews.  The  objective  of  this  research  work  is  to
propose  a  suitable  method  for  analyzing  the  users’  reviews  of  Amazon  Echo  and
categorizing them into positive or negative reviews. In this research work, a dataset
containing reviews of 3150 users has been used. Initially, a word cloud of positive and
negative reviews has been plotted that gave a lot of insight from the text data. After that,
a deep learning model using a multinomial naïve Bayesian classifier has been built and
trained by using 80% of the dataset,  and then the remaining 20% of the dataset  has
been  used  for  testing  the  model.  The  proposed  model  gives  93%  accuracy.  The
proposed model has also been compared with four models used in the same domain,
and it outperformed three of them.

Keywords:  Artificial  intelligence,  Alexa,  Amazon,  Deep  learning,  Internet  of
Things, Machine learning, Natural language processing, Smart devices.

INTRODUCTION

In recent years, intelligent voice assistants like Microsoft’s Cortana, Apple’s Siri,
Amazon’s  Alexa,  and  Google’s  Assistant  have  become  very  popular  and  used
widely in the day to day life. These intelligent voice assistants have changed the
way  users  interact  with  smartphones  or  computers.  Individuals  are  using  these
intelligent  voice  assistants  to  give  voice  commands  and  get  the  appropriate
information  like  daily  news,  weather  reports,  or  fulfillment  of  commands  like
playing media. Along with these uses, voice assistants are also used to perform
some basic tasks like setting timers or alarms and making phone calls. Nowadays,
these  voice  assistants,  especially  Alexa,   are  also  used  in  smart IoT-enabled
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devices to support voice control. The voice assistants are connected to the internet.
Whenever a user gives any voice command, then that command is sent to a central
computing system for analysis. In the central computing system, the command is
analyzed and translated by the voice assistants using natural language processing (
NLP), and a proper response for that command is provided by the voice assistant.
Recent  advances  in  NLP have  allowed  voice  assistants  to  generate  meaningful
responses rapidly [1].

With the help of artificial intelligence (AI), intelligent voice assistants can also be
used  to  detect  or  understand  the  emotions  of  the  user  and  perform  sentiment
analysis. Sentiment analysis plays an important role when users choose to share
their feedback or experience regarding some product through voice assistants. By
using sentiment analysis of voice assistants, commercial business companies can
use  insights  to  improve  their  products  or  services.  It  is  very  important  for  the
voice assistant to accurately detect the sentiment in the users' feedback or product
review and analyze it to detect the correct tone and mood of the user. With the
help of  AI  and NLP [2],  the  magnitude of  the  mood and tone of  a  user  can be
calculated,  and  a  numerical  score  can  be  assigned  to  them.  Depending  on  the
outcome of the sentiment analysis, proper assistance can be provided to the user.
As  the  popularity  of  intelligent  voice  assistants  is  increasing,  the  number  of
services  supported  is  also  increasing  very  rapidly.  After  using  a  product,  most
users  like  to  share  their  experience  about  the  product  by  writing  reviews.  This
review not only helps the potential buyers but also helps the business companies
in making good, impactful decisions about the product. So, it is very important to
perform sentiment analysis on users’ reviews about the product and the services
provided by that product. The product reviews are mostly available in text format.
AI-based sentiment analysis [3] can be used to classify the products’ reviews into
positive  or  negative  categories  by  looking  at  the  words  used  in  the  review.
Generally, a positive product review contains words like good, easy, love, happy,
and  great,  and  a  negative  review  contains  words  like  disappointing,  difficult,
frustrating,  bad,  waste,  not,  and  annoy.

In this  research work,  the authors have predicted customer sentiment  from real
Amazon  Echo  customer  reviews  by  using  NLP.  The  main  objective  of  this
research work is to predict whether the users are happy or not with the Amazon
Echo. If the customers are not happy with the product, then Amazon can figure
out  the  reason  and  can  help  the  users  with  proper  assistance  and/or  update  the
product based on the reviews. In this research, a deep learning model has been
built  and  trained  to  analyze  thousands  of  reviews  of  Amazon  Echo  to  predict
customer sentiments.
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The  remainder  of  this  work  is  organized  as  follows:  the  Related  Work  section
highlights  the relevant  work done in the same area;  the Research Methodology
section  describes  the  step-by-step  implementation  of  the  method  used  in  this
research; the Results and Comparison section describes the results and compares
them with the similar models in the same domain; Conclusion section conclude
the research.

RELATED WORK

The authors researched 354 journal publications since 2018 from IEEE, Springer,
MDPI, ACM, Elsevier, and other highly referred journals. Based on the research
reviews, keywords, and results, the papers were classified to match the relevant
work and results of this research. The authors shortlisted research that is relevant
as  per  the  below  selection  methodology  to  finalize  35  research  articles,  as
illustrated  in  Fig.  (1).

Fig. (1).  Research selection methodology.

The final 35 research studies selected were categorized as illustrated in Table 1
for works closely matching the metadata, summary, and keywords deep learning,
artificial  intelligence,  voice  assistant,  and  IoT  devices,  among  others.  The
classification  provided  an  overall  distribution  ratio  between  17  to  24  percent.

Table 1. Research selection and classification.

Grading Classification Stage 1 Stage 2 Stage 3 Stage 4 Breakup

Deep Learning 71 45 18 7 20.06%

Artificial Intelligence 82 52 20 8 23.16%

Alexa 69 44 17 7 19.49%

Voice Assistant 63 40 16 6 17.80%

First Stage
•Identified 354 
research work 
since 2018 to date

Second Stage
•Includes research 
having related 
summary, results, 
keywords and 
metadata

Third Stage
•Duplicate research 
were excluded for 
Paper Titles, 
Summary, Results 
and Keywords

Final Stage
•Finalized 35 
closely matched, 
relevant research
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CHAPTER 7

IIoT:  Traffic  Data  Flow  Analysis  and  Modeling
Experiment for Smart IoT Devices

Abstract: The Internet of Things (IoT) has redefined several aspects of our daily lives,
including  automation  and  control  of  the  living  environment,  innovative  healthcare
services, and much more. Digital IoT devices and sensors, when integrated with home
appliances, industrial systems, and online services in the physical world, have brought
intense,  disruptive  changes  in  our  lives.  The  industry  and  home  users  have  widely
embraced  Internet  of  things  or  IoT.  However,  the  innate,  intrinsic  repercussions
regarding security and data privacy are not evaluated. Security applies to Industrial IoT
(IIoT),  which is  in its  infancy stage.  Techniques from security and privacy research
promise to address broad security goals, but attacks continue to emerge in industrial
devices.  This  research  explores  the  vulnerabilities  of  IIoT  ecosystems  not  just  as
individual  nodes  but  as  the  integrated  infrastructure  of  digital  and  physical  systems
interacting with the domains. The authors propose a unique threat model framework to
analyze the attacks on IIoT application environments. The authors identified sensitive
data flows inside the IIoT devices to determine privacy risks at the application level
and  explored  the  device  exchanges  at  the  physical  level.  Both  these  risks  lead  to
insecure  ecosystems.  The  authors  also  performed  a  security  analysis  of  physical
domains  and  digital  domains.

Keywords: IoT security, Data privacy, Sensitive data, IIoT apps, Physical device,
IIoT threat model.

INTRODUCTION

IoT  has  flourished  in  every  area  possible,  be  it  industry,  agriculture,  energy
projects, or transportation. Its plays a major role in transforming the analog world
into  a  digital  one.  Industrial  IoT  tops  the  list  in  the  applications  area.  The
industrial IoT application field encompasses various linked “things” or initiatives
within and outside factories and manufacturing facilities. Many IoT-based factory
control and automation initiatives, for example, offer holistic innovative factory
technologies with multiple features such as manufacturing department monitoring,
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wearables, augmented reality on the production floor, remote programmable logic
control  (PLC),  or  computerized  quality  management  systems.  An  IoT  system
comprises  sensors  and devices  communicating with the cloud over  the Internet
connection. Once the data reaches the cloud, software analyzes it and may decide
to  act,  such  as  sending  an  alarm  or  automatically  altering  the  sensors/devices
without the need for the user's intervention. A user interface allows users to enter
information or check in on the system if required. Any changes or actions taken
by the user are then communicated back in another manner via the system: from
the  user  interface  to  the  cloud  and  then  back  to  the  sensors/devices  to  effect
change.

A smart factory is a computerized manufacturing facility that collects and shares
data continually through linked devices, machines, and production systems. This
information  is  then  utilized  to  judge  how to  enhance  procedures  and  deal  with
problems.  Connectivity,  data  analysis,  and  diagnostics  are  important  ideas
underpinning the future factory, resulting in fewer shutdowns, enhanced processes,
and optimized facilities.  A smart  factory makes use of cutting-edge technology
and  networking  to  optimize  processes.  IoT  and  artificial  intelligence  are  more
responsive  and  also  predictive  in  using  available  resources  to  produce  cost-
effective and efficient manufacturing. Assessing the manufacturing chain aids in
selecting  components  and  assessing  these  key  regions,  which  may  reveal  what
should  be  improved next.  This  investigation should  be  led  by a  varied  team of
professionals  with  expertise  in  many  business  areas.  IoT  engineers  collaborate
with management and IT system professionals to identify areas for improvement
and optimize operations, boost sales, lower costs, and save time throughout the
production  process.  Apart  from  industry,  IoT  is  revolutionizing  with  an
unstoppable  speed  in  every  area  possible,  such  as  transportation/mobility,
healthcare, supply chains, and cities. The IoT was only a notion in the early 2000s;
as we approached 2021, indications indicated that this innovation was here to stay.
According to reports,  35.82 billion IoT devices would be deployed globally by
2021 and 75.44 billion by 2025 [1]. From homes, healthcare, and electronics to
industrial,  mechanical,  and  manufacturing  for  monitoring,  alerting,  and
automation,  IoT devices running application services have transformed human-
digital  interaction  in  the  lives  of  home  users  and  the  industry.  The  contact
between  students  and  teachers  and  between  students  throughout  the  learning
process can occur in synchronous and asynchronous forms, as well as face-to-face
and electronic modes. Interaction with a smartphone app, visiting a website from
a  computer,  and  using  IoT  devices  are  all  instances  of  human-computer
interaction.

Although home users and the industry have embraced the systems supporting IoT,
the  security  and privacy implications  of  these  devices  on our  lives  are  still  not
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fully understood. IoT installations have access to application functionality that, if
exploited,  might  jeopardize  user  security.  These  IoT  systems  have  complete
access to sensitive private information, which, if released, might result in privacy
concerns. As a result,  it  is necessary to identify potential hazards to any digital
device before deploying it and include suitable protections in the system as it is
developed  and  architected.  Understanding  how  an  adversary  might  be  able  to
identify  common  ground  with  a  system  helps  guarantee  that  proper  mitigation
mechanisms are in place from the start. Thus, building the product with security in
mind  from  the  start  is  vital.  In  linked  corporate  IoT  devices,  their  manner  of
conceivable contact surface areas and communication patterns must be studied to
create a framework for safeguarding internet  access to those gadgets.  The term
'digital  access'  is  used  to  distinguish  actions  carried  out  with  direct  device
connection from those carried out with physical access control's access security.
Place the gadget in a room with a locked door, for example.

Physical access cannot be prevented by software or hardware. However, efforts
may  be  made  to  avoid  physical  access  from  communicating  with  the  device.
Evaluating the security of IIoT-based smart settings such as commercial and smart
homes  has  become  critical  to  effectively  reducing  security  threats  and  dangers
associated  with  deploying  smart  IIoT-based  electronics  devices.  Since  IIoT
applications are exposed to a large amount of sensitive data from various sensors
and  devices  connected  to  the  central,  one  of  the  main  criticisms  of  concurrent
systems is that current commercial methodologies lack basic tools and services to
analyze what they do with that data, pointing to application privacy. There are few
tools available for assessing privacy threats in IIoT applications. The need is a set
of analytic tools and methodologies aimed at platforms that may detect privacy
problems in IIoT apps.  This  study investigates the methodologies and tools  for
defining the use of critical material and identifying vulnerable data flows in IoT
deployments.

Conventional  sensitive  data  tracking  solutions  built  for  mobile  apps  and  other
areas are insufficient. Existing tools may overlook sources such as sensor status
(locked/unlocked)  and  media  such  as  IIoT  network  connections,  making  them
easily evaded by rogue programs. Second, security-critical design defects in the
permission architecture of IoT platforms, such as over-privileged device controls
caused by present coarse-grained access restrictions, necessitate analysis sensitive
to these privileges and their impacts.  Finally, IoT-specific technologies such as
system  parameters  and  web  application  IIoT  apps  differ  greatly  from  other
platforms;  hence,  on-demand  algorithms  are  necessary  to  ensure  accuracy.
Symmetric encryption techniques employ a single cryptographic key to encrypt
and decode the data received. The technique is relatively simple because just one
key is utilized for both actions. The main benefit of symmetric encryption is this.
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CHAPTER 8

Comparison  of  IoT  Communication  Protocols
Using  Anomaly  Detection  with  Security
Assessments  of  Smart  Devices

Abstract:  The  authors  implemented  an  attack  scenario  simulating  attacks  to
compromise node and sensor data. This research proposes a framework with algorithms
that  generate  automated  malicious  commands,  which  conform  to  device  protocol
standards and bypass compromise detection. The authors performed attack detection
testing  with  three  different  home  setup  simulations  and  referred  to  accuracy  of
detection,  ease  of  precision,  and attack recall,  with  F1-score  as  the  parameters.  The
results  obtained  for  anomaly  detection  of  IoT  logs  and  messages  used  K-nearest
neighbor, multi-layer perceptron, logistic regression, random forest, and linear support
vector classifier models. The attack results presented false-positive responses with and
without  the  proposed  framework  and  false-negative  responses  for  different  models.
This research calculated precision, accuracy, F1-score, and recall as attack detection
performance models. Finally, the authors evaluated the performance of the proposed
IoT communication protocol attack framework by evaluating a range of anomalies and
compared them with the maliciously generated log messages. IoT Home #1 in which
the  model  involved  IP  Camera  and  NAS  device  traffic  displayed  97.7%  Accuracy,
96.54% Precision, 97.29% Recall, and 96.88% F-1 Score. This demonstrated the model
classified the Home #1 dataset consistently.

Keywords:  Cyberattacks,  Internet  of  Things,  IoT,  IoT  attacks,  IoT
communication,  IoT  framework,  IoT  protocols.

INTRODUCTION

The use of smart home and industrial devices for gathering and processing data
has increased significantly in the past few years, including user comfort levels and
task  automation.  Such  devices  on  the  Internet  or  IoT  do  not  include  high-end
security  features,  as  the  hardware  components  deployed  in  IoT  devices  lack
security  assurance,  integrity,  and  privacy.  This  paper  compared  datagram  and
transport  layer  security  protocol  versions  for  IoT  devices.  IoT  is  one  of  the
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fastest-developing domains, estimated to reach about 1.4 billion devices by 2023
[1]. IoT is the future phase of communication, with physical devices being able to
generate, receive, and exchange data seamlessly. IoT applications aim to automate
various operations and enable passive physical things to operate without the need
for  humans.  IoT is  a  complex technology,  which is  an extension of  the current
Internet,  blending  digital  technology  into  our  physical  world.  IoT  devices
communicate  with  other  nodes  and  sensors  based  on  the  changes  in  the
environment and send that  data to other IoT nodes.  The devices are segmented
into  B2C  or  business–to-consumer,  including  the  end-user  or  customers,  and
business-tobusiness.  The  IoT  ecosystem  is  built  upon  the  hardware-defined
sensors,  integrated  circuits,  and  microcontroller  components  that  collect  data
andsend  it  to  the  software.  It  defines  modules  that  transform  it  into  useful
information and send this transport network layer for analytics to provide value
and intelligence.

These  low-quality  devices  do  not  implement  any  advanced  data  encryption  or
device authentication. This leads to the failure to mitigate threats posed by attacks
on  these  devices  and  ecosystems.  Due  to  the  nature  of  the  Internet,  attackers
deploy command-and-control servers to sniff and inject malware to compromise
IoT  node-to-node  communications.  Recently,  IoT  devices  have  increased  the
embedded  system's  network  connectivity  and  computing  capability.  The  large-
scale deployment of IoT has affected our lives significantly. This displays the lack
of protection and security protocols on the IoT software and hardware side, which
are marked as entry points for attackers to launch malicious attacks. These devices
are  implemented  as  smart  sensors  that  can  share  information  about  their
environment, e.g., wearable health monitors, wireless inventory trackers, and as
connected devices that send data to the Internet about that device's state or receive
commands  to  execute  actions  and  take  subsequent  steps.  This  ability  of  IoT
devices to ‘talk’ to other devices and move the generated data at the edge points to
the central servers makes them valuable. This interaction happens using multiple
IoT  communication  protocols,  which,  as  an  integral  collection,  are  essential  to
ensure the IoT ecosystem works. Yet, these IoT protocols do not work efficiently
in  every  scenario.  Each  protocol  has  different  features  and  combinations  of
capabilities,  making  them  suitable  for  specific  IoT  deployments.  These
deployment features depend on power consumption, speed, battery life, physical
barriers,  device cost,  and the geographical  environment.  The communication is
built upon the network technology stack for data to be transferred across the entire
ecosystem. However, due to a lack of security, IoT communication protocols are
insecure. Due to a lack of security, an attacker might launch an attack and leak
sensitive  data,  potentially  exposing the  entire  network.  The gadgets  are  always
linked and in constant communication, both within and outside the network. IoT
device-to-device interactions allow these things on the Internet to communicate
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with one another to transmit data, receive and send orders, and communicate in
general. The major IoT protocols are illustrated in Fig. (1) and described below:

Fig. (1).  IoT Communication protocols – MQTT & CoAP.

MQTT,  or  the  Message  Queuing  Telemetry  Transport  protocol,  works  using●

publish-subscribe architecture. This enables one too many communications and
is mediated by a controller or broker node. The messages are sent, received, and
categorized  by  topics,  which  function  as  labels.  The  protocol  can  work
unreliable,  with  unpredictable  high  latency  and  low  bandwidth.
CoAP or Constrained application protocol [2] works with HTTP over UDS for●

secure communications; this allows devices to work in environments having low
energy, availability, and bandwidth [3].
MPQ  or  Advanced  message  queuing  protocol  [4]  allows  interoperability●

between different IoT nodes irrespective of the platforms or the message brokers.
This offers reliability and security.
BLE or Bluetooth using short wave, ultra-high frequency radio communication (●

How  to  Deploy  Cassia  Bluetooth)  [5]  for  audio  data  streaming  during  short
distances.  This  IoT  protocol  tends  to  consume  less  power  than  the  standard
Bluetooth  connections,  so  it  has  become  appealing  for  wearable  devices
deployed in healthcare, trackers, or fitness consumer and commercial products.
LoRA  or  Long  Range  [6]  is  a  non-cellular  wireless  protocol  for  secure  data●

transmission.

Although IoT technology is still evolving, IoT attacks have already matured. The
research  community  has  recently  focused  on  security  challenges  affecting  the
Internet  of  Things  platform.  The  popularity  of  low-cost,  short-range  data
transmission  is  primarily  due  to  the  recent  explosion  of  IoT  devices  combined
with the requirement for an economical way of transmitting data. Since no single
IoT  protocol  is  best  suited  for  every  deployment,  IoT  design  architects  must
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CHAPTER 9

All-Inclusive  Attack  Taxonomy  and  IoT  Security
Framework

Abstract:  In  the  early  2000s,  the  Internet  meant  being  able  to  connect  different
communication devices, whereas the focus in the last few years has been on connecting
‘things’ to the Internet. Although there is no distinct classification for these devices and
things on the Internet, the Internet of Things (IoT) ecosystem primarily consists of a
complex  network  of  devices,  sensors,  and  things.  These  ‘things’  are  controlled  by
humans and utilize the existing cloud infrastructure. These devices provide facilities
and  benefits  to  make  our  lives  comfortable.  IoT  domains  include  smart  homes,
healthcare, manufacturing, smart wearables, smart cities, smart grids, industrial IoT,
connected vehicles, and smart retail. Different IoT models involve human-to-IoT, IoT-
to-IoT, and IoT-to-traditional system architectures. In most scenarios, the architecture
ends  up  connecting  to  the  unsecured  Internet.  This  has  thrown open  several  critical
issues leading to cybersecurity attacks on IoT devices. IoT communications, protocols,
or architecture have never been conceptualized to handle the new age of cybersecurity
attacks. IoT devices have limited computing, storage, networks, and memory. In this
research, the authors present a unique IoT attack framework named IAF, focusing on
the  impact  of  IoT  attacks  on  IoT  applications  and  service  levels.  The  authors  also
propose an all-inclusive attack taxonomy classifying various attacks on IoT ecosystems.

Keywords: Attacks, Framework, Internet of Things, Layers, Security, Taxonomy.

INTRODUCTION

The Internet  of  Things (IoT) ecosystem involves interconnected IoT devices in
complex architectures. The IoT has been increasing at a significant rate in the past
few years. IoT security needs to be assigned the highest priority while developing,
configuring,  or  updating  against  cybersecurity  attacks.  This  ensures  optimal
performance throughout the deployment with authorized user access. IoT security
[1]  has  been  a  work  in  progress,  presenting  attractive,  low-hanging  targets  for
cyber-attackers. Easy accessibility and vulnerabilities in devices and components,
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and more importantly, the quality of data gathered by those sensors are the main
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reasons for the rise in cyberattacks against smart devices and IoT deployments.
Vulnerable IoT devices connected to the command center, as well as other devices,
present high risk to every device and system on the same network. Such attacks
can lead to huge losses and damage [2]. IoT deployment designs and distributed
nature,  along  with  limited  computation  capability,  network,  and  storage
capabilities, certainly make them exploitable targets. IoT sensors and actuators are
tempered effortlessly and are even susceptible to physical attacks. Implementing
software security is also not sufficient to secure such devices. IoT attacks on such
distributed ecosystems are not just confined to the applications or network layers.
There  is  a  huge  demand  for  implementation  security  [3]  for  the  hardware
components and at firmware levels. Therefore, the logical and physical security of
these devices should be paramount, regardless of their count or cost.

Advancements in various domains, along with disruptive technologies, have led to
the development of many innovative devices.  IoT [4] involves people,  devices,
and various ‘things' connected on the Internet. These ‘things’ are accessed at any
time  and  at  any  place.  IoT  technology  focuses  on  creating  a  better  world  with
objects around humans. These objects or things are supposed to know what we
want  and  when  to  process  our  demands.  The  IoT  ecosystem  consists  of  many
smart devices interconnected [5] with each other in complex networks. These are
heterogeneous  and  either  use  wired  or  wireless  ports.  When  billions  of  IoT
devices are connected, the ecosystems turn into the Social Internet of Things or
SIoT, when such devices share data and social  sites.  This leads to security and
privacy issues. The solution is to have secure communication from IoT devices to
IoT applications with end-to-end encryption. IoT architecture designs are layered
deployments,  which  comprise  the  spplication  layer,  which  includes  cloud
infrastructure;  the  transportation  layer,  which  includes  networks;  and  the
preparation  layer,  which  consists  of  sensor  components  and  devices.

LITERATURE SURVEY

Contributions of different papers about the current issues are shown in Table 1.

Table 1. Literature Survey on IoT Attacks.

Reference Relevant Keywords

Reddy et al.
(2019) [6]

Internet of Things, IoT Networks, Telecommunication Security, Trusted Computing,
Collusion Attacks, Trust Computation, Trust Model, Mitigate Badmouthing attacks,
Malicious object, Similarity model, Computational modeling, Reliability, Sensors,

Security, Cloud, Data models, Trust, Recommendations, Similarity, Privacy.



Attack Taxonomy Smart Home and Industrial IoT Devices   203

Reference Relevant Keywords

Vishwakarma et
al (2019) [7]

IoT Protocols, Computer Network Security, Internet of Things, Invasive Software,
Learning (Artificial Intelligence), Detection Framework, IoT Botnet, DDoS attacks, IoT

Security, IoT Malware, Zero-day DDoS, Machine Learning, Malware Detection,
Honeypot-based Approach, Computer crime, IoT honeypot, Data models.

Luo et al. (2019)
[8]

Network Security, Distributed Denial of Service Attacks, Internet of Things, DDoS
Attacks, SDN, Invasive Software, Software Defined Networking, IoT devices, Moving
Target Defense Architecture, Malware, Network Asset, Computer Crime, IP Networks,

Malware, Botnet, SDN, Honeypot, DDoS Attack, IoT Security

Shah et al. (2018)
[9]

Internet of Things, IoT Protocols, IoT Security, Secure IoT Systems, IoT Server, IoT
Device, Network Security, Message Authentication, Authorization, Public Key

Cryptography, Single password, Secure Vault Change, Dictionary Attacks, Side-channel
Attacks, Multi-key-based Mutual Authentication, Multi-password-based Mutual

Authentication, Arduino, Authentication, Encryption.

Kepçeoğlu et al. (
2019) [10]

IoT Security, IoT Protocols, Energy Consumption, Internet of Things, Synchronization,
IoT Devices, Computational Power, IoT Network, Denial of Service Attacks, Energy

Consumption, Synchronization Flood Attack, Internet Control Message Protocol flood,
Energy Consuming Attacks, DoS Attacks, ICMP flood, CPU Usage, Energy Consuming

Attacks, DOS Attacks.

Gurunath et al.
(2018) [11]

Computer Crime, IoT Network Security, Internet of Things, IoT Expedients, Cost-
effective Devices, Average Level Attacks, Low Graded Attacks, Safety Mechanisms,

Cyber-attacks, Cybercrimes, IoT Protocols, IoT Bots, Power Consumption.

Soe et al. (2019)
[12]

IoT Network Security, Internet of Things, Invasive Software, DDoS Attack Detection,
IoT Environment, IoT Malware, Infected IoT Devices, Bot IoT, DDoS Detection System,

Botnet Attack Dataset, Artificial Neural Network, Resource Constraint, Mirai, Public
Dataset, Machine Learning, Synthetic Minority over-sampling, Imbalance Data Problem,

DDoS Attack.

Xie et al. (2017)
[13]

IoT Data Handling, Smart Power Grids, Smart grid, Power Engineering, Exposure Test,
Power System Security, Blind Identification Approach, Attack Exposure Analysis, Low-
sparsity Unobservable Attacks, Smart IoT, Data-driven Attack Scheme, Data Collection,

Data Management, Relaxed Condition, Intercepted Meter Data, Attack Vector
Construction, Sparsity-exploiting Method, Smart Grids, Transmission Line Matrix

Methods, Covariance Metrics, Load Modeling, Transmission Line Measurements, Low-
sparsity Unobservable Attacks, Attack Exposure Analysis, System Matrix, Data-driven.

Deogirikar et al. (
2017) [14]

IoT Attacks, IoT Security, Internet of Things, IoT Vulnerabilities, IoT Security
Countermeasures, Secure Communication, Encryption, IoT Architecture, IoT Attacks,

Physical Attacks, Network Attacks, Software Attacks, Encryption Attacks.

Okul et al. (2017)
[15]

Internet of Things, IoT Network Security, IoT Denial of Service Attacks, Man-in-t-
e-middle Attacks, Invasive Software, Internet of Objects, Object Layer, Network Layer,
Application Layer, Botnet, Computer Crime, IP Networks, Bluetooth, IoT Hacking, IoT
Security Attacks, IoT Layers, Botnet, Data and Identity Theft, Denial of Service, Social

Engineering.

(Table 1) cont.....
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CHAPTER 10

Improving  Performance  of  Machine  Learning-
Based  Intrusion  Detection  System  Using  Simple
Statistical  Techniques  in  Feature  Selection

Abstract: An increase in cyber-physical systems and IoT has increased the output of
the industry, and these systems have become the backbone of the industry. However,
these systems are vulnerable to various cyber-attacks. The increasing number of IoT
and  cyber-physical  systems  has  called  for  interventions  in  the  way  cybersecurity
system  works.  This  paper  evaluates  the  effectiveness  of  various  feature  selection
techniques– NB, LR, DT and SVM, ensembled shallow – RF and Adaboost with RBF
and uses the statistical techniques Chi and Pearson correlation coefficient for choosing
top  features  and  applies  them  to  the  traditional  machine  learning  algorithm  to  get
accuracy and detection rate. The machine learning algorithms are trained and evaluated
on the KDDCup ’99’ dataset. The study shows that machine learning algorithms work
perfectly and provide higher accuracy if the feature vector consists of a few significant
features.

Keywords:  Deep  networks,  Ensemble  learning,  Hidden  layers,  IDS,  Shallow
learning.

INTRODUCTION

The  world  has  seen  the  COVID-19  pandemic,  and  each  walk  of  life  has  been
affectedby it. Countries, governments, and native bodies emphasized preventing
the virus from intruding into human bodies. If we glance at 2020, we will see that
there  has  been  an  increase  in  cyber-attacks  in  India  [1]  and  other  geographies.
Therefore, it is necessary to possess a reliable system that may sense the attack
and  take  the  required  preventive  actions.  The  preventive  actions  might  startby
alienating the machine, applying the antivirus, or informing the people that cyber-
physical  systems  utilized  in  various  operations  are  often  saved.  The  attack's
impact is magnified if there is an attack on the IoT systems of any industry. The
typical methods show a limitation in stopping such attacks due to continuously
changing  impact  methods  and  vulnerabilities.  These  attacks  on  IoT  might  be
manual attacks, or the attack vector might be generated using some piece of code
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or  any  technology.  The  increasing  magnitude  of  attacks  is  often  attributed  to
evolving  hardware,  software,  algorithms,  and  dependence  on  cyber-related
technologies  for  Industry  4.0.  Better  systems  translate  into  more  load  on  the
system,  more  cyber  traffic,  and  less  time  to  categorize  a  malicious  URL.

An intrusion detection system (IDS) was conceptualized to stop these attacks. The
IDS  [2]  usually  monitors  the  network  and  checks  parameters  like  flow  and
network packets or reads the logs to detect any malicious or suspicious activity,
bringing the entire system down. These IDS are commonly inflicted with a high
false-positive rate and work poorly on unknown attacks. The unknown attacks are
due to the changing network technology. It is imperative to make an IDS that may
easily work upon new and unknown attacks efficiently. The ideal disadvantage of
the normal IDS is that it is not self-learning and does not take necessary action
unless it is specifically told about the principles and actions associated.

Machine  learning  (ML)  algorithms  have  been  found  to  be  tackling  such  issues
within the other problem areas, and thus, they are considered the golden key that
resolves  the  problems  of  handling  unknown  attacks  and  provides  correct
classification with less error [7]. Currently, this paper is an effort to seek out the
proper machine learning algorithm from commonly used algorithms and compare
them. The input  to  the machine learning algorithm is  typically  a  feature  vector
consisting  of  multiple  features,  and  therefore,  the  classification  algorithm  is
typically supported by the varied weights assigned to the features during a vector.
The author is interested in using all the features of a vector and has tried to match
the  accuracy  of  the  machine  learning  algorithms  using  only  a  few  significant
features selected through essential statistical techniques.

The normal IDS classifies the traffic into malicious or normal, supported by the
given  ruleset.  These  rule  sets  are  not  frequently  updated;  hence,  normal  IDSs
cannot find the categorization, and they make an equivalent mistake till the rule
sets  are  updated.  However,  machine  learning-based  IDS  is  sufficient  for  self-
learning  and  categorizing  unseen  traffic  with  higher  accuracy.  The  machine
learning-based  IDS  is  not  hooked  into  the  given  ruleset,  but  it  categorizes
supported features and, therefore, the weight-related feature. Fig. (1) shows the
schematic diagram for the IDS.

This paper is divided into 4 sections. Section 2 discusses the paper's foundation,
various  machine  learning  algorithms,  the  basic  statistical  techniques,  and  the
performance parameters. Section 2 also discusses the previous work in the area
and establishes the need to use statistical techniques to increase the accuracy of
the machine learning algorithms. The dataset and experimental methodology are
discussed in section 3. Results are discussed and analyzed in section 4, and the
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paper ends by discussing the conclusion, shortcomings, and future directions or
extensions of this research.

Fig. (1).  Schematic diagram of IDS.

LITERATURE REVIEW

IDSs have been the center of research for the past few decades, and a variety of
researchers have applied various techniques and tricks at different layers to stop
tracts [4]. Few researchers have categorized the IDS into two types – signature-
based and anomaly-based IDS (AIDS). Out of these two, signature-based IDS are
prevalent within the industry.

Signature-based IDS (SIDS), the oldest generation IDS [5], has an inventory of
the predefined attacks, and traffic signatures are matched to the signatures present
within the list. They fail miserably if the attacks are not part of the list; list must
be  updated  frequently.  AIDS  traditionally  has  an  inventory,  and  traffic  whose
signature does not match the list is marked as attacks. However, machine learning
algorithms  can  help  AIDS  identify  unseen  traffic  as  benign  or  malicious,  and
machine learning helps in AIDS self-learning.

Few of the researchers [6, 7, 8] bifurcate the IDS into network-based IDS (NIDS)
and  host-based  IDS  (HIDS).  Both  NIDS  and  HIDS  have  their  advantages  and
drawbacks. For example, NIDSs are fast, but they tend to misclassify counting on
the  cryptography  of  the  traffic,  whereas  the  HIDS  does  not  suffer  from  the
cryptography of the network, but it requires all the configuration files to detect an
attack.  These  research  studies  illustrated  and  presented  that  self-learning
technology  can  be  used  as  an  accurate  IDS.
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