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PREFACE

“Advanced Materials”  can safely  be  ascribed to  those  materials  that  have the  potential  of
offering  a  useful  combination  of  properties  including  physical  properties,  mechanical
properties, electrical properties and chemical properties, which make them a potentially viable
candidate  for  selection  and  use  in  a  spectrum of  applications  spanning  both  performance-
critical and non-performance-critical. This can be made possible through a healthy synergism
of changes in composition, and changes in constituents coupled with the development and
implementation  of  specialized  and  innovative  techniques  specific  to  both  processing  and
synthesis. These materials have gradually grown both in stature and strength and include the
following:  (i)  high  value-added  metals  and  their  alloy  counterparts,  (ii)  biomaterials,  (iii)
ceramics, (iv) ceramic-matrix composites, (v) electronic materials, (vi) high entropy alloys,
(vii)  multi-principal  element  alloys,  (viii)  metal-matrix  composite  materials,  (ix)
nanomaterials, (x) polymers, (xi) polymer-matrix composites, and (xii) semiconductors. The
“emerging” materials and their traditional counterparts tend to differ significantly in terms of
mechanical properties, physical properties and chemical properties. The properties offered by
the newly developed and/or “emerging” materials can be customized, or tailored, specific to
the  primary  purpose  for  use  and  application.  Further,  production  and  eventual
commercialization  of  the  family  of  “emerging”  materials  often  tend  to  differ  from  the
traditional  counterparts  in  terms  of  the  following  input(s):

Overall importance of the engineered product(s).1.
The importance given to the different steps and related intricacies in the processing2.
sequence (including fabrication), and
The economics specific to cost, based entirely on the scale of production.3.

The potential for an observable change in characteristics of the “emerging” materials and the
markets  to  which  they  can  serve  are  rapidly  gaining  in  strength,  which  is  made  possible
through  a  healthy  combination  of  radically  different  materials  and  processes.  Both  cost
benefits and structural advantage over the life of a newly developed material, or “emerging”
material, can differ significantly from that of the traditional counterpart, thereby providing a
clear indication that the traditional approaches to economic assessment may not be suitable
and applicable to the family of “emerging” materials.

There  does  exist  a  need to  establish  meaningful  boundaries  for  an  “emerging” material  in
terms of both the input material and the end-product of interest, i.e.,

When in the processing chain or processing sequence can a material be classified as1.
new, novel and “emerging” ?, and
When can an “emerging” material be chosen for use for a specific product?2.

In several cases, the categories of information that is both needed and essential with specific
reference to an “emerging” material is the same as for the traditional counterpart. However,
the primary focus of the general categories often tends to show observable differences. An
example of which is suitability of a specific material for the purpose of selection and use in a
specific application. Identifying the need for an adequate amount of information coupled with
a thorough analysis of the “emerging” materials does necessitate the need for a fundamental
rethinking of why information of various kinds is essential and to whom and for what purpose
is  the  specific  information  needed,  essential  and  required.  The  information  that  is  found,

  i
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established  and  subsequently  collected,  categorized  and  documented  should  not  only  be
concise but also capable of being updated periodically. It should essentially represent areas of
“valued” interest and much desired concern to representatives from both industry and policy
makers. Over the years, the gradual development and emergence of new, improved and novel
materials  did  get  the  much-needed  interest,  attention,  participation  and  contribution  from
several researchers. This is evident from the fact that during the last four decades [i.e., 1990
to present], several hundreds of papers have been published in the open literature on aspects
specific  to the development and emergence of  new and improved materials  made possible
through  a  healthy  synergism  of  novel  changes  in  material  chemistry  coupled  with  an
appropriate  combination  of  innovative  processing  sequences  to  get  the  desired  material.

The chapters contained in this bound volume attempt to provide an insight into the advances
while  concurrently  addressing  the  potential  areas  of  observable  growth  and  resultant
application of the new and improved materials resulting from a healthy combination of novel
compositions  and  innovative  processing  techniques  that  were  successfully  developed  and
used  for  the  synthesis  of  new and  improved  materials,  referred  to  henceforth  through  this
bound volume as “emerging materials”. The manuscripts, or chapters, chosen for inclusion in
this bound volume have been written by authors having varying backgrounds and experience
in the domains specific to the synthesis, processing, manufacturing, experimentation, analysis,
quantification and even modeling of materials and structures. This has essentially formed the
basis of their writing style and technical content of their manuscript chosen for inclusion in
this bound volume.

Overall, this bound book contains three sections. Each section, i.e., Section ‘A’, Section ‘B’
and Section ‘C’ contains a few well laid-out technical chapters. In an attempt to make every
effort to meet with the needs and requirements of the different readers, each chapter has been
written and presented by one or more authors to ensure that it offers a clean, clear, cohesively
complete and convincingly compelling presentation and discussion of the intricacies specific
to their analysis, observations and resultant interpretations of their research and findings in a
convincing manner.

In  the  first  section  of  the  book  (Section  ‘A’),  the  focus  is  on  “METALS  AND  ALLOYS”
specific to the family of emerging materials. This section has five chapters. The first chapter
[Chapter 1] introduces the interested reader to aspects pertinent to recent advances in friction
stir welding of magnesium alloys for the purpose of selection and use in performance specific
applications.  The  second  chapter,  [i.e.,  Chapter  2],  provides  an  in-depth  analysis,  in  a
cohesively complete and convincing manner, of the suitability of nickel-base shape memory
alloys for selection and use in sensing applications. The follow-on chapter, [i.e., Chapter 3]
is devoted to presentation and healthy discussion of the intricacies specific to thermal and
thermo-mechanical cycling studies on nickel-base shape memory alloys for selection and use
in  applications  in  both  engineering  and medical  field.  The  authors  present  and adequately
discuss all of the relevant and required aspects that are key for the purpose of selection and
use  of  the  nickel-base  shape  memory  alloys  in  the  two  applications.  The  fourth  chapter
[Chapter 4] presents in a well laid out, neatly explained and convincing manner all of the
related and relevant intricacies specific to the addition of nitrogen to Type 316L stainless steel
with the prime objective of enhancing the performance of the chosen stainless steel at high
temperatures when chosen for use in structural applications specific to fast reactors. All of the
details and specifics are neatly presented and adequately discussed at all of the relevant and
appropriate  locations  through  the  entire  length  of  this  chapter.  The  follow-on  chapter  on
pressurized heavy water reactors [i.e., Chapter 5] is thorough, exhaustive and illuminating in
detail in a cohesively complete and convincing manner all of the intricacies specific to the
evolution of zirconium alloy for use as pressure tubes in pressurized heavy water reactors. All
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of  the  findings,  observations  and  interpretations  are  neatly  explained  with  the  aid  of
appropriate  micrographs  to  include  both  scanning  electron  micrographs  and  transmission
electron  micrographs.  This  is  certainly  a  complete,  well  written  and  laid-out  chapter  that
offers a wealth of information that is neatly explained using principles of Materials Science
and  Materials  Engineering  thereby  significantly  strengthening  technical  content  of  the
chapter.

The  second  section  of  this  book  [i.e.,  Section  ‘B’]  is  focused  on  “COMPOSITE
MATERIALS” and includes six desirable and well laid out chapters. The first chapter in this
section (i.e., Chapter 6) attempts to provide the ‘interested’ reader with an overview of the
desirable  highlights  specific  to  the  selection  and  use  of  biomaterials  and  implants  in
orthopedics. Also provided and adequately discussed are key issues, or specifics, relevant to
an evaluation of their future. This chapter can safely be categorized to be a healthy refresher
to both the knowledgeable reader  and ‘learned’ engineer  while  concurrently providing the
novice and inquisitive learner useful information specific to the potential use of biomaterials
and  implants.  In  the  following  Chapter  [i.e.,  Chapter  7],  key  aspects  specific  to  additive
manufacturing of composite materials for use in biomedical applications are well presented
and adequately discussed from both a scientific perspective and engineering viewpoint. In the
next chapter [i.e., Chapter 8], the theme for presentation and discussion is the key aspects
specific to aluminum metal-matrix composites and magnesium metal-matrix composites. The
contributing  authors  devote  their  attention  and  focus  to  providing  adequate  insight  into
developing an understanding of the role, importance and contribution of processing influences
on corrosion properties of the chosen metal-matrix composites for the purpose of selection
and use in environment-sensitive applications. In the following chapter [i.e., Chapter 9], the
contributing  authors  present  their  views,  following  a  comprehensive  study  of  aluminum
nanocomposites that were developed by additive manufacturing for the purpose of selection
and eventual use in both emerging and demanding automotive applications. In this chapter,
the  contributing  authors  also  provide  an  adequate  discussion  of  all  intricacies  specific  to
understanding  processing  influences  on  microstructural  development,  and  microstructural
influences in governing mechanical properties and resultant mechanical performance. In the
following chapter [i.e., Chapter 10], the contributing authors clearly present and thoroughly
discuss  lucidly  all  the  key  aspects  and  intricacies  specific  to  enhancing  the  strength  of
aluminum-boron  carbide  composites  to  an  adequately  high  level  by  the  addition  of
magnesium. This enabled making the resultant composite material to be suitable for selection
and use in a spectrum of applications in the automobile industry.  In the following chapter
[i.e.,  Chapter  11],  an  adequate  review  of  processing  and  fabrication  of  the  sisal  fibers-
reinforced  composite  materials  is  neatly  presented  and  adequately  discussed  with  specific
reference  to  understanding  all  of  the  intricacies  specific  to  processing  influences  on
microstructural  development  and  the  resultant  influence  of  microstructure  in  governing
mechanical  properties  and  overall  mechanical  performance.  This  chapter  based  on  both
content and description can be considered to be educative, enlightening, and informative from
the standpoint  of  an  analysis  and rationalization of  the  findings.  In  the  same chapter  [i.e.,
Chapter 11] all of the key aspects specific to mechanical performance that result from the
development of the engineered composites are well presented and adequately discussed.

The third section of this book [Section ‘C’] is devoted to aspects both related to and relevant
to “OTHER MATERIALS AND TECHNIQUES”. In the opening chapter of this section
[i.e.,  Chapter  12],  the  contributing  authors  elegantly  present  and  discuss  the  numerous
benefits that arise from the selection and use of biomaterials and implants in orthopedics. The
authors present and adequately discuss the basic principles behind biomaterials and implants
and the overall benefits of selecting them for use in orthopedics. In the following chapter [i.e.,
Chapter 13], the contributing authors make a comprehensive and complete review of “Smart
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Hydrogels”  with  adequate  emphasis  given  to  both  theory  and  applications  in  the  domain
specific  to  biomedical  sciences.  The contributing authors  attempt  to  focus  their  review on
studying and rationalizing the influence of basic theory in governing the selection and use of
“Smart  Hydrogels”  in  bioscience-dominated  applications.  In  the  following  chapter  [i.e.,
Chapter 14], the contributing authors provide a neat and convincing review with appropriate
discussion on the development of engineered iron-oxide-based nanomaterials for magnetic
hyper-thermia. In the following chapter [i.e., Chapter 15], the contributing authors provide a
lucid and well-written overview of all of the intricacies specific to emerging and sustainable
materials technology with an emphasis on fire safety. They present and adequately discuss the
many attributes of the available alloys and materials for the purpose of their selection and use
both in existing and emerging fire-safety critical applications. They also list and discuss the
key considerations for both the existing materials and the newly developed materials while
concurrently providing an overview of the future of the existing materials from the standpoint
of  eventual  commercialization.  In  the  following  chapter  [i.e.,  Chapter  16],  the  authors
provide an adequate review specific to recent advances in the unconventional machining of
smart alloys in order to ensure their selection and use in critical manufacturing sectors. The
following  chapter  [i.e.,  Chapter  17]  is  well  presented  and  appropriately  discusses  all  the
relevant aspects specific to critical parameters that exert an influence on the high strain rate
deformation  of  engineering  materials.  The  contributing  authors  provide  a  review  of  the
published results from tests conducted on different materials using the pressure bar apparatus.

Overall,  this  archival  monograph  devoted  to  addressing  the  family  of  emerging  materials
provides a background that should enable an interested reader to comprehend with ease the
immediate  past,  the  prevailing  present  and  the  possible  future,  or  emerging  trends,  and
approaches in the domain specific to the gradual development. Also, the emergence of these
materials  with  an  emphasis  on  innovation  is  highlighted  in  an  attempt  to  ensure  their
applicability for use in a wide spectrum of applications to include both performance-critical
and  non-performance-critical.  Thus,  based  entirely  on  the  contents  included  in  this  bound
volume  it  can  very  well  serve  as  a  single  reference  book  or  even  as  textbook  for  the
following:

Students spanning seniors in the undergraduate program of study in the fields of: (i)1.
Materials  Science  and  Engineering,  (ii)  Mechanical  Engineering,  and  (iii)
Manufacturing  Engineering/Manufacturing  Technology.
Fresh  graduate  students  pursuing  graduate  degrees  in:  (i)  Materials  Science  and2.
Engineering,  (ii)  Mechanical  Engineering,  and  (iii)  Manufacturing  Engineering/
Manufacturing  Technology.
Researchers working in research laboratories and industries striving to specialize and3.
excel  in  aspects  related  to  research  on  materials  science  and  engineering  and  the
resultant development to ensure the emergence of new and improved products.
Engineers striving and seeking novel and technically viable materials for the purpose4.
of  selection  and  use  in  both  performance-critical  and  non-performance-critical
applications.
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We  certainly  anticipate  this  bound  volume  to  be  of  much  interest  and  value  to  scientists,
engineers, technologists, and even entrepreneurs.

T. S. Srivatsan
Department of Mechanical Engineering
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The University of Akron
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Production and Industrial Engineering Department
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CHAPTER 1

Recent  Advances  in  Friction  Stir  Welding  of
Magnesium Alloys for Use in Performance-Specific
Applications
Divyanshu1,  Kunal  Chauhan1,  Jimmy  Karloopia1,*,  N.  M.  Suri1  and  T.  S.
Srivatsan2

1 Department of Production and Industrial Engineering, Punjab Engineering College (Deemed to
be University), Chandigarh,160012, India
2 Department of Mechanical Engineering, Auburn Science and Engineering Center, The University
of Akron, Akron, Ohio 44325-3903, USA

Abstract: Magnesium is the sixth most abundant material in the earth’s crust that finds
its  applications  in  the  fields  of  automobiles,  aerospace,  and  biomedical.  With
noticeable advances in the domain enveloping engineering and technology, there does
exist a growing need for new and improved materials to meet the demands put forth by
the  industries  spanning  the  aerospace  and  automobile  sectors.  One  of  the  important
requirements  for  a  material  is  light  in  weight.  Magnesium  is  one  such  promising
material, which is lighter than aluminum making it an ideal candidate for selection and
use  in  both  performance-critical  and  non-performance  critical  applications  in  the
domains  specific  to  automobile,  aerospace  and  even  biomedical.  There  are  various
processing routes for the manufacturing of magnesium alloys, and there exists a need
for the joining of the magnesium alloys. The conventional joining processes possess
defects,  such  as  porosity,  which  are  detrimental  to  achieving  acceptable  to  good
mechanical properties. Friction Stir welding is one method of solid-state joining, which
offers  good  properties  of  the  weld.  The  technique  of  friction  stir  welding  (FSW)
operates  by  rotating  and  plunging  a  non-consumable  tool  into  the  interface  of  two
workpieces that require to be joined. Promising advantages that are offered by friction
stir welding (FSW) are eco-friendly, versatile, and energy efficient. This manuscript
highlights  (i)  the  friction  stir  welding  processing  technique,  as  well  as  recent  and
observable advances, (ii) the classification of the magnesium alloys, (iii) the welding
tool  and  its  influence  on  welding,  microstructural  development  and  mechanical
properties of the friction stir welded magnesium alloy, (iv) welding parameters and its
influence on governing the relationships between the weld and the workpiece, and (v)
typical practical applications and the variants of friction stir welding (FSW).
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INTRODUCTION

With  sustained  and  noticeable  advances  in  technology,  the  world  is  gradually
moving forward towards the selection and use of materials that are light in weight,
have an excellent combination of mechanical properties and tribological qualities
to  offer  coupled  with  other  desirable  characteristics.  Magnesium  is  one  such
material,  having  acceptable  mechanical  properties  and  tribological  qualities,
coupled  with  chemical  and  biological  capabilities  and  is  low  in  weight  [1].
Magnesium is often chosen for use in a variety of fields to include the following:
(i)  electrical  industry,  (ii)  the aerospace industry,  (iii)  the vehicle industry,  (iv)
biomedical applications, and (v) industry that caters to the domain of sports, i.e.,
sporting goods [2 - 4].

Magnesium  makes  up  around  2.7%  of  the  earth's  crust  and  stands  as  the  sixth
most abundant element in the earth's crust [5]. The density of magnesium is 1.74
g/cm3, which is two-thirds that of aluminum and one-fourth that of steel [6]. The
properties of magnesium are summarized in Table 1. Magnesium-based materials
are extensively sought by firms for use in weight-critical applications essentially
because of their low density coupled with high specific mechanical properties.

Table 1. Properties of magnesium [Reference 7].

Property Magnesium

Density (g/cm3) 1.74

Melting Point (K) 651

Specific Heat (J/kg. K) 1022

Young Modulus (1010 Pa) 4.43

Thermal conductivity (W/m. K) 167

Heat capacity (J/m3. K) 1778

Thermal expansion rate (10–6/K) 26.1

There  are  a  variety  of  solid-state  processing  and  liquid-state  processing
techniques, such as Additive Manufacturing (AM), Stir Casting, Melt Infiltration
method, Spray forming, Friction Stir Processing, and Powder Metallurgy for the
purpose of manufacturing magnesium alloys and magnesium composites. For the
joining of a magnesium alloy and a magnesium alloy-based composite material
with  both  comparable  materials  and  different  materials,  friction  stir  welding,
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resistance  spot  welding,  laser  welding,  and  diffusion  bonding  are  all  viable
options  [8  -  17].

Thomas and co-workers were the ones who initially created friction welding in
1991 [18]. When welding magnesium alloys and magnesium-based composites,
Friction  Stir  Welding  (FSW)  offers  a  number  of  benefits  that  are  not  easily
available with the other welding techniques. These benefits essentially include the
following [19 - 22]:

(a) A fine microstructure,

(b) An absence of microscopic cracking,

(c) No loss of alloying elements during processing,

(d) Good dimensional stability and repeatability,

(d) Shielding gas is not required,

(e) High weld strength and toughness, and

(f) Capability of the weld to resist fatigue stress.

The  basic  idea  behind  friction  stir  welding  is  the  same  as  that  behind  friction
welding.  During  this  process,  heat  is  produced  at  the  contact  surface  by  the
application of friction. The heat initiates the diffusion process at the surface where
the  two  materials  are  to  be  joined.  The  application  of  a  high-pressure  force  to
these mating surfaces expedites the metal diffusion process and forms a metal- to-
metal junction. This is the fundamental concept of friction welding [23 - 26].

Stages in Friction Stir Welding

The friction stir welding (FSW) process is broken up into three stages as shown in
Fig.  (1).  The  first  stage  is  known  as  the  Plunging  phase.  The  second  stage  is
known as the Dwelling phase, and the Third stage is known as the Welding phase
[27].

The  friction  stir  welding  (FSW)  technique  essentially  consists  of  only  three
stages, namely: (i) plunging phase, (ii) dwelling phase, and (iii) welding phase.
Despite  its  seeming  complexity,  it  is  overall  a  very  simple  technique.  A  non-
consumable revolving tool is used in the plunging process. The non-consumable
revolving tool is composed of material that is stronger than the workpiece and has
a  shoulder  that  is  bigger  in  diameter  as  well  as  a  pin  and  will  plunge  into  the
workpiece to a depth that has been pre-programmed. This causes the generation of
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CHAPTER 2

Suitability of Nickel-base Shape Memory Alloys for
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Abstract: In the prevailing era, an influential shape memory alloy (SMA) nitinol has
emerged as a potentially viable and economically affordable material that is capable of
playing  a  significant  role  in  both  existing  and  emerging  technological  applications
spanning the domains of aircraft and aerospace, biomaterials in bioengineering, sensors
in health monitoring,  advanced manufacturing,  and microelectromechanical  systems
(MEMS),  to  name  a  few.  A  high  strain  recovering  capability  coupled  with  super-
elasticity are two key and essential characteristics of a “smart” material that distinguish
it easily from its conventional counterparts. The phase transformation behavior shown
by nitinol (NiTi) was found to be governed by intrinsic variations in temperature. In
order  to  obtain  the  desired  application-based  functionality  of  this  high  performing
material,  potentially  viable  approaches  include the  following:  (i)  an  alteration of  its
chemical composition, (ii) the addition of ternary elements and quaternary elements,
and (iii) the use different processing treatments. These approaches are being constantly
studied, carefully and systematically examined and frequently reported in the published
literature. In this manuscript,  an effort  is made to present and discuss several of the
recent  advances  specific  to  the  NiTi-based shape memory alloy applications  and its
phase transformation behaviour when subject to processing treatments. The influence
of compositional variation of the NiTi-based shape memory alloys (SMAs) and even its
ternary  variants  and  quaternary  variants,  coupled  with  the  role  and/or  influence  of
different  processing  treatments  on  both  macroscopic  properties  and  microscopic
properties is  the focus.  The emphasis on increasing the suitability of shape memory
alloys (SMSs) for selection and use in a spectrum of sensing-related or sensing specific
applications is highlighted and briefly discussed.
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INTRODUCTION

Shape memory alloys (SMAs) are in the prevailing and/or ongoing time period
emerging  as  materials  having  a  remarkable  capability  to  recover  higher  strains
while  concurrently  remembering  their  shape.  These  smart  materials  exhibit
pseudo-elasticity  properties,  namely  a  combination  of  shape  memory  effect
(SME) and super-elasticity, which are governed to an extent by their martensite to
austenite phase transformation or austenite to martensite phase transformation.

Nickel-Titanium (Ni-Ti), referred to as nitinol, is a popular shape memory alloy
(SMA) that has been researched during the last few decades, starting way back in
the early 1950s. Though the shape memory effect (SME) was first discovered in
Au-Cd  alloy  in  1951,  Buehler  and  co-workers  [1]  in  1963,  invented  the  shape
memory  effect  (SME)  in  a  Ti-Ni  alloy.  The  titanium-nickel  (Ti-Ni)  alloy  was
having  an  equiatomic  composition  of  titanium and  nickel.  Equiatomic  or  near-
equiatomic  NiTi  shape  memory  alloy  (SMA)  can  exist  either  in  the  austenite
phase,  martensite  phase  or  the  R-phase  and  concurrently  reveal  a  dissimilar
microstructure  in  these  phases  [2].  The  R-phase  normally  forms  as  an
intermediate phase for the austenite to martensite phase transformation and for the
martensite  to  austenite  phase  transformation.  Both  of  these  transformations
essentially involve two-stages for a specific composition. The R-phase is similar
to the martensite phase, but does not provide the shape memory effect, or super-
elasticity. At temperatures lower than the room temperature, i.e., martensite start
(Ms)  temperature,  a  softer  and  deformable  “twinned  martensite”  phase  exists.
This phase has a Young’s modulus (E) and yield strength (σ YS) that is lower than
that of the austenite phase [2]. When the temperature of NiTi in the austenite form
decreases  gradually  below  the  martensite  start  temperature  (Ms),  then  the
austenite NiTi starts to transform to martensite NiTi and the phase transformation
is completed well below the martensite finish (Mf) temperature. The deformable
“twinned martensite”, when subject to pressure gets easily distorted to deformed
“detwinned  martensite”.  Upon  heating  the  NiTi  having  martensite  beyond  the
austenite  start  temperature  (As),  the  NiTi  begins  to  gradually  transform  to
austenite  and  beyond  the  austenite  finish  (Af)  temperature,  the  entire  austenite
phase  is  formed.  During  phase  transformation,  the  proportion  of  these  phases
tends  to  vary  and  the  resultant  mechanical  properties  are  governed  by  these
changes. Super-elasticity of a NiTi alloy is able to recover up to 8% of the total
strain  [3].  At  ambient  temperature  above  the  austenite  finish  (Af)  temperature,
super-elasticity favours the occurrence of martensitic phase transformation in the
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NiTi alloy when subjected to a stress above a critical  level.  Upon relieving the
stress, it tends to regain both its original shape and size spontaneously. When the
NiTi  alloy  is  deformed  at  temperatures  below  the  martensite  finish  (Mf)
temperature, heating it gradually above the austenite finish (Af) temperature often
results  in  regaining  its  undeformed  shape  and  size.  When  a  NiTi  alloy  is
repeatedly subject  to strain recovery cycles,  it  often results  in actuation fatigue
that generates irrecoverable deformation [4]. Suitable heat treatments have been
found  to  increase  the  cycles-to-failure  (Nf)  of  the  chosen  NiTi  alloy  when  the
temperatures are typically above 375°C.

The NiTi shape memory alloy (SMA) is found suitable for selection and use in a
wide range of applications. A few of these applications include the following: (i)
Sensors  in  health  monitoring  systems,  (ii)  Actuators  in  automobiles  and
aerospace, and (iii) Biomedical and biomaterials. The NiTi sensors are popular on
account  of  their  high  sensitivity  coupled  with  a  wide  range  of  strain
measurements. Other noteworthy advantages of NiTi sensors are a low installation
cost  and  overall  compactness.  The  nickel-titanium  (NiTi)  and  its  combinatory
shape memory alloy were produced by the addition of elements to result in the
following: (i) Ni-Ti-Fe, (ii) Ti-Ni-Zr, (iii) Cu-Al-Ni, (iv) Ti-V-Al, (v) Ti-Ni-Cu,
(vi) Ni-Ti-W, (vii) Cu-Al-Ni-Ti-B, (viii) Ti-V-Al-Y, (ix) Ti-V-Al-B, (x) Ti-V-Al
Co, (xi) Ti-V-Al-Cu, (xii) Cu-Al-Ni-Hf, (xiii) Cu-Al-Ni-Mn, (xiv) Cu-Al-Ni-Gd,
which  have  been  tested  and  examined  experimentally  by  researchers  with  the
prime intent of establishing their suitability for selection and use in both sensor
and actuator applications [1, 2, 4 - 24]. An alteration in the chemical composition,
addition  of  ternary  elements  or  quaternary  elements  and  processing,  to  include
both  heat  treatment  and  surface  treatment,  have  been  successfully  tried  and
reported to offer improved macroscopic properties and microscopic properties of
the material  [2,  4  -  17,  19,  20,  22 -  24].  Considering their  unique super-elastic
behavior,  the  NiTi  shape  memory  alloys  have  been  chosen  for  use  as  self-
expanding vascular stents and orthopaedic bone staples.  Due to concerns about
allergy to nickel, nickel-free β-type titanium-base shape memory alloys (SMAs)
were  developed.  However,  their  recoverable  strain  is  less  than  5  percent,
approximately  half  that  of  the  NiTi  alloys.

This manuscript broadly focuses on a satisfactory introduction to nickel-titanium
(NiTi)-based  shape  memory  alloys  (SMAs),  potential  viable  approaches  to
enhance  both  their  macroscopic  properties  and  microscopic  properties  while
concurrently making them suitable for selection and use in a spectrum of sensing-
specific  or  sensing-related  applications.  The  effects  of  different  processing
treatments on this “new era” material are also highlighted. The following section
provides a brief overview of the background specific to shape memory alloys and
the inspiration leading to its invention.
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CHAPTER 3

Thermal  and  Thermomechanical  Cycling  Studies
of  Nickel-Based  Shape  Memory  Alloys  for
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Abstract: Shape memory alloys (SMAs) are those that can return to their initial shape
after deformation under a stimulus, such as temperature or stress. They are capable of
recovering  deformations  of  up  to  8%.  Generally,  the  martensitic  transformation  is
reversible in nature and the shape memory alloys exhibit two unique characteristics,
super-elasticity  effect  (SE)  and shape memory effect  (SME),  depending on whether
these properties/responses are brought on by stress and temperature, respectively. Since
the  shape  memory  alloys  undergo  full  cycling,  they  transform  from  austenite  to
martensite  at  temperatures  between martensite  finish and austenite  finish.  However,
partial  cycling  refers  to  heating  above  the  austenite  start  temperature  but  below the
austenite  finish  temperature  followed  by  cooling  to  below  the  martensite  finish
temperature. The phase transformation is partial before it is complete, consequently,
only smaller amounts of the phases undergo a phase transition. Based on the operating
temperature window and the transformation temperatures of the alloy, partial cycling
can  be  divided  into  three  categories.  This  chapter  discusses  the  various  types  of
cycling,  i.e.,  thermomechanical,  thermal,  and  partial  cycling  behavior  of  nickel-
titanium-based  shape  memory  alloys.

Keywords:  Austenite  and  martensite,  Partial  transformation,  Shape  memory
alloys,  Transformation  temperatures.

INTRODUCTION

Shape  memory  effect  was  first  discovered  in  1931  by  A.  Olandar  in  a  gold-
cadmium alloy and reported the phenomenon that was observed as a rubber-like
behaviour [1]. After almost a decade, the metastable β-based copper-zinc shape
memory alloy was discovered by A.B. Greninger and V.G.Mooradian [2], and the
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concept of thermoelastic martensite was then proposed by Kurdjumov in 1949 to
explain the reversible nature of transformation in copper-aluminium and copper-
zinc alloys [3]. The term shape memory effect was coined by Chang and Read in
1951  to  describe  the  thermoelastic  behaviour  of  shape  memory  alloys  [4].
Nevertheless, none of them made any inroads into the commercial market until
1963 when Buehler W.J. and his co-workers from the Naval Ordnance Laboratory
in the U.S. discovered the nickel-titanium (NiTi) shape memory alloy, which is
now commercially known as Nitinol [5].

Currently,  shape  memory  alloys  are  widely  used  in  many  industries,  including
automobile,  aerospace,  aviation,  robotics,  biomedical,  textile  and  garment,
defence,  and  electrical  and  electronics.  Recently,  the  National  Aeronautics  and
Space Administration (NASA) has  developed a  smart  wheel  made of  a  Ni-rich
nickel-titanium  shape  memory  alloy  for  interplanetary  and  lunar  exploration
purposes  [6].  It  is  forecast  that  by  2023,  the  global  market  for  shape  memory
alloys will surpass USD 20 billion [7]. Till date, many other new shape memory
alloy  systems  exhibiting  shape  memory  characteristics  have  been  discovered,
developed,  and  used.  A  few  of  these  are  listed  in  Table  1.

Table  1.  Popular  alloy  systems  exhibiting  shape  memory  characteristics  (Mohd  Jani  et  al.,  2014;
Wayman, 1993).

Alloy System Alloy Composition

Nickel-titanium NiTi, NiTiCu, NiTiNb, NiTiFe, NiTiCo, NiTiPt, NiTiPd, NiTiHf, NiTiZr

Copper CuZn, CuSn, CuZnAl, CuAlNi, CuAlBe

Iron FePt, FePd, FeMnSi, FeNiC

Titanium TiTa, TiNb, TiMo, TiTaAl, TiTaSn, TiTaSi

Others ZrCu, ZrCuNiCo, AuCd, AgCd, CoNiAl, CoNiGa, NiMnGa, InTl, NiAl, InCd, RuTa,
RuNb, AuTi, MnCu,

The following are the characteristics that are significant in the context of shape
memory alloys;

a) Phase transformation temperatures (austenite start, austenite finish, martensite
start, martensite finish);

b) Recovery strain;

c) Recovery stress; and

d) Hysteresis
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Phase Transformation Temperatures

When the shape memory alloys are cooled down from the austenitic region, they
undergo the thermoelastic martensite transformation over a range of temperatures.
The  temperatures  at  which  the  martensitic  transformation  start  and  finish  are
referred  to  as  martensite  start  and  martensite  finish  temperatures,  respectively.
Similarly,  austenite  start  and  austenite  finish  temperatures  refer  to  the
temperatures at which the austenite transformation begins and ends, respectively,
during heating. The intermediate phases, including R-phase, may also be present
in the material depending on the alloy system and thermomechanical treatment.
The relevant transformation temperatures for R-phase formation are referred to as
Rs and Rf, respectively.

There  are  many  factors  that  affect  the  transformation  temperatures  of  shape
memory  alloys,  for  example,  the  alloy  composition,  microstructure,  degree  of
order,  thermal  and  thermomechanical  treatments,  as  well  as  defect  density
(dislocations and point defects) [8]. The traditional techniques to determine the
transformation temperatures of shape memory alloys include differential scanning
calorimetry  (DSC)  and  electrical  resistivity  (ER).  Other  techniques,  including
dynamic mechanical analyser (DMA) [9] and dilatometry [10], are also employed
to determine the transformation temperatures.

Recovery Strain

Upon heating above the austenite start temperature, it is possible to recover some
of  the  strain  imparted  during  the  deformation  of  a  shape  memory  alloy  in  the
martensitic state (up to 8%). Various factors influence the magnitude of recovery
strain, for instance, alloy chemistry, thermal and mechanical processing, stress,
and working temperature. A range of testing methods can be used to measure the
recovery  strain,  such  as  dynamic  mechanical  analysis,  bend  test,  and
thermomechanical  cycling  test.  The  thermomechanical  cycling  test  (thermal
cycling  under  constant  stress)  is  the  most  common  method  for  determining
recovery  strain.  The  magnitude  of  the  recovery  strain  can  be  determined  by
comparing  the  maximum  and  minimum  strains  found  on  the  strain  versus
temperature  plot.

Recovery Stress

The  recovery  stress  is  generated  by  elastic  recovery  during  deformation.  The
shape memory alloys on deformation generate stresses,  which are stored in the
martensitic variants during the deformation, on heating above the austenite start
temperature  under  a  constraint.  It  can  be  used  to  provide  support  or  external
confinement  to  both  mechanical  and  civil  structures.
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CHAPTER 4
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Abstract:  The  high-temperature  performance  of  the  nitrogen  added  316L  stainless
steels  including  the  high-temperature  mechanical  properties,  workability  and
weldability  have  been  investigated  in  detail  by  systematic  studies  with  nitrogen
contents in the range of 0.07-0.22wt.%. Strength and creep resistance were found to
increase with increasing nitrogen content at room and elevated temperatures. However,
resistance  to  creep-fatigue  damage,  fracture  toughness,  resistance  to  fatigue  crack
growth,  workability,  and  weldability  were  found  to  degrade  beyond  0.14wt%  of
nitrogen content at service temperature. Therefore, the maximum nitrogen content in
316L  stainless  steel  is  recommended  to  be  0.14wt%  for  better  high-temperature
performance  in  structural  applications  of  fast  reactors.

Keywords: Creep, Creep-fatigue interaction, Dynamic materials model, Fracture
toughness, Fatigue crack growth, Fractographs, Hot cracking, Nitrogen alloying,
Tensile properties, Workability, Weldability, 316LN Stainless Steel.

INTRODUCTION

Type 316 Stainless Steel and its variants are the major structural materials chosen
for  fabricating  structural  components  of  fast  reactors.  Low  carbon  variety  is
chosen mainly to avoid sensitization during welding and later failure due to stress
corrosion cracking in corrosive environments. The high-temperature performance
of  the  316L  stainless  steel  can  be  significantly  improved  by  adding  nitrogen
beyond  0.06  wt%.  Nitrogen-added  316L  stainless  steel  designated  as  316LN
stainless steel having the best combination of strength, toughness and corrosion
resistance  already  found  applications  in  areas  as  diverse  as  cryogenic,  nuclear,
power  generation  and  chemical  industries.  The  beneficial  effect  of  adding
nitrogen to 316L SS arises due to the higher solubility of nitrogen in the austenitic
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matrix,  reduction  in  stacking  fault  energy  causing  larger  separation  in  partial
dislocations,  strong  solid  solution  strengthening  caused  by  strong  elastic
interaction  between  interstitial  nitrogen  and  the  dislocations  and  retardation  of
coarsening of M23C6 type carbides [1]. It is well established that the addition of
nitrogen to austenitic stainless steel has a beneficial effect on corrosion resistance.

The increase in nitrogen content decreases the defect density in the space charge
layer,  thereby  promoting  the  enrichment  of  chromium  within  the  passive  film
accompanied  by  the  formation  of  a  more  stable  film  with  fewer  defects  [2].
Nitrogen addition up to 0.16 wt% increases resistance to sensitization by retarding
the coarsening rates of carbides because it  reduces the diffusivity of chromium
and carbon. However, the upper limit of nitrogen content needs to be determined
for the structural  applications in fast  reactors considering the effect of nitrogen
content  on the  high-temperature  mechanical  properties.  The ease  of  fabricating
nitrogen alloyed 316L SS into useful structural components and products for fast
reactor  applications by conventional  metal  forming processes  and welding also
needs to be considered for determining the optimum nitrogen content.

Type 316LN SS containing 0.02-0.03 wt% carbon and 0.06-0.08 wt% nitrogen
has been used for  fabricating all  major  structural  components  of  the 500 MWe
Prototype  Fast  Breeder  Reactor  (PFBR)  that  is  in  the  advanced  stage  of
commissioning at Kalpakkam [3]. The design life of the PFBR is 40 years. As the
design  life  of  future  sodium-cooled  reactors  is  envisaged to  be  enhanced to  60
years, structural material with improved high-temperature mechanical properties
is required. To meet the enhanced life requirements of structural components, type
316  LN  SS  with  nitrogen  additions  in  the  range  of  0.07-0.22wt%  have  been
developed.  The  varying  heat  of  316  LN SS  with  varying  nitrogen  content  was
produced at MIDHANI Limited, Hyderabad.

The effect of nitrogen content on the tensile, creep, low -cycle fatigue behavior,
creep-fatigue  interaction,  fracture  toughness,  fatigue  crack  growth  behavior,
workability, and weldability was investigated in detail. The workability of steels
has been studied by generating processing maps using Dynamic Material Models
(DMM). The safe processing domains have been identified for producing 316LN
stainless steel in various forms using industrial metal forming processes. During
the  welding  of  austenitic  stainless  steel,  it  is  well  known that  the  formation  of
ferrite  as  the  primary  phase  during  solidification  reduces  hot  cracking
susceptibility. Nitrogen addition to the above steel only decreases the occurrence
of primary ferrite solidification and hence promotes hot cracking susceptibility.
Further, nitrogen addition enhances the segregation of phosphides and sulphides
at the grain boundaries which also promotes hot cracking. Therefore, weldability
studies  involved  investigating  the  hot  cracking  behavior.  The  present  chapter
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discusses  the  influence  of  nitrogen  on  high-temperature  mechanical  properties,
workability and weldability of 316LN SS.

MATERIAL DETAILS

Four  commercial  scale  heats  of  316LN  SS,  containing  0.07,  0.11,  0.14  and
0.22wt.%  nitrogen  (henceforth  designated  as  N07,  N11,  N14  and  N22
respectively) were produced by double melting technique. The primary melting
was carried out in air induction melting (AIM) followed by secondary remelting
using electro slag refining (ESR) processes. Nitrogen content was varied with the
addition of nitrided ferrochrome.

The amount of all the other elements was kept unchanged in all heats. The carbon
content in all heats was maintained at around 0.03 wt.%. The ESR ingots were hot
forged to slabs which were then hot rolled into plates of 22 mm thickness. The
chemical composition of the four heats of 316LN SS is given in Table 1.

Table 1. Chemical composition (in wt.%) of nitrogen alloyed 316LN austenitic stainless steels.

Designation C Cr Ni Mo N Mn S P

N07 0.03 17.5 12.2 2.49 0.07 1.7 0.0055 0.013

N11 0.03 17.6 12.2 2.51 0.11 1.78 0.0055 0.015

N14 0.03 17.5 12.1 2.53 0.14 1.74 0.0041 0.017

N22 0.03 17.5 12.3 2.54 0.22 1.7 0.0055 0.018

Rectangular  blanks  cut  from  the  rolled  plates  in  the  rolling  direction,  were
solution  annealed  at  1363  K  for  30-60  minutes  followed  by  water  quenching.
Equiaxed  grains  free  of  precipitates  and  delta-ferrite  have  been  observed.  The
average grain size of four heats, measured through the mean intercept method is
found to be in the range 89 ± 13 μm.

INFLUENCE  OF  NITROGEN  CONTENT  ON  THE  TENSILE
BEHAVIOUR OF 316LN STAINLESS STEEL

The tensile behaviour of 316LN stainless steel has been investigated with nitrogen
content  varying from 0.07 to 0.22% [4].  Fig.  (1)  shows the combined effect  of
temperature and nitrogen content in the variations of yield strength and ultimate
tensile strength (UTS) for the four variants of nitrogen alloyed 316LN stainless
steel. In general, strength increased with increasing nitrogen content at any test
temperature (Fig. 1a). For the range of nitrogen contents examined in the present
study,  an  increase  in  yield  strength  of  70  MPa  and  40  MPa  per  0.1  wt.  %  N
increase  has  been  observed  at  300  K  and  923  K  respectively  (Fig.  1b).  Three
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CHAPTER 5

On the Evolution of a Zirconium Alloy for Use as
Pressure Tubes in Indian Pressurized Heavy Water
Reactors
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Abstract:  In  the  early  generation  of  the  Indian  220  MWe  pressurized  heavy  water
reactor (PHWR220), Zr-2.5Nb pressure tubes (PT) were manufactured from double-
melted  (DM) ingots.  Later  on,  quadruple  melted  (QM) ingots  were  used  to  achieve
enhanced performance. These pressure tubes were fabricated by hot extrusion followed
by double pilgering with intermediate annealing and this fabrication route is designated
as an old route (OR). These tubes have performed reasonably well. However, some of
these tubes showed higher in-reactor deformation. Subsequently, both alloy chemistry
and manufacturing practice were revisited and changes in alloy chemistry and ingot
diameter,  mode  of  hot  working  for  breaking  the  cast  structure  and  hot  extrusion  of
billets with higher extrusion ratio and single pilgering steps have been employed. This
route is designated as a new route (NR) and is being used for manufacturing pressure
tubes for the current generation of 220MWe pressurized heavy water reactors.

Over the years, changes in Chlorine (Cl), Carbon (C), Phosphorous (P), Iron (Fe) and
Hydrogen (H) specification and narrowing down the specification for Niobium (Nb)
and Oxygen (O) have been implemented to exploit their beneficial effect on in-reactor
deformation and hydrogen pickup. The changes in manufacturing practices had resulted
in  changes  in  microstructure  and  texture.  In  the  old  route  (OR),  pressure  tube  (PT)
microstructure  was characterized by the presence of  discrete  beta-phase precipitates
along the  interfaces  of  alpha  lamellae  while  the  new route  (NR) pressure  tube  (PT)
exhibits  more  continuous  beta  film  and  relatively  coarser  α  lamellae.  In  terms  of
crystallographic texture too,  the new route (NR) pressure tubes (PTs) had higher FT
values  (in  the  order  of  0.65)  in  comparison  to  old  route  (OR)  pressure  tubes  (PTs)
(FT~0.55 to 0.6).
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Because of crystallographic and microstructural anisotropy, the tensile behavior of this
material is also anisotropic with the transverse direction exhibiting higher flow stress
and lower ductility at and below reactor operating temperatures. The transverse tensile
strength  of  pressure  tube  (PTs)  fabricated  from  new  route  (NR)  is  higher  than  that
fabricated  from  old  route  (OR).  The  fracture  toughness  of  pressure  tubes  (PT)
manufactured from quadruple melted (QM) ingots are significantly higher than that of
the  pressure  tubes  (PTs)  manufactured  from  double  melted  (DM)  ingots,  which  is
attributed to the deleterious effect of Chlorine (Cl), Carbon (C), Phosphorous (P) and
their  complexes.  The  variation  in  fracture  toughness  of  pressure  tubes  (PTs)  was
evaluated as a function of temperature, hydrogen content and hydride orientation. The
hydrided material exhibited a typical S curve showing lower-shelf, transition and upper
shelf regimes. Delayed hydride cracking velocity and threshold stress intensity factor
were determined as a function of temperature, direction of approach to test temperature
and  hydride  orientation.  Threshold  stress  for  hydride  reorientation  (σth)  determined
using ex-situ  and in-situ  methods between 250 and 300oC was observed to decrease
with  an  increase  in  temperature.  Thermal  creep  behavior  was  investigated  for  these
tubes at 350, 400 and 450 °C at different stress levels and comparison of the minimum
creep rate and the rupture life is presented. This article describes the evolution of the
alloy  chemistry,  microstructural  features,  texture  and  mechanical  properties  and
hydride induced embrittlement of the pressure tubes (PTs) used in Indian pressurized
heavy water reactor (PHWR) and life extension approaches. An attempt has been made
to rationalize the observed properties in terms of alloy chemistry and microstructure.

Keywords:  Creep,  Delayed  hydride  cracking,  Fracture,  Life  extension,
Microstructure,  Pressure  tube,  Tensile,  Zirconium  alloy.

INTRODUCTION: NUCLEAR REACTOR

The standard of living of any country is directly related to the per capita energy
consumption. Fossil fuel continues to be the main source of energy. However, due
to  limited  resource  of  the  fossil  fuels  and  harmful  effect  of  the  gases  released
during its combustion to the environment, all sources of energy including nuclear
are  being  tapped.  Nuclear  Power  Plant  facilitates  the  generation  of  power.  A
typical fission based nuclear power plant comprises a reactor, a steam generator, a
turbine,  a  condenser  and  safety  systems.  The  reactor  contains  fuel,  sustains
nuclear  chain  reaction  to  produce  heat  and  holds  the  nuclear  waste  [1].

Based on the energy of neutrons used to cause fission, nuclear reactors are called
fast and thermal reactors. Thermal reactors contain fuel, a moderator, control rods,
a  coolant  and safety systems.  The moderator  is  required to  thermalize  the high
energy  neutrons  so  as  to  improve  the  probability  of  fission  reaction.  The  heat
produced in a nuclear reactor is extracted by the coolant to produce steam, which
is  fed  to  one  or  more  turbines  that  energize  an  electric  generator  to  produce
electricity that is fed to the electrical grid. The cooling towers reject excess heat
from the turbine section to the cooler surrounding. Adequate safety systems are in
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place to ensure safe operation. The efficiencies of nuclear power plants are around
33-37%, which is comparable to fossil fuel power plants. Modern designs like the
Generation IV nuclear reactors operate at higher temperatures and could achieve
above 45% efficiency [1]. Presently, about 11% of the world's total electricity is
generated  by  Nuclear  fission  reactors  [1]  and  has  vast  untapped  potential  to
contribute  more  especially  to  replacing  the  ageing  fossil  fuel  power  plants  and
achieve emission targets.

Pressurized Heavy Water Reactor

The generation of steam is common for all nuclear reactors and is often used to
classify  various  reactor  systems.  Water  cooled  reactors  like  pressurized  water
reactor  (PWR),  pressurized  heavy  water  reactor  (PHWR)  and  boiling  water
reactor (BWR) use light / heavy water as coolant and moderator [2]. The PWR
and PHWR use two loops called primary and secondary loops. The primary loop
containing liquid water under high pressure is used to extract heat from the reactor
core  and  serves  as  a  heat  source  for  the  heat  exchanger.  The  water  at  a  lower
pressure circulating in the secondary loop extracts heat from the heat exchanger,
and generates steam that is fed to the turbine. The BWR heat transforms the water
in the core directly to steam. The technology for the manufacture of large pressure
vessel  required for  PWR and BWR has been in use in few countries  only.  The
PHWR circumvents the need for large pressure vessel and uses tubes as part of
primary heat transport  loop instead of vessel  of PWR. The cost  of building the
PHWR is also lower than the reactor systems that require large pressure vessel.

The  PHWR was  developed  in  Canada  in  1950s  and  is  popularly  known as  the
CANDU (Canada Deuterium Uranium) Reactor [1]. The use of natural uranium
(0.7%  U235)  oxide  as  fuel  in  PHWRs  requires  a  more  efficient  moderator.  The
energy produced per kilogram of mined uranium in PHWR is higher compared to
other designs,  but  it  also produces a much larger amount of  spent  fuel  per  unit
energy generated. In PHWR, the heavy water moderator is enriched instead of the
fuel  [1].  The pressure  tubes  in  PHWR serve as  miniature  pressure  vessels,  and
contain the fuel bundles and hot pressurized coolant. The moderator is separate
from coolant and is contained in the calandria vessel.  The pressure tube design
allows  refueling  of  the  reactor  without  shutting  down,  by  isolating  individual
pressure tubes from the cooling circuit.

Advanced PHWR design like the Advanced CANDU Reactor (ACR) is cooled by
light water and uses slightly-enriched fuel [3]. CANDU reactors may be run on
recycled uranium obtained from reprocessing of the PWR spent fuel, or a blend of
this and depleted uranium. Thorium could also be used as fuel. Indian designed
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CHAPTER 6

State  of  the  Art  in  Additive  Manufacturing  of
Metal  Matrix  Composite  for  Use  in  Performance-
Specific  Application
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Abstract:  Metal  matrix  composites  (MMCs)  have  proved  themselves  a  reliable
alternative to different metals and their alloys due to their high strength-to-weight ratio,
high durability;  high wear corrosion resistance,  high hardness and other  mechanical
properties. In the conventional approach, different methods like liquid-state processing
(stir  casting,  squeeze  casting  etc.),  solid-state  processing  (consolidation,  physical
vapour deposition or PVD, powder bending etc.), and in-situ processing are being used
to manufacture metal matrix composites (MMCs). Injection molding and other in-situ
processing  are  highly  dependent  upon  particle  size  and  morphology.  Particle
agglomeration is a common problem for liquid and solid-state processing. Again, these
inhomogeneous  second-phase  particles  influence  crack  initiation  and  propagation,
thermal  mismatches,  residual  stresses,  and  dislocation,  making  the  subtracting  or
machining  process  challenging  to  perform.  By  observing  these  issues  with  the
conventional  approach,  additive  manufacturing  can  be  considered  an  alternative
technique to fabricating metal matrix composite. It is reported that 3D printing cannot
only sort  out  the matrix/reinforcement bonding issues observed during conventional
manufacturing  processes  but  is  also  capable  of  providing  a  uniform  distribution  of
reinforcement inside the metal matrix. Additive manufacturing allows the fabrication of
functionally graded composites with any geometrical complexity, higher accuracy, and
minimum production lead time. However, challenges like lack of fusion, rapid cooling,
poor surface morphology and texture restrict the additive manufacturing processes to
manufacturing  a  sound  product.  The  current  chapter  summarises  the  recent
development  in  manufacturing  metal  matrix  composites  (MMCs)  using  different
additive  manufacturing  processes.

Keywords:  Additive  manufacturing  (AM),  Challenges,  Conventional
manufacturing process, Metal matrix composite (MMC), Mechanical properties,
Microstructural properties, Reinforcement.
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INTRODUCTION

Additive  manufacturing  is  an  innovative  and  powerful  technology  that  hugely
impacts  today’s  industrial  manufacturing  hub.  Additive  manufacturing,  as  the
name implies, can be a consecutive layer-based production technology. There is
mainly a ‘Three Pillar Concept’ by which a desirable product can be made.

I.  Subtractive  Manufacturing  Pillar  –  Conventional  and  Non-Conventional
Machining.

II. Constant Volume Pillar – Metal Forming, Casting.

III. Additive Pillar – Joining, 3D Printing.

Among these techniques, additive manufacturing (AM) or 3D printing is a very
new emerging technique that blows our minds with customer satisfaction with the
highest  integrity.  David  E.H.  Jones  laid  out  the  very  first  concept  of  the  3D
printing  technique  in  1970.  In  the  1980s,  its  materials  and  equipment  were
developed,  and  then  it  was  known  as,  ‘Rapid  Manufacturing’  or  ‘Generative
Manufacturing’, but in future, it is realized that 3D printing somehow differs from
rapid  manufacturing.  Rapid  manufacturing  and  rapid  prototyping  are  the  two
application levels of additive manufacturing. In the 1990s, several AM techniques
were  developed,  and  extensive  research  is  still  going  on  to  optimize  these
techniques  to  manage  mass  production  in  the  industry.

OVERVIEW OF ADDITIVE MANUFACTURING

General Introduction to Additive Manufacturing

A  layer-based  automated  fabrication  technology  called  additive  manufacturing
(AM)  uses  3D  CAD  (computer-aided  design)  data  to  create  scaled,  three-
dimensional  physical  objects  without  the  aid  of  path-dependent  tools.  Unlike
conventional machining,  forming, and casting operations,  which involve taking
material from a stock item (subtractive manufacturing) or pouring it into a mould
and shaping it with hammers, dies, and presses. Any complex shape can easily be
made  by  additive  manufacturing  (AM).  It  provides  a  way  to  print  a  product
through a simple and economical path. A 3D item or model is created by layering
consecutive layers of powder, liquid, sheet material, polymer or other materials by
additive manufacturing equipment, which reads data from the CAD file. One can
say that additive manufacturing is a 2.5D process as its Z-axis has a very small
thickness (small layer). In this decade, rapid prototyping is getting converted into
rapid manufacturing and producing the parts in mass-customized products with
the help of additive manufacturing. A 3D-printed part is called a product or the
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final  desired part  if  it  shows all  the characteristics and functions allocated to it
during the product development process [1]. Additive manufacturing has attracted
many researchers due to its vast application in the field of medical, automobile
and aerospace industries.

Terminology

The term Additive Manufacturing (AM) gained its popularity in the 2000s. The
term AM is surrounded by several technologies as well as subsets like:

I.  Rapid:  Rapid  Manufacturing,  Rapid  Technology,  Rapid  Prototyping,  Rapid
Tooling.

II.  Additive:  Additive  Manufacturing,  Additive  Layer  Manufacturing,  Additive
Digital Manufacturing.

III.  Layer:  Layer  Based  Manufacturing,  Layer  Oriented  Manufacturing,  Layer
Manufacturing.

IV. Digital: Digital Mock and Fabrication.

V. Direct: Direct Tooling, Direct Manufacturing,

VI. 3D: 3D Printing, 3D Modelling.

Development and Fundamentals of Additive Manufacturing

The most outstanding goal of virtually any development method is to minimize
the  time  and  energy  of  changing  a  thought  into  a  reality.  Since  the  1970s,
manufacturers  have  centred  on  ‘TQÇS’,  where  T  stands  for  time  to  market,  Q
stands for quality, C stands for cost, and S stands for service. In parallel to those
changes, engineers have developed rapid manufacturing, especially with the help
of computers, the Internet and information management technologies. Advanced
manufacturing  technology  has  climbed  to  a  better  level  in  the  last  decade  as
various new philosophies like lean production (LP), virtual manufacturing (VM),
agile  manufacturing,  and  virtual  enterprise  (VE)  came  to  the  manufacturing
industry field. Rapid prototyping (RP) or additive manufacturing (AM) is one of
the latest technologies. In several aspects, additive manufacturing is an industrial
sector  instead  of  a  technology  employed  in  many  different  sectors.  Up  to  date
market strategy analysis says that there are four stages within which the life cycle
of an industry is bounded: introduction, growth, maturity and decline. Tiny sales,
low  rates  of  market  penetration,  low  market  and  high  prices  define  the
introduction stage. Additive manufacturing spent a significant amount of time in
this  stage  dealing  with  expansion  constraints,  industry-wide  innovation
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CHAPTER 7
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Abstract: The life of human beings is moving at a breakneck pace, with a fast-moving
life demanding the need for devices for use in biomedical applications, which attracts
the  interested  researcher  to  work  on  ensuring  novel  breakthroughs.  Processing  of
biomaterials  is  one  of  the  key  factors  that  will  exert  an  influence  on  impacting  the
attributes of a biomaterial. Additive manufacturing is one of the promising routes by
which layer-by-layer creation of parts takes place from a computer-aided design (CAD)
file. Parts that cannot or are difficult to manufacture by other processing routes can be
easily manufactured using the technique of additive manufacturing (AM). Parts, such
as (i) stents, (ii) customized prosthetics, (iii) organs, and (iv) implants can be easily
manufactured using the technique of  additive manufacturing (AM).  With noticeable
advances  in  the  domain  specific  to  additive  manufacturing,  the  biomedical  field  is
being revolutionized, and viable solutions to difficult problems are being put forth with
ease,  and  the  resultant  by-products  offer  a  combination  of  acceptable  to  good
properties. The key benefits of the technique of additive manufacturing (AM) are low
cost,  minimal  material  waste,  and  enhanced  product  reliability.  This  study  explores
recent  developments  in  both  alloys  and  composite  materials  processed  by  the
techniques of additive manufacturing for selection and use in biomedical applications.
This  review provides  a  highlight  of  the  different  additive  manufacturing  techniques
with  specific  reference  to  biomedical  applications  and  additive  manufacturing  of
titanium  alloys,  the  Co-Cr  alloy,  the  magnesium  alloys  and  their  composite
counterparts. Multidisciplinary research will be required to meet and overcome any and
all obstacles while concurrently fulfilling the potential of additive manufacturing (AM)
in the years ahead.

*   Corresponding  author  Jimmy  Karloopia:  Department  of  Production  and  Industrial  Engineering,  Punjab
Engineering  College  Chandigarh  (Deemed  to  be  University)  Chandigarh-160012,  India;
E-mail: jimmykarloopia@pec.edu.in

T. S. Srivatsan, Jimmy Karloopia and Manoj Gupta (Eds.)
All rights reserved-© 2024 Bentham Science Publishers

mailto:jimmykarloopia@pec.edu.in


Additive Manufacturing Advanced Materials for Emerging Applications   221

Keywords:  Additive  manufacturing,  Biomaterials,  Binder  jetting,  Biomaterials,
mechanical properties, Co-Cr alloy, Composite material, Direct energy deposition (DED),
LENS,  Material  extrusion  (ME),  Material  jetting,  Powder  bed  fusion  (PBF),  Sheet
lamination,  SLA,  Vat  polymerization,  3D  printing.

INTRODUCTION

With noticeable advances in medical sciences, new techniques are being gradually
developed for the treatment of various issues specific to human beings. With the
development  and  emergence  of  new  techniques,  there  does  exist  a  need  for
advanced manufacturing techniques that will adequately compensate for the need
for medical sciences for devices, parts and/or components. For a large majority of
the prevailing medical  devices,  such as (i)  prostheses,  (ii)  surgical  instruments,
and (iii) general equipment/tools, used by medical professionals, the conventional
manufacturing processes of CNC (Computer Numerical. Control) machining and
injection molding have been used. This is essentially a subtractive manufacturing
technique  in  which  the  design  of  a  medical  device  is  cut  out  from  a  piece  of
manufactured  block  [1].  Additive  manufacturing  (AM),  or  3D  Printing,  is  an
advanced  technique  in  which  a  3D  part  or  component  is  made  by  sequential
deposition  layer  upon  layer.

The development of 3D printing for biomedical applications is shown in Fig. (1).
The 3-D printing was first introduced in 1984 by Charles Hull, which resulted in
the technique of stereolithography (SLA) being invented [2]. In 1988, Robert J.
Klebe  first  demonstrated  3D  printing,  which  was  done  by  using  cyto-scribing
technology  on  a  Hewlett-Packard  (HP)  inkjet  printer  [3].  In  1999,  the  first  3D
printing bladder containing cells was made possible by utilizing layers by Odde
and Renn [4].

Fig. (1).  History of development of 3D printing for biomedical applications.
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In 2002, the bio-printing of a kidney was made possible using an extrusion-based
technique [5]. Wilson and co-workers [6] remodified a standard Hewlett Packard
(HP) printer and developed the first inkjet printer in 2003. There was availability
of stereolithography (SLA) in 2007. The bio-printed blood vessels were made in
2010 [7].  The years 2012-2018 saw the development and emergence of the 4D
printing technique, and the printing of some critical parts was made possible [8,
9].  Noor  and  co-workers  [10]  used  3D  printing  to  develop  heart  and  cardiac
patches  using  a  bio-ink  material.  Additive  manufacturing  (AM)  did  enable  in
manufacturing of parts that had an intrinsic shape, where the need for precision
was both essential and required.

The basic steps involved in additive manufacturing (AM) are as follows: (i) Data
acquisition,  (ii)  Image  Processing,  (iii)  Printing  of  biomedical  device/part,  (iv)
Sterilization and post processing, and (v) Implantation. This is shown in Fig. (2).

Fig. (2).  Steps involved in additive manufacturing (AM) of a biomedical device/part.

Image Acquisition is the first step in Additive Manufacturing (AM) in which the
image is retrieved from the source. The software used in image acquisition are X-
Rays, CT scan, MRI, and a 3-D scanner [11]. Image processing is the next step in
which image segmentation takes place, i.e., converting the physical image into a
digital  image.  The software often chosen for  use in  image segmentation are  (i)
MIMICS, (ii) CATIA, and (iii) 3-D slice. A DICOM format file is obtained using
this step, which is further converted into an STL format. The next step is printing
of the part in which a suitable method is chosen depending on the following: (i)
the  material,  (ii)  the  requirements  of  the  part,  and  (iii)  printing  parameters.
Materials, such as hydrogels, biomaterial, cells and bio-ink, can be chosen for use
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CHAPTER 8

Aluminum  Metal  Matrix  and  Magnesium  Metal
Matrix  Composites:  An  Insight  into  Processing
Influences  on  Corrosion  Properties  for  use  in
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Abstract: The limitations of engineering are mainly attributed to the limitations in the
availability  of  materials  that  can  deliver  all  the  desired  properties  for  a  given  end
application. But, due to the development of composites, there has been an enormous
advancement  in  industries  like  automobile,  sports,  power  generation,  defense,  and
aerospace. Metal Matrix Composites became one of the sought-after materials because
of their high specific properties, such as strength-to-weight ratio. Even though these
materials  exhibit  enhanced  mechanical  and  thermal  properties,  their  usage  is  still
limited. Some of the reasons include the scaling up of processing and the uncertainty in
their joining and corrosion behavior. This study attempts to bring together information
on  metal  matrix  composites  processing  and  corrosion  behavior,  mainly  focusing  on
Magnesium and Aluminum metal matrix composites.

Keywords:  Aluminum  composites,  Corrosion,  Magnesium  composites,
Mechanical  properties,  Metal  matrix  composites,  Processing  methods.

INTRODUCTION

Industries like aerospace, automobiles, transportation and electronics have been
using  metals  as  their  primary  manufacturing  materials  for  a  long  time.  Even
though  metals  offer  a  desirable  combination  of  mechanical  properties  such  as
tensile  strength  elastic  modulus,  ductility,  malleability,  toughness,  and  fatigue
resistance, the quest for materials that also provide additional desired properties
like  corrosion  and  creep  resistance,  tailorable  coefficient  of  thermal  expansion
(CTE), etc. steadily progressed. Some noticeable outcomes of the works of resea-
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rchers  were  the  compositional  tailoring  of  metals  leading  to  multicomponent
alloys  and  the  emergence  of  metal  matrix  composites.

The  progress  of  modern  engineering  has  been  significantly  improved  by  the
development of alloys. Materials like magnesium alloys, well known for being the
lightest  structural  alloys,  and  iron  alloys  like  stainless  steel  that  demonstrate
exceptional magnetic, thermal, and mechanical properties and corrosion resistance
provided  engineers  to  develop  products  with  significant  functionalities.  Yet,
magnesium alloys still  exhibit  low strength and elastic modulus comparatively.
Ceramic materials exhibit high strength and toughness but are not readily used in
manufacturing because of their low ductility, poor toughness, etc. When metals or
metal  alloys  are  reinforced  with  ceramic  materials  like  silicon  carbide  (SiC),
aluminum (III) oxide (Al2O3), aluminum nitride (AlN), yttrium(III) oxide (Y2O3),
and  titanium  diboride  (TiB2),  resultant  materials  inherit  properties  from  their
constituent materials leading to highly desired combination of properties. Often,
the improved hardness and yield strength of metal matrix composites reduce the
materials' ductility and fracture toughness especially when the reinforcement is in
micron  and  sub-micron  length  scale.  Lately,  metals  like  titanium  (Ti),  copper
(Cu), etc., and carbon fibers are being used as alternate reinforcement materials.
Most properties of composites are improved over their constituent materials, but
sometimes,  these reinforcements act  as inert  conductors of electricity,  allowing
the possibility of galvanic corrosion in metal matrix composites. This decreases
the overall corrosion resistance of metal matrix composites.

The rule of mixtures is  generally used to estimate the mechanical  properties of
composites. However, corrosion properties can be entirely different from either of
their  constituent  materials,  depending on the  different  forms of  corrosion (e.g.,
uniform corrosion, pitting corrosion, galvanic corrosion, crevice corrosion, stress
corrosion  cracking,  microbial  corrosion  etc  [1])  observed  in  metal  matrix
composites.  Hydrogen  evolution  test,  a  widely  used  electrochemical  test  to
determine the corrosion rate of magnesium-based materials, optical microscopy
and  scanning  electron  microscopy  are  suggested  to  estimate  the  corrosion
properties  of  composites.  Due  to  the  difference  in  electrochemical  potential
between the reinforcements and matrix materials, galvanic corrosion is one of the
most  significant  corrosion  mechanisms  observed  in  metal  matrix  composites,
along with the chemical degradation of interphases and reinforcements-induced
corrosion.  In  this  review,  we  will  start  with  what  composites  are  and  their
classification as a brief introduction. Then the concept of galvanic corrosion in
metal  matrix  composites  will  be  introduced,  followed  by  an  introduction  to
polarization curves, which are significant in estimating the corrosion properties of
metal  matrix  composites.  Finally,  the  effects  of  processing  methods,  material
properties  and  the  amount  of  reinforcement  materials,  and  the  presence  of
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impurities  on  the  corrosion  properties  of  the  metal  matrix  composites  will  be
addressed. A particular focus is placed on the corrosion behavior of magnesium
and aluminum metal matrix composites.

COMPOSITES: TERMINOLOGY AND TYPES

Composites  can  be  defined  as  “A  material  consisting  of  two  or  more  distinct
phases  bonded  together”  [2].  Composites  are  made  of  a  matrix  material,  a
homogenous  and  monolithic  material  in  which  a  reinforcement  is  embedded.
Composites  are  classified  into  Metal  Matrix  Composites  (MMCs),  Polymer
Matrix  Composites  (PMCs),  Ceramic  Matrix  Composites  (CMCs),  and  Carbon
Matrix Composites based on the matrix material (Metal, Polymer, Ceramic, and
Carbon)  used.  Typically,  composites  are  designed  so  as  to  offer  remarkable
mechanical  and  physical  properties,  making  them  one  of  the  most  significant
advances in materials development. Classification of matrix composites is done
based  on  matrix  material,  the  structure  of  reinforcements,  the  type  of
reinforcement,  and  the  orientation  of  the  reinforcement  see  Table  1.

Table 1. Classification of composites [3, 4].

Matrix Material Structure of Reinforcement Alignment Reinforcement Material

Metals Particulate Continuous Oxides

Ceramics Structural Discontinuous Carbides

Polymers Fiber Randomly Aligned Nitrides

Carbon Powder Interconnected Borides

Polymer Matrix Composites

Polymer matrix composites are the most widely used matrix composites due to
their low manufacturing costs and versatility. The general properties displayed by
polymer  matrix  composites  are  low-strength,  low-modulus,  low  density,
resistance  to  corrosion,  and  good  formability.

The properties of composite materials depend on the type of reinforcement (e.g.,
particle, continuous fibers, discontinuous fibers, whiskers) see Fig. (1), chemical
composition of reinforcement (e.g., ceramics, metals, and carbon), orientation of
reinforcement, amount of the reinforcement and the processing method adopted.
As polymer matrix composites combine polymers typically with ceramics, their
chemical  and  physical  properties  and  fracture  mechanisms  differ  significantly
from either of their constituent materials. Most of the polymer matrix composites
are  usually  anisotropic,  especially  those  with  continuous  fiber  reinforcements.
Composites  containing  equiaxed  reinforcement  particles  can  be  considered
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CHAPTER 9
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Abstract: Aluminium has a lightweight (density is 2.7 g/cm3), high specific strength,
and  excellent  wear  and  corrosion  resistance  properties.  Due  to  these  properties,
aluminium and its alloys are the most commonly used for structural, automobile, and
aerospace  applications.  However,  these  monolithic  materials  have  poor  mechanical
properties  which  are  significant  barriers  to  their  further  development.  The  resulting
materials, when reinforced with ceramic particles, enhance the properties of materials
and are capable of meeting the majority of industrial requirements. The reinforcement
of ceramic affects the properties of developed composites. The composite fabricated by
the  conventional  process  has  a  limitation  to  the  segregation  of  reinforced  ceramic
particles,  porosity,  weak  interfacial  bonding,  and  lower  strength.  Besides,  additive
manufacturing  (AM)  provides  design  freedom  and  dense  and  high-strength
components. In the present study, advances in aluminium nanocomposite developed by
laser powder bed fusion processes have been studied in detail. In addition, the objective
of this chapter is to focus on the fabrication routes, formation mechanisms, effect of
process  parameters  and  its  effect  on  laser  absorption,  grain  refinement,  interfacial
bonding and mechanical properties of aluminium nanocomposite discussed in detail.
The future scope of laser-processed aluminium composite is also briefly discussed.

Keywords:  Aluminium  composite,  Additive  manufacturing  method,
Classifications  of  additive  manufacturing  techniques,  Laser  powder  bed  fusion
processes, Laser additive manufacturing, Microstructure, Mechanical properties.
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OVERVIEW

Aluminium is lightweight (density is 2.7 g/cm3), and has high corrosion resistance
due to the formation of a thin passive film on the exposed surface. Aluminium and
its  alloy  are  the  most  widely  applied  in  the  fields  of  construction  materials,
vehicles,  aerospace,  ship,  etc.  due  to  their  high  specific  strength,  light  weight,
excellent  wear  and  corrosion  resistance,  ease  of  casting  and  lower  thermal
coefficient  values  [1  -  4].  In  the  present  scenario,  the  industries  demand
environment-friendly, high strength lightweight materials, which have exceptional
mechanical, wear, and corrosion resistance properties. Aluminium alloys are well-
known  materials  for  lightweight  applications.  However,  these  monolithic
materials  have  poor  mechanical  and  wear  resistance  properties  which  are
significant  barriers  to  their  further  development.  The  resulting  materials,  when
reinforced  with  ceramic  particles  such  as  Silicon  carbide  (SiC),  Titanium
Dibromide  (TiB2),  Aluminium  oxide  (Al2O3),  Titanium  carbide  (TiC),  Boron
carbide (B4C), and Titanium nitride (TiN), enhance the properties of materials and
are capable of meeting the majority of industrial requirements [5 - 8]. Aluminium
Silicon  alloys  (Al-Si  alloys)  are  well-known  materials  for  automobile  moving
parts such as pistons or cylinder heads in engineering components in automotive,
aerospace  and  defence  applications  [9].  Silicon  carbide  and  aluminium  oxide
reinforced  aluminium  composites  are  commonly  utilised  for  automotive
applications such as brake drums and cylinder liners, as well as rotor vanes and
plates for structural aerospace parts [10, 11]. Though metallic composites may be
developed by several techniques such as melting casting, and powder metallurgy
processes [12]. However, these fabrication techniques have challenges such as the
segregation  of  reinforced  particles,  weak  interfacial  bonding,  non-uniform
distribution,  difficulty  in  machining,  higher  porosity  and  inferior  mechanical
properties  [13].  Besides,  additive  manufacturing  provides  design  freedom,
intricate  structure,  and  cost-effective,  environment-friendly,  dense,  and  high-
strength components [13]. Furthermore, the reinforcement of ceramic particles in
laser  processing  strengthened  the  interactions  between  the  laser  beam  and  the
powder particles resulting in improving laser absorptivity, which helps to resolve
the high laser reflectivity problem compared to monolithic aluminium alloy.  In
addition,  the  reinforcement  of  nanopowder  in  metal  matrix  material  by  laser
powder bed fusion (L-PBF) process increases the laser absorption, improves the
fluidity of the melt, refined grain structure, interfacial bonding, high-temperature
performance, and higher mechanical properties [14, 15]. Additive manufacturing
is  the  method  of  combining  materials  to  form  objects  through  layer  by  layer
deposition of materials from specified three-dimensional model (3D model) data,
and it is the process of creating the final shape by adding materials. The additive
manufacturing process involves three basic steps, i.e., (a) a computerised 3D solid
model is created and converted into a standard additive manufacturing file format,
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such as the traditional STL (standard tessellation language format); (b) the file is
sent to an additive manufacturing machine and manipulated, such as changing the
part's position and orientation or scaling; and (c) the part is built layer by layer on
the  additive  manufacturing  machine  [16  -  18].  This  process  does  not  require
cutting tools, coolants, fixtures, and other auxiliary resources for assembly [16].

In the present work, the methods and challenges associated with the fabrication of
aluminium  composite  by  additive  manufacturing  processing  will  be  addressed.
The  additive  manufacturing  technologies  are  first  introduced  to  provide  a
fundamental  grasp of  the  additive  manufacturing methodology.  Following that,
various  fabrication  processes,  microstructure,  and  mechanical  properties  are
discussed.  The  final  section  discusses  the  advantages,  limits,  and  prospects  of
additively made metal matrix composites (MMCs). Finally, the key challenges in
using metal additive manufacturing methods to fabricate metal matrix composites
are examined and highlighted.

ADDITIVE MANUFACTURING METHOD

The  additive  manufacturing  technique  uses  digital  data  from  the  computer  to
manufacture parts layer by layer from the lowermost up. Additive manufacturing
is classified into seven techniques, i.e., VAT Photo polymerisation, Binder Jetting
(BJ),  Sheet  Lamination  (SL),  Material  Jetting  (MJ),  Material  Extrusion  (ME),
Powder  Bed  Fusion  (PBF),  and  Directed  Energy  Deposition  (DED),  and  these
techniques  are  classified  in  terms  of  applied  processes  i.e.,  direct  or  indirect
processes  [13,  17].  The  flow  diagram  of  additive  manufacturing  steps  and  the
classifications of additive manufacturing techniques are shown in Figs. (1 and 2).

Fig. (1).  Flow chart of steps involved in the fabrication of additive manufacturing components.
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CHAPTER 10
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Abstract:  We  report  here  a  significant  enhancement  of  the  hardness  of  aluminum-
boron carbide composites by the addition of magnesium. Reactive sintering between
boron carbide and aluminum-magnesium occurs by the application of heat and pressure
and during subsequent annealing at high-homologous temperatures of the matrix.  In
this  case,  the  deformation-induced  plastic  yielding  enables  the  incorporation  and
dispersion  of  hard  particles  in  aluminum-matrix.  We  examine  the  decomposition
behavior of boron carbide at high-homologous temperatures in contact with magnesium
and aluminum, and observe the interfacial, aluminum-magnesium-boride, AlMgB4, and
aluminum-boro-carbide, Al3BC, phases at boron carbide/matrix interfaces as revealed
by  the  high-resolution  transmission  electron  microscopy.  We  demonstrate  that  the
hardness of these composites has been enhanced by two to five folds as compared to
the base alloy and the existing aluminum-boron carbide composites. The addition of
magnesium improves interfacial cohesion significantly between the matrix and ceramic
particles  as  a  result  of  interfacial  boride  phase,  and  primarily  contributes  to  the
enhancement of strength. This provides a novel method of developing aluminum-based
high strength composites.

Keywords:  Aluminum  alloys,  Boron  carbide  and  transmission  electron
microscopy,  Interfaces,  Microstructure,  Metal  matrix  composites.

INTRODUCTION

Metal matrix composites (MMCs) made of ceramic particles in metal matrix often
exhibit improved hardness, toughness and wear resistance as compared to the base
matrix without the particulates [1 - 8]. To lighten the weight and to increase the
strength  of composite  materials, alumina (Al2O3) silicon  carbide (SiC) and boron
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carbide particulates would be useful candidates. Aluminum alloys reinforced with
boron carbide fabricated to produce the metal-matrix composites find applications
in automotive [9, 10] in defense sector and in tribological sectors [11]. It is clear
that  much  work  has  been  done  and  continues  to  be  done  to  improve  many
properties  of  these  material  especially  the  hardness  of  these  materials  for
tribological and military applications. In the present work, we report a process by
which the hardness of these composites has been enhanced by two to five folds as
compared to the base alloy and the existing aluminum-boron carbide composites.
It  is  a  very  significant  result  when  compared  to  incremental  improvements
reported in the literature quoted above and also discussed below. In addition, we
propose  a  mechanism  by  which  this  result  has  been  achieved  and  provide
transmission  electron  microscopy  (TEM)  observations  in  support  of  this
mechanism.

The  motivation  here  is  thus  to  enhance  the  hardness  and  strength  level  of
aluminum matrix boron carbide composites so that these composites can be useful
for  applications,  where  high  specific  strength  or  hardness  is  required.  The
maximum level of hardness observed in the present work is 400 VHN (≈ 4GPa)
for  12  wt.%  boron  carbide.  Note  the  hardness  of  the  existing  aluminum-boron
carbide composites, as mentioned before, is in the range of 120 to 140 VHN. We
show for the first time the addition of magnesium to aluminum and boron carbide
can improve the strength of the aluminum boron carbide composite enormously,
which  acts  here  as  a  binder  and  helps  consolidate  the  composite  at  high
temperature and pressure, by forming an interfacial aluminum-magnesium-boride
phase  between  aluminum  and  boron  carbide.  In  this  case,  the  manufacturing
process  was  conducted  in  the  solid-state  using  ball  milling  and  then  by
consolidating the powders at higher pressure and high homologous temperature of
the matrix. We use transmission electron microscopy to investigate the interface
phase  formation  in  detail.  As  the  consolidation  process  involves  interfacial
reaction  between  aluminum/magnesium  and  boron  carbide,  understanding  the
interface and defects at nano-scale and the fine scale microstructure is expected to
be crucial to control the properties of these composites.

Several types of composite materials, such as multilayer composites, dispersion
strengthened  composites  and  fiber  reinforced  composites  have  emerged.
Multilayers made of hard and soft layers result in higher strength and toughness
[12 - 14] due to Koehler effect. It was argued in the multilayer composites if one
of the individual layers has a significantly lower shear modulus, dislocations need
to overcome a large repulsive image force to move from one layer of lower shear
modulus  into  the  other  layer  with  higher  modulus.  On  the  other  hand,  in  the
dispersion strengthened composites, higher strength is achieved by impeding the
motion of dislocations by hard particles dispersed within the matrix. In this case,
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the load is carried away by the matrix. We recently reported in aluminum/alumina
multilayers, the formation of nanocrystalline alumina within the soft layer, which
enhances the overall hardness and strength of the multilayer composites by means
of the Orowan strengthening mechanism [15].

Considerable  work  has  been  done  to  produce  dispersion  strengthened  metal-
matrix  composites  by  adding  various  volume  fractions  of  boron  carbide  in
aluminum  matrix  [16  -  18].  These  hard-ceramic  particles  are  mostly  added  in
liquid  metal  to  form  metal-matrix  composites  upon  solidification  [18].  For
example,  the  aluminum  7475  -  boron  carbide  composite  was  manufactured  by
using a stir casting method, and the boron carbide particulates were added into the
molten metal. To achieve homogeneity, the mixture was stirred continuously by
using  a  mechanical  stirrer.  However,  this  method  tends  to  produce  more
inhomogeneity  upon  solidification  of  the  composites,  because  the  solid/liquid
interface  pushes  hard-ceramic  particles  towards  the  end,  which  results  in
inhomogeneity  in  the  solidified  product.  To  achieve  better  homogeneity,
aluminum-based  metal-matrix  composites  were  manufactured  in  the  solid  state
reinforced with boron carbide particles [19 - 22]. In most cases, aluminum 7xxx,
aluminum  6xxx  and  aluminum-2xxx  series  alloy  powders  along  with  boron
carbide  as  a  reinforcement  have  been  used.  However,  all  of  these  composites,
manufactured  in  solid  as  well  as  in  the  liquid  state,  do  not  show  better
performance. As mentioned before, the enhancement of hardness or strength level
is  relatively  small,  10  to  20%,  as  the  bonding  between  aluminum-matrix  and
boron carbide is weak, and composites mostly fail as a result of de-bonding at the
metal/ceramic  interface.  In  these  prior  works,  the  enhanced hardness  value  has
been  reported  to  be  in  the  range  of  120  to  140  VHN  for  8  to  10  wt.%  boron
carbide in aluminum [19 - 22].

Hence,  to  enhance  the  strength  and  hardness  of  the  composites,  one  needs  to
improve the interfacial bonding between ceramic particulates and matrix. It has
been realized a thin layer of a metal-boride phase at the interface could improve
the  adhesion  between  aluminum  and  boron  carbide.  In  addition,  these  hard-
ceramic  particles  need to  be  incorporated  and finely  dispersed  within  grains  to
impede the dislocation motion, so that the Orowan strengthening mechanism is
operative [15, 23]. Not much work has been done to investigate the interfaces and
the reaction layers at nanoscale formed at high homologous temperatures and high
pressures.  Recently,  some  work  has  been  reported  to  improve  the  mechanical
properties  of  pure magnesium and its  alloys [24] with nickel  and copper.  They
reported that the improvement of strength in pure magnesium [25, 26] is due to
the presence of intermetallic phases, such as Mg2Ni and Mg2Cu in the matrix.
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Abstract: This study provides a short, succinct and convincing review of the studies
researchers have performed on sisal natural fibre and its applicability for selection and
use as a potentially viable and economically affordable reinforcement for engineering
composite materials. As the technologies are developing rapidly day by day and the
demand for developing and manufacturing eco-friendly materials is also increasing, the
use of the bio-degradable reinforcements, like bamboo, sisal, jute, cotton and hemp, is
of  utmost  concern.  Made  evident  from  a  few  to  several  other  research  studies,  in
comparison  to  the  fabricated  natural  fibre-reinforced  composite  materials,  the  sisal
fibres  indicate  considerable  results  that  favour  their  applicability.  Environmental
contamination happens in various aspects of industrial processes, such as production,
disposal, and recycling of synthetic fiber-reinforced composites due to their widespread
selection  and  use.  Sisal  fiber  is  a  good  example  of  an  environmentally  acceptable
natural  fiber  having  significant  mechanical  qualities,  which  can  be  utilized  for
reinforcing a variety of polymer matrices. This review article provides a coverage of
the intricacies specific to the manufacture of sisal fiber-reinforced composite materials,
variables  that  impact  their  characteristics,  surface  treatments  used  to  prevent  the
presence  of  flaws,  and  mechanical  tests  required  to  determine  their  strength.  Prior
testing attempts on the sisal fiber-reinforced composites are addressed in order to aid in
future  research  to  reveal  the  advantages  and  usage  of  such  a  material  in  a  more
effective  and  efficient  manner.  The  current  era  of  rapidly  changing  manufacturing
environment and technological advancements highlighting such scenarios calls for a
substantial amount of research to be performed on: (i) structure of sisal fibre, (ii) sisal
fibre  extraction/preparatory  processes,  and  (iii)  surface  treatments  of  sisal  fibres
combined  with  other  matrices.

Keywords:  Mechanical  properties,  Mechanical  testing,  Natural  fibers,  Natural
composites,  Preparation  process,  Sisal  fiber,  Surface  treatments,  Sisal  fiber
polymer  matrix  composites.
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INTRODUCTION

Composites exist everywhere in the environment. Long cellulose fibers are bound
together  by lignin  in  a  piece  of  wood,  resulting itself  in  a  composite.  With  the
rising  environmental  concerns,  the  demand  for  developing  eco-friendly  and
sustainable  materials  has  exponentially  increased.  The  bio-composites
incorporating  lignocellulosic  fibers  as  a  reinforcement  in  a  polymer  matrix  are
thereby considered as  an effective  and sustainable  solution to  the  rising plastic
waste.  Composite  materials  are  generally  composed  of  two  or  more  materials,
which have significantly different properties. However, they do not react or merge
together  and  this  actively  demonstrates  that  their  properties  work  along  in  a
concert.  The  composite's  many  ingredients  combine  to  give  it  its  distinct
properties. Humans have employed composite materials in a variety of purposes
for thousands of years. Around 1500 BC, the Egyptians and Mesopotamians used
a mix of mud and straw to construct sturdy and long-lasting constructions. The
combination of mud and straw within a brick provides exceptional compression,
tearing  resistance  and  bending  resistance.  Medieval  composite  items,  such  as
ceramics and boats, remained to be reinforced with straw. The interconnections of
different constituents, which makes it possible for composites to exist are shown
in Fig. (1). Taking into account the functioning of composites, several functions
that are performed by two key components – matrix materials and reinforcement
materials have been addressed accordingly.

Fig. (1).  Various classes of composites.
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Matrix (Primary) Phase

Matrix  phase  is  used  to  produce  overall  bulk  form  of  a  composite  material
component or product. It keeps the embedded phase, or reinforcements, in situ,
which means by enclosing and hiding it. Whenever a load is employed, the matrix
phase allocates  its  burden to the reinforcing phase.  However,  it  may deform in
some situations, allowing the reinforcing phase to bear the full load.

Reinforcing (Secondary) Phase

Their  purpose  is  to  support  the  primary  phase.  The  most  typical  forms  of
embedded  phase  are  fibers,  particles,  and  flakes.

Fig. (2).  Usage of natural reinforced fiber composites (NFC) Work in actual scenario [Reference 2].

NATURAL FIBER-REINFORCED COMPOSITE

Previously,  the use of  synthetic  fiber  composites  was booming.  Soon countries
around the globe started to acknowledge facts about pollution issues and how to
prevent  them.  Then  came  the  era  of  green  techniques,  which  were  created  to
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CHAPTER 12

On  the  Selection  and  use  of  Biomaterials  and
Implants in Orthopedics: A Study and Evaluation
into the Future
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Abstract:  The selection of suitable biomaterials  and implants is  the most  important
criterion to  achieve success  in  biomedical  engineering.  Several  factors  such as  high
specific strength, high corrosion resistance, enhanced wear resistance, biodegradability,
and biocompatibility need to be considered before choosing the material for biomedical
applications. The biomaterials are developed from metals, metal alloys, ceramics, and
polymers based on specific applications. In the orthopedic field, inert materials have
been used in earlier times that showed minimal cell-material interaction, and bioinert
materials  were  preferred  to  avoid  immune  rejection  and  increase  the  success  rate.
Metallic  alloys  such  as  Ti-6Al-4V,  316  stainless  steel,  and  cobalt-chromium  are
frequently used in the fabrication of bone implants. Metal alloys have problems like
corrosion and are less bioactive. In recent years, the concept of regeneration has been
developed  and  it  is  entirely  based  on  cell-material  interactions,  and  the  selected
materials  need  to  exert  bioactivity.  Regenerative  materials  are  prepared  from
biodegradable  metals,  polymers,  and  ceramics.  Numerous  techniques  have  been
developed  recently  to  convert  a  bioinert  material  into  bioactive  or  regenerative
material. Smart materials and implants with bioactive surfaces are also getting more
attention  in  the  orthopedic  field.  This  chapter  throws  light  on  two  fields  that  have
contributed  to  bone  replacement  and  regeneration.  An  overview  of  the  bioinert
implants  in  the  orthopedic  industry  and  the  current  development  of  bioinert  into
bioactive  and  immunomodulating  materials  will  be  discussed.  The  future  aspects
describe  the  role  of  smart  materials  for  bone  regeneration  in  detail.
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INTRODUCTION

Bone trauma and fractures affect the lives of many people all around the world [1,
2]. Autografts and allografts have been used for treating small defects [3]. In case
of larger defects, auto or allografts are not possible and bone grafting materials or
implants came into the role. Orthopedic implants are divided into two categories
namely load-bearing and non-load-bearing implants based on their applications.
Non-load-bearing  implants  are  used  to  provide  structural  support  but  not  to
withstand the load. These non-load-bearing implants are made up of ceramics and
biodegradable polymers. However, load-bearing implants must hold the weight of
the patient, and the structure of metal alloys. These types of implants are used in
artificial knees and hip joints, where the action of load will be high [4 - 8]. In the
19th  century,  metals  and  their  alloys  have  been  used  extensively  as  medical
implants. As the economy and technology advanced, industries started to produce
a huge variety of metals and alloys. Few metals and alloys are biocompatible and
have a proven track record of effectiveness in medical implants [9].

Metal  and  metallic  alloys  have  unique  surface  properties,  high  mechanical
strength,  biological  response,  and  heat  transduction  characteristics.  Due  to  the
high mechanical properties and fracture toughness, metal implants were used in
load-bearing  applications.  Pure  metals  easily  corrode  and  have  not  shown
promising results in orthopedics [10, 11]. Metallic Bio-implants such as titanium
and  its  alloys  [12],  stainless  steel  [13],  and  cobalt-chromium  alloys  [14]  are
widely  used  in  orthopedic  applications.  The  above-mentioned  alloys  show
controllable  corrosion  rates  and  have  greater  strength  in  bone  implant
applications. Titanium (Ti) alloys have been most commonly used in orthopedics
for  more  than  50  years.  Titanium  alloys  consist  of  different  structures  such  as
equiaxed, bi-model, and laminar, which show high ductility, strength, and creep
resistance properties,  respectively.  The most studied Ti-alloy is  Ti-6Al-4V (Ti-
Titanium, Al-Aluminum, V-Vanadium) (Grade 5 titanium), which is reported to
have low density, a high strength-to-weight ratio, and very good biocompatibility.
The  presence  of  6%  Aluminum  (α  phase)  and  4%  of  Vanadium  (β  phase)
stabilizes  the  α+β  phase  of  titanium  and  helps  in  achieving  high  strength  and
ductility  properties.  It  is  also  reported that  the  oxide  layer  formed in  this  alloy
enhances the adherence of bone progenitor cells. Stainless steel (SS) has been the
choice  of  implant  material  among all  other  alloys  due  to  its  low cost  and  easy
production.  The  chemical  composition  of  stainless  steel  contains  18%  of
chromium, which helps form the chromium oxide (Cr2O3) layer on the surface of
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materials.  The  oxide  layer  further  enhances  the  corrosion  properties  and
biocompatibility of materials. However, the high stiffness of the Stainless steel-
based implants leads to high bone resorption, and these implants are reported to
induce inflammatory response at the site of implantation. Cobalt-chromium is one
of the high-hardness materials, which is used in load-bearing applications such as
hip  and  knee  joints.  Hence,  the  material  predominately  requires  high  surface
hardness and tribological resistance to avoid wear debris formation. The chemical
composition  consists  of  27-30%  Chromium  and  5-7%  Molybdenum.  This
composition  helps  to  attain  a  homogenous  microstructure  and high tribological
resistance  compared  to  other  metallic  implants.  Considering  the  corrosion,  and
less  biological  response  of  conventional  metal  alloy  implants,  researchers  are
focusing  on  the  development  of  biodegradable  and  bioactive  implants.
Magnesium-based  bone  implants  are  getting  more  interest  in  the  area  of
biodegradable implants. Magnesium has high osteoconductive properties and very
good biocompatibility. It can also be used in load-bearing applications [15]. The
high corrosion behavior of magnesium-based implants needs to be controlled for
their successful application in orthopedics.

There is a need to keep several points in our mind before selecting a material for
bone  implant  applications.  Many  reasons  can  be  attributed  to  the  failure  of
implants.  The  main  reason  behind  the  implant  failure  is  the  properties  like
corrosion, strength, and biocompatibility of the material selected [16]. The other
reason  could  be  a  failure  due  to  the  infection  in  the  implants.  Stress-shielding
effect of the implants is another major reason for implant failure at the site. Bone
remodeling maintains the external and internal structure of the bone in response to
the  mechanical  forces  that  occur  during  a  normal  biological  response.  The
remodeling  process  maintains  the  strength  of  a  bone  by  changing  the  calcified
tissue properties in response to the loading conditions met by the skeleton. The
bone  density  and  geometry  will  be  maintained  by  osteoblasts  (bone-forming
cells), and osteoclasts (bone-resorbing cells). These cells will be activated by the
biological  systems  in  response  to  the  mechanical  forces.  When  bone  implants
have high stiffness, it would alter the distribution of load in the bone. The stress-
shielding effect may reduce the load that is present in the bone previously and that
leads to poor remodeling [17, 18]. Due to the poor remodeling, the shielded bone
may have a lower density with a more porous structure and anatomically smaller
in  size.  Further,  due  to  the  high  stiffness  of  the  implants,  the  load  can  act  in
different  areas which are never exposed to high loads.  This  may result  in bone
damage  and  fracture.  This  abnormal  stress  concentration  is  also  a  reason  for
implant  loosening  and  failure.  To  prevent  the  stress-shielding  effect  of  the
implants, the geometry should be designed accurately which will allow the proper
distribution of load throughout the implant.
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CHAPTER 13

Smart  Hydrogels:  Theory  and  Applications  with
Particular Focus on Biomedical Sciences
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Abstract: Smart and intelligent materials provide direct or indirect solutions for many
of the current/existing problems. Studies in this line have been in progress since few
decades  developing  multifunctional  materials,  smart  systems  etc.,  for  specific
applications.  Though  many  smart  materials  were  developed,  not  much  of  them  are
compatible as implants in human body. One such material that possesses the inherent
requirements attuned with human body is ‘hydrogel’. Like other smart materials, gels
can also be intelligent in their responses to the environments they are exposed to, or on
influence  of  any  induced  stimuli.  Many  such  smart  gels  are  explored  by  various
industries and are used for applications such as drug delivery systems, cancer therapy,
tissue  engineering  and  organ  printing,  but  a  comprehensive  understanding  with
properties, and their mechanisms regarding their functionality and usage are meagre.
This work consolidates and details the classification of gels and elaborates the various
stimuli to which gels respond and the mechanisms involved. This article also explores
the  possibilities,  prospects  of  3D-printing  of  smart  gels  in  biomedical  field  and  has
listed the possible applications of hydrogels.

Keywords:  4D  printing,  Additive  manufacturing,  Artificial  lens,  Artificial
muscles,  Bimodal,  Biochemical,  Cross-linking,  Drug  delivery,  Hydrogels,
Hydrophilic,  Hydrophobic,  Organ  printing,  Self-healing,  Shape  memory
hydrogels,  Smart  gels,  Spinodal,  Stimuli  responsive,  Superporous,
Supramolecular,  Tissue  engineering.

OVERVIEW

Progress  in  materials  science  requires  the  development  of  newer  materials  and
systems to cater to the needs of the ever-demanding applications. The advent of
multi-functional materials has benefited the scientific community in building up
systems/technologies to  provide  minimally-invasive  surgeries, smart  diagnosis,
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organ  printing,  etc.  Such  smarter  systems  have  transformed  dumb
machines/systems  to  sophisticated  ones  that  provide  better  methods  for  easy
diagnosis and cure. Smart/Intelligent materials are the key to the development of
such  smarter  systems  that  exhibit  the  capability  of  sensing,  judging,  and
responding  to  environmental  conditions  optimally,  thereby  contributing  to  the
evolution  of  smarter  technologies  for  the  betterment  of  civilisation.  Stimuli
response  is  one  of  the  basic  phenomena  in  nature  that  offers  comprehensive
avenues  for  learning  and  the  same  can  be  adapted  to  the  material  systems  for
providing solutions to many of the current problems [1]. Smart materials possess
the  characteristics  of  changing  their  properties  on  subjecting  to  an  external
stimulus and the external stimuli to which these materials respond can either be
pressure,  moisture,  pH,  presence  of  chemicals,  light,  temperature,  electric  or
magnetic fields or a combination thereof. Gels are one such smart material that
can  respond  to  a  variety  of  stimulus  and  are  capable  of  providing  specific
functions  in  the  human  body.  Irrespective  of  the  various  fields  of  application,
science and engineering of gels open a larger domain in the bio-materials world.

Fig. (1).  SEM micrographs of PAAm-CS hydrogel; (a) With solvent, not exposed to stimuli; (b) Soaked in
0.75  mM  Sodium  Hydroxide;  (c)  Soaked  in  saturated  Sodium  chloride;  all  micrographs  with  scale  bar
indicating 10 μm (Reproduced with permission from Xiao, He. Ma, Chunxin. Le, Xiaoxia. et al., A Multiple
shape memory hydrogel induced by reversible physical interactions at ambient condition. Polymers. 2017; 9,
138, with permission).

The challenges posed by the biomedical field required the development of lighter
and biocompatible materials for drug delivery and other biological applications
and hence an investigation of gels became more pertinent. Biodegradability and
biocompatibility were the challenges for plastics in the fields of minimal invasive
surgery,  synthetic degradable implants,  suture materials  and organ printing,  for
which gels offers a ready and immediate solution [2]. Hence, it will be interesting
to study and consolidate the nature and variety of gels along with exploration of
the  smart  actuation  capabilities  with  their  mechanisms  and  applications  as  a
ready-reference  to  the  scientific  community.

(a)  (b)  (c)
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GELS, THE WONDER MATERIAL

Gel,  Sol,  and  Emulsion  are  three  different  states  of  colloidal  solutions,  which
differ in the dispersion phase and medium. While emulsion represents a colloid in
which the dispersion medium and dispersion phase are liquid (example: Paints),
sol represents the dispersion of solids in a liquid medium and gels represent the
dispersion of the liquid phase in a solid medium. The solid medium in a gel  is
analogous to the sea sponge, an ocean creature with its body full of channels and
interconnected pores permitting water to percolate. Transformations between sol
and gel depends on the cross-link stability and are being studied across the globe
using thermodynamic concepts, combining the advantages of each and to develop
smarter  systems.  The  ability  to  transform  between  gel  and  sol,  in  response  to
certain stimuli, due to the absence of strong cross-linking, makes gel a favourable
material for use in the biomedical field [2 - 4]. Gels are classified as a category of
soft  and  wet  materials  with  three-dimensional  cross-linked  networks  in  a  large
porous solvent matrix and it possesses the characteristics of high fluid absorption
that results in the shape memory behaviour. The inherent nature of gels makes it
possible to accommodate fluids in the pores and cause a change in volume (by
swelling) and also withdraw the fluid to regain its original volume attributing to a
change  in  shape.  Gels  that  can  absorb  water  are  termed  as  hydrogels  and  are
generally  composed  of  hydrophilic  polymer  chains  that  have  affinity  towards
water. The hydrophilic groups like amino, carboxyl and hydroxyl groups in the
polymer chains are responsible for the water holding ability of the hydrogels that
results in the change of volume by means of swelling [5 - 8]. Gels also exhibit
extremely  low  friction  coefficient  and  are  regarded  as  soft  and  high  ductile
materials with prolific applications that include lubricants for aerospace materials,
templates  for  nanoscale  and  other  biomedical  devices,  scaffolds  for  tissue
engineered  prostheses,  lens,  eyeball,  artificial  muscles,  artificial  blood  vessels,
smart buttons, biosensors and actuators [9, 10].

When  liquid  phase  of  the  gels  is  composed  of  organic  solvents  in  polymeric
network instead of water (as in hydrogel), they are termed as organogels. These
organogels are usually non-crystalline, non-glassy and thermoplastic in nature. A
polymeric  hydrogel  gel,  which  is  devoid  of  water,  is  called  xerogel,  and  the
amount of water that can be absorbed by a hydrogel may vary between 0.1 and
1000 of times of the weight of the xerogel [4, 9]. Apart from these three types of
gels,  a  hybrid  variety  of  nanocomposite  hydrogels  are  possible  that  are  either
physically  or  covalently  cross-linked  and  has  nanoparticles  (carbon-based,
polymeric,  ceramic,  metallic)  embedded  in  the  matrix  those  enhances  the
microstructure.  These  hydrogels  are  capable  of  mimicking  human  tissues,
structure and microenvironment due to highly hydrated and interlinked pores [10].
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Abstract: Ferrite nanomaterials are extensively studied for their use in the biomedical
field primarily because of their tunable magnetic properties and biocompatibility. The
use  of  magnetic  nanomaterials,  particularly  the  iron-based  nanoparticles,  for
hyperthermia  treatment  is  one  of  the  emerging  applications.  However,  there  are
practical  constraints  on  the  overall  applicability  of  pure  iron-oxide  nanoparticles
(IONPs) for hyperthermia treatment. In this regard, doping foreign metal ions in the
crystal lattice of pure iron-oxide nanoparticles (IONPs) possessing a spinel or inverse-
spinel structure remains to be the simplest approach for the purpose of improving the
desired properties. Doping other metal ions into the iron-oxide nanoparticles (IONPs)
causes  strain  in  the  crystal  lattice  and  is  responsible  for  engineering  the  structural
properties  and  magnetic  properties.  Various  elements,  such  as  the  rare-earth  (RE)
metals, especially the lanthanides [Yttrium, Gadolinium and Europium], the transition
metals [manganese, cobalt, nickel and zinc], and other metals [gold, silver, calcium,
titanium, copper and magnesium] are being investigated for their potential to serve as
dopants.  The  divalent  transition  metals  [manganese,  cobalt  and  nickel]  doped  iron-
oxide  nanoparticles  possess  highly  improved  magnetic  properties.  Incorporating
trivalent  ions of  lanthanides improves the structural  properties,  magnetic  properties,
and dielectric  properties of  the iron-oxide nanoparticles (IONPs).  Moreover,  doping
with  zinc,  gold  and  silver  imparts  the  ion-oxide  nanoparticles  (IONPs)  with
antibacterial  properties  while  concurrently  tuning  their  structural  properties  and
magnetic  outputs.

Keywords:  Doping,  Iron-oxide  nanoparticles,  Lanthanides,  Magnetic
hyperthermia,  Rare-earth  metals.
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INTRODUCTION

The  iron-oxide  nanoparticles  (IONPs)  possess  unique  and  tunable  magnetic
properties that enable them to find versatile applications in the fields ranging from
electrical/electronics  to  nanomedicine.  These  nanoparticles  (NPs)  are  also
considered to be safe for the purpose of biomedical applications and thus can be
used  as  nanocarriers  for  the  following:  (i)  drug  delivery,  (ii)  nano  heaters  in
magnetic hyperthermia, and (iii) contrast agents in imaging [1 - 6]. The iron-oxide
nanoparticles  (IONPs)  consisting  of  a  single  domain  structure  possess
superparamagnetic  character  when  the  temperature  is  between  the  curie
temperature  (TC)  and  the  blocking  temperature  (TB),  i.e.,  TC  >  T  >  TB.  Upon
exposure  to  an  external  magnetic  field,  these  nanomaterials  possess  high
magnetization.  However,  they  tend  to  lose  their  magnetization  as  soon  as  an
externally  applied  field  is  removed  [7].  Typically,  the  iron-oxide  nanoparticles
(IONPs) below a critical size of 20 nm possess superparamagnetic properties and
are termed as superparamagnetic iron-oxide nanoparticles (SPIONs) [8].

Among  iron-oxide  nanoparticles  (IONPs),  magnetite  bearing  chemical  formula
Fe3O4 received excellent attention from researchers and finds its use in a diverse
number of applications. The Fe3O4 possesses an inverse spinel structure consisting
of closely-packed oxygen ions with the cations occupying interstitial sites [9]. It is
generally represented as AB2O4 where, A represents the tetrahedral sites occupied
by the Fe3+ ions while B sites are the octahedral sites engaged alternatively by the
Fe2+/Fe3+ ions and thereby giving the formula [Fe3+]A[Fe3+ Fe2+]BO2-

4. The Fe3+ ions
have a magnetic moment of 5µB. However, Fe2+ ions located at the octahedral (B)
sites  contribute  to  the  net  magnetic  moment  of  inverse-spinel  ferrites  i.e.,  4µB
[10]. This is essentially because of cancellation of the magnetic moment of Fe3+

ions being equally distributed among the tetrahedral sites and octahedral sites and
having  a  magnetic  configuration  that  is  antiparallel  to  an  externally  applied
magnetic  field  [11].

Factors  like  diameter/size,  shape,  geometry,  and  anisotropy  of  the  iron-oxide
nanoparticles (IONPs) exert an influence on their magnetic properties and heating
abilities [6, 12 - 15]. Therefore, various strategies are currently being practiced by
researchers  to  tune  the  magnetic  properties  of  pure  iron-oxide  nanoparticles
(IONPs).  One  such  strategy  is  to  dope  with  other  metal  ions  into  the  crystal
structure  [16].  Doping  refers  to  an  intentional  introduction  of  impurities  in  the
crystal  lattice  of  the  pure  iron-oxide  nanoparticles  (IONPs).  The  doped
nanomaterials  possess interesting magnetic properties,  chemical  properties,  and
dielectric properties. The addition of dopants tends to change the chemical order
of  pure  ferrites.  Therefore,  different  types  of  dopants  added  at  varying
concentration  levels  are  currently  with  the  intent  of  optimizing  the  electrical,



442   Advanced Materials for Emerging Applications Mehak et al.

magnetic, and optical output of the pure iron-oxide nanoparticles [IONPs]. The
various dopants used for developing engineered IONPs can be broadly classified
as follows [7]:

(a) Transition metal-doped iron-oxide nanoparticles (IONPs),

(b) Rare earth (RE) or lanthanide-doped iron-oxide nanoparticles (IONPs), and

(c) Other metal-doped iron-oxide nanoparticles (IONPs).

Manganese (Mn), cobalt (Co), nickel (Ni), and zinc (Zn) among transition metals
and europium (Eu), gadolinium (Gd), Tb, yttrium (Y), and Ho among lanthanides
are commonly used to dope the iron-oxide nanoparticles (IONPs). Other metals
ions,  such  as  magnesium  (Mg),  calcium  (Ca),  gallium  (Ga),  strontium  (Sr),
barium  (Ba),  gold  (Au),  copper  (Cu),  and  silver  (Ag)  also  serve  as  dopant
materials  (Fig.  1).

Fig. (1).  The inverse spinel structure of Fe3O4. adapted with permission from rivani and co-workers [17].

The  purity  of  crystal  lattice,  or  chemical  order,  is  an  important  factor  which
affects the physiochemical properties of the magnetite. It belongs to a space group
Fd-3m that contains 32 oxygen ions (O2-), which form face-centered cubic (FCC)
unit  with  eight  formula  units  i.e.,  Fe24O32  with  the  cations  stoichiometric  (Fe3+:
Fe2+)  of  2  [18].  Interestingly,  the  oxygen  framework  provides  flexibility  to
substitute  Fe  ions  with  other  metal  ions  or  cations,  such  as  manganese  (Mn),
magnesium  (Mg),  nickel  (Ni),  cobalt  (Co),  copper  (Cu),  zinc  (Zn),  and
gadolinium  (Gd).  The  various  elements  explored  as  dopants  for  the  iron-oxide
nanoparticles (IONS) are listed in Table 1. Doping of foreign cations alters both
the physiological, and magnetic output of the iron-oxide nanoparticles (IONPs) by
changing their magnetic orientation [19].  However,  saturation magnetization of
the  doped  system  decreases  when  compared  to  the  bulk  magnetite,  which
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Abstract: Residential, workplace, commercial & wildfires claim and injure millions of
people and cause trillions of dollars worth of property damage worldwide, considering
both natural & man-made resources. The current review paper provides a clean, clear,
cohesively complete and convincing review of the emergence of new and sustainable
emergent material additives that improve fire-retardant properties and thermal stability,
as  well  as  their  applications  for  the  safety  and  protection  of  life  and  property  in
buildings.  Globally  emerging  materials  have  entered  the  realms  of  construction,
protection of critical apparatus, and self-protection equipment, thereby revolutionizing
the level of fire protection for both people and materials. However, cost, application
difficulty,  mass-scale availability,  and a lack of  knowledge have frequently led to a
lack of focus on preventing this calamity. In addition, emerging materials technologies
can contribute to sustainable development by considerably enhancing the fire-retardant
properties of recyclable waste, including both biological waste and industrial waste.
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INTRODUCTION

Throughout history, fire has been a companion to human beings and has played a
pivotal role in their evolution. The identification of fire led to human settlement
and the gradual formation of societies, with the agrarian economy taking the lead
prior to the industrial revolution [1]. However, its widespread use did bring about
numerous dangers. Now, fire risk and its dangers pose a substantial threat to both
life  and  property  [2].  Furthermore,  polymeric  materials  are  being  increasingly
selected and used in building structures due to their light weight, cost savings and
low density. This makes polymeric materials quite easy for the purpose of both
handling  and  processability  while  concurrently  enhancing  its  demand  due  to
aesthetic  appeal.  However,  due  to  their  poor  fire  resistance  characteristics,  the
polymer-based  building  materials  chosen  for  use  in  construction  for  insulation
works, false ceilings, fixtures, and data cables are often prone to heat and resultant
damage [3].

Despite  its  poor  fire  resistance  characteristics,  plastics  became  the  most
extensively chosen and used materials during the last few decades [4]. Between
1950  and  2012,  the  polymeric  industry  grew  by  8.7  percent  [5].  These
multifunctional  materials,  have  become  indispensable  for  modern-day  living,
while also becoming vital to the modern economy. A detailed examination of the
published  literature  reveals  that  the  worldwide  production  of  plastics  has
gradually increased to nearly 10 million metric tons during the last  decade [6].
Now  the  world  is  also  facing  frequent  catastrophic  fire  incidence  due  to  the
widespread use of flammable polymeric materials coupled with the rise in fire-
related applications in human existence. These fires have frequently resulted in
the loss of many lives.

In 2019, for instance, 1.2 million fire incidents occurred in the United States [7].
These incidents resulted in 3,704 fatalities and 16,600 injuries. The fire caused a
net economic loss of approximately $14.8 billion. The European Fire-Retardant
Association (EFRA) estimated that twelve fatalities and over one hundred twenty
fire-related injuries occur daily. The World Health Organization (WHO) reports
that  on  an  average  approximately  300,000  annual  fire-related  fatalities  occur
worldwide.

European  fire  safety  alliance  is  reported  to  be  close  to  5000  deaths  due  to  fire
incidents  every  year  [8],  and  the  numbers  are  only  showing  an  upward  trend.
These  widely  utilized  plastics  due  to  their  unique  chemical  configuration  and
molecular  structure  have  intrinsic  fire  prone  characteristics,  which  frequently
restrict their selection and use in both the manufacturing sector and construction
sector.
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Therefore,  plastics  exposed to a  high temperature tends to decompose and lose
their carbon bonds. It emits volatile gases that have a propensity to oxidize in air
and  form an  ignitable  mixture.  This  mixture  has  the  tendency  to  ignite  readily
when  exposed  to  an  elevated  temperature.  However,  if  the  polymer  undergoes
pyrolysis,  it  will  sustain  the  continuous  exposure  to  heat  and  the  material  will
eventually get  burned out and the flame will  get  extinguished. The combustion
process will produce a mixture of toxic smoke, which is harmful to both health
and the environment [9].

For the overall fire safety of structures, structural engineers have generally placed
a greater emphasis on design intricacies and preferred the use of robust materials.
In  a  short  period  of  time,  plastic  fire  fuels  can  significantly  increase  the
temperature of  a  structure.  This highlights  the importance of  preventing plastic
fires and the required mitigation techniques to provide safety both to the material
and  the  structure.  Therefore,  there  is  a  need  to  integrate  flame  retardant
compounds  into  the  plastics  that  are  chosen  for  use  in  such  industries.  It  will
decrease their peak heat release rate and ignitability.

The addition of flame retardants will increase the escape time during a fire. This
could  result  in  saving  human  lives.  They  are  added  to  plastics  in  a  variety  of
applications that require enhanced fire resistance. A vast majority of the plastics
used  in  common  applications  have  inadequate  inherent  flame  resistance
characteristics  and  therefore  this  necessitates  the  need  for  flame  retardant
additives.  The  total  requirement  for  flame  retardants  in  the  European  market
exceeded  600,000  tons  in  2015,  with  applications  for  use  in  the  following:  (i)
transportation, (ii) construction, (iii) electrical and electronic equipment, and (iv)
furniture [10].

The  flame  retardants  delay  a  polymer’s  combustion  in  the  event  of  a  fire.
Nevertheless, not all of them are secure for the environment. The latest regulation
on halogenated flame retardants prompted a shift towards developing sustainable
flame  retardants.  All  organizations  are  currently  working  ondeveloping  flame
retardants  that  are  sustainable,  biodegradable,  and  kind  to  the  environment.
Additionally,  a large number of countries have now made a commitment to set
aside a portion of their GDP to combat climate change by lowering the emission
of  carbon.  More  governments  are  now  supporting  materials  science  and
engineering research facilities to create sustainable polymers while concurrently
abandoning  halogen-based  flame  retardants  [11].  Therefore,  bio-based  flame
retardants,  industrial  waste-based  flame  retardants,  and  recyclable  flame
retardants quickly emerged as obvious candidates for this application. However,
they need modification of both the physical properties and chemical properties of
the material to have sufficient resistance to both fire and heat.
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Abstract: Nowadays, numerous metallic alloys are known to exhibit smart behavior;
these  metallic  materials  are  categorized  as  shape  memory  alloys  (SMAs).  Shape
memory alloys belong to a group of smart alloys that have the potential to recover their
original  shape  from  a  deformed  shape  when  triggered  by  factors,  such  as  heat,
electricity, and stress. This shape change gives rise to SMART behavior (Stimulated
Martensite - Austenite Reverse Transformation). Shape memory alloys have attractive
characteristics, such as high recovery force, high strength, etc. Shape memory alloys
find their use in many applications i.e., aerospace, biomedical, automobile, robotics,
etc.  The  ever-increasing  demand  for  shape  memory  alloys  among  industries  is
attributed to  their  ability  to  respond to  different  machining processes.  Conventional
machining processes  (CM) and unconventional  machining (UCM) processes  are  the
two major  types  of  processes  upon which the studies  on shape memory alloys  have
been carried out. The machining studies carried out reveal that the use of conventional
machining  to  process  shape  memory  alloys  to  various  products  is  considered
undesirable since it causes damage and introduces changes in the characteristics of the
material. Unconventional machining processes are therefore preferred. Various types of
unconventional  machining  processes  like  laser  beam  machining  (LBM),
electrodischarge  machining  (EDM),  electrochemical  machining  (ECM),  abrasive  jet
machining  (AJM),  abrasive  water-jet  machining  (AWJM),  etc.,  generally  involve
machining of shape memory alloys in an unconventional way so that the wear rate and
surface  roughness  are  reduced.  A  study  of  unconventional  machining  processes  is
therefore considered essential  contributing further  to the domain of  smart  materials.
Hence,  through  this  review,  the  mechanism  of  shape  memory  alloys  and  their
applications,  various  types  of  unconventional  machining  processes,  and  their  recent
advances are highlighted.
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INTRODUCTION

The growth of technology, together with an increase in population, necessitates
the  requirement  of  smart  solutions  to  real-world  problems.  One  such  smart
solution is to use smarter materials to solve real-time challenges faced by different
industrial sectors like medicine, manufacturing, materials, electronics, software,
etc.,  where  the  materials  possessing  better  electrical  properties,  magnetic
properties and other such characteristic properties are conspicuously absent [1].
One such class of materials that is trending in the market space is shape memory
alloys (SMAs). Shape memory alloys were initially discovered and developed by
Arne Olander in 1932, and it was in 1941 that shape memory was first described .
The significance of the shape memory alloys was not acknowledged until William
Buehler  and  Frederick  Wang demonstrated  the  shape  memory  effect  in  nickel-
titanium  (NiTi)  alloy  [2  -  4].  Shape  memory  alloys  are  a  class  of  intelligent
materials which are capable of transforming into their undeformed original shape
from the initial  shape when they are subjected to external  stimuli  such as heat,
stress,  electricity,  magnetic  field,  and  so  on  [5].  The  characteristics  of  shape
memory  alloys  are  given  in  Fig.  (1).  The  two  important  thermomechanical
properties that induce smart features in them are superelasticity (SE) and shape
memory effect (SME) [6]. The occurrence of the shape memory effect is because
of the martensitic phase transformation and its reversion to austenite. Technically,
when an alloy is deformed in martensitic condition, it transforms to its original
shape  by  following  a  reverse  transformation,  changing  its  structure  from
martensite  to  austenite  (parent  phase)  [7].

Mechanism Overview of Shape Memory Alloys

Shape  memory  alloys  demonstrate  two  kinds  of  phases  possessing  three  non-
identical crystal structures, namely twinned martensite and, detwinned martensite,
and austenite. Apart from these phases with specific crystal structures, they show
six possible types of transformation, as shown in Fig. (2). From the figure, it can
be identified that at lower temperatures, the martensitic phase becomes stabilized,
whereas  at  higher  temperatures,  the  austenitic  phase  prevails.  This  is  because
when they are heated to a higher temperature, they change their shape and return
to their original shape, i.e., they transform from martensite (deformed structure) to
austenite (parent phase) as the material is heated. This particular transformation
that  is  taking  place  is  referred  to  as  martensitic  phase  transformation  [8,  9].  In
general,  martensitic  phase  transformation  is  a  solid-state  diffusion  less  shear
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dominant process involving nucleation of the crystal structure of the alloy that is
responsible for the phase change from martensite to austenite in the alloys. This
transformation  is  possible  only  if  the  total  energy  of  the  martensitic  phase
(product phase) is lesser than the total energy of the austenite phase (parent phase)
at  temperatures  below  the  critical  temperatures.  Four  distinct  temperatures  are
used  to  indicate  the  start  and  end  of  the  martensitic  phase  transformation
processes.  When  shape  memory  alloys  are  cooled  and  deformed,  there  is  a
formation  of  martensite  from  the  parent  phase,  and  it  starts  to  appear  at  Ms
(Martensitic  start  temperature)  and  finally  forms  at  Mf  (Martensitic  finish
temperature). This transformation is particularly not seen because the martensitic
plates  self-accommodate  themselves,  leading  to  zero  martensitic  deformation.
Similarly, when they are heated, there is a formation of austenite from martensite,
and this initially appears at As (Austenite Start temperature), and it finally forms at
Af  (Austenite  Finish  temperature)  [10  -  13].  The  mechanism  of  temperature
changes is shown in Fig. (3). There is an intermediate temperature visible from
the figure and this is termed Md (Martensitic deformation temperature). It is the
maximum  temperature  at  which  no  further  stress  can  be  induced  into  the
martensitic  structure,  and  if  the  temperature  reaches  above  this  value,  then  the
shape  memory  alloys  start  to  plastically  deform,  similar  to  other  metallic
materials, and also, they lose their shape memory properties. The shape memory
alloys are sometimes described as “functional intermetallic” because of the shape
memory  effect  and  super  elasticity.  The  shape  memory  effect  is  the  effect
obtained when shape memory alloys respond to temperatures, and super elasticity
is  the  phenomenon  when  shape  memory  alloys  respond  to  applied  stress.  Both
super elasticity and shape memory effect are categorized into three shape memory
features as follows:

One-way Shape Memory Effect (OWSME)

It is the effect seen in the shape memory alloys only once, typically changing its
shape to its original form only once from the deformed state upon removing the
external load and exposing the alloy to higher temperatures.

Two-way Shape Memory Effect (TWSME)

Also known as the reversible shape memory effect seen in shape memory alloys
that  have  the  capability  to  retain  their  original  shape  both  under  high  and  low
temperatures. This two-way shape memory effect is a process that can be repeated
indefinitely as many times in the material.

Pseudo Elasticity (PE)

Also known as superelasticity (SE), it is a type of shape change effect when the
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Abstract:  Strength  and  ductility  of  materials  at  high  strain  rate  of  deformation  are
important for design engineers working in a wide range of industries, especially in gas
turbine  engine  blades.  Split  Hopkinson  pressure  bar  (SHPB)  apparatus  is  a  popular
method of characterizing the high strain rate behaviour of materials. The results from
the split-Hokinson pressure bar tests are further used in mathematical models such as
Johnson-Cook model, Zerelli - Armstrong model and so on for correlation purposes.
Split-Hopkinson pressure bar tests take place in a very short duration of time (less than
a  second)  but  require  significant  effort  in  arranging  the  apparatus  (several  hours  to
days) and replications could be a daunting task. The present review work focuses on
some  of  the  critical  test  parameters  that  influence  the  test  results.  Specimen
dimensions, its alignment in the split-Hopkinson pressure bar apparatus and location of
strain gauges are critical parameters to be checked before the test (pre-testing) while
selecting the accurate signal data processing technique (post-testing) to filter the noise
which is critical to get meaningful test results. This review work focuses on the effect
of three pre-testing parameters and signal data processing techniques on the high strain
rate test results and summarizes the salient findings.
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INTRODUCTION

Engineering  materials  may  be  subjected  to  quasi-static  and  dynamic  loading
depending upon their applications. Behaviour of materials under dynamic loading
is a matter of serious interest in applications such as aircraft, jet engines, nuclear
reactors and so on. Impulse loading is a variant of dynamic loading where the load
acts for a “very short” duration of time. Applications involving impulse loading
such as in case of bird impact, crash, Foreign Object Damage (FOD), explosion,
etc., result in a change in material stiffness due to the high strain rate of loading.
Material response (behaviour) varies with loading rate and is an important design
parameter to consider.

The  most  common  method  of  determining  the  high  strain  rate  behaviour  of
materials is by using a split-Hopkinson pressure bar (SHPB) apparatus. It works
on the principle of one-dimensional wave propagation for a stress-coupled setup.
It consists of striker, incident, and transmission bars, which are made of similar
material,  usually  maraging  steel,  as  shown in  Fig.  (1)  [1].  The  specimen  to  be
tested is placed between the incident and transmission bar, while a heating furnace
can also be used for testing the specimen at elevated temperatures. Usually, the
high strain rate test occurs at 102 – 104 s-1, which is very high compared to quasi-
static testing methods (10-2 – 10-3 s-1) [2].

Fig. (1).  Schematic of split hopkinson pressure bar [1].

During  split-Hopkinson  pressure  bar  testing,  strain  gauges  are  attached  to  the
incident and transmitted bars to measure the deformation due to impact. Initially,
a high-pressure inert gas from the compressor is used to drive the split-Hopkinson
pressure bar test. Instant release of pressurized gas from the chamber pushes the
striker  bar  forward  at  a  high  velocity.  As  depicted  in  Fig.  (1),  the  striker  bar
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collides with the incident bar, causing stress waves, also known as incident waves,
to be transmitted to the specimen mounted between the incident and transmitted
bars. The specimen undergoes deformation by absorbing part of the incident stress
waves  while  the  remaining  waves  are  transmitted  through  the  sample  to  the
transmitted  and  reflected  bar  at  the  interface,  and  are  called  transmitted  and
reflected  waves,  respectively  [3].

These strain waves are captured using strain gauges, attached to the incident and
transmission bar,  and sent to the Data Acquisition Control (DAC) System. The
raw data, in terms of load-deflection, is captured by the data acquisition control
system, as shown in Fig. (2).  It  contains high-frequency noise as output, which
cannot be directly implemented in any mathematical or analytical model for the
analysis of the results. The process of filtering the noise from the data is called
Signal Data Processing (SDP) which plays an important role in obtaining reliable
and accurate test results from the experimentation.

Fig. (2).  Raw data showing different wave signals captured during the split-Hopkinson test [3].

The output of the split-Hopkinson pressure bar test is sent to the data acquisition
system, and its function is depicted using a flowchart, as shown in Fig. (3). In the
system,  deformation  signals  that  are  in  voltage  values  are  sent  to  a  rectifier
through an amplifier where data processing occurs, and the signals are sent to an
oscilloscope where they are converted with respect to time and finally displayed
into the required format such as load-displacement, true stress-true strain etc. The
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