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FOREWORD I 

In his book, Dr. Carlos Polanco elegantly describes fundamentals of Markov Chain 

Process and its applications. The author was able to overcome the usual gap 

between mathematicians and users, describing the main topics related to Markov 

Chain Process Theory in an easily apprehendable way, utilizing multiple useful 

examples and providing exercises. This book can be used as auxiliary book for 

students interested in this field as well as a reference book for seasoned Researcher.  
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comprehensive insight into the complexity of this field. Especially, the presentation 

of many examples and case studies will help the readers to deepen their acquired 

knowledge and to relate the theory to practice. It will certainly also help researchers 

in related fields to refresh their knowledge and to serve as a solid and clear source 

on Markov Chain Process. Rounding up, Carlos Polanco’s book should become 

part of many bookshelves.  
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PREFACE 

This Markov Chain Process book has been designed for students of Sciences. It 

contains the fundamentals related to a stochastic process that satisfies the Markov 

property. To make the comprehension of this important concept easier, all the 

examples, exercises, and case studies are completely solved.  

In the first part, this ebook thoroughly examines the definitions of probability, 

independent events, mutually (and not mutually) exclusive events, conditional 

probability, and Bayes’ theorem that are essential elements in Markov’s theory. 

The second part examines the Markov Chain Process elements of probability 

vectors, stochastic matrices, regular stochastic matrices, and fixed points. It studies 

the components of the matrix of transition probabilities or the transition matrix, 

Absorbing Markov Chain Process, and Ergodic Markov Chain Process. It also 

reviews two basic theorems the Law of Large Numbers and the Central Limit 

Theorem, under two different types of granularity discrete-time and continuous-

time.  

The third part of the ebook presents multiple cases in various disciplines: Predictive 

computational science, Urban complex systems, Computational finance, Compu-

tational biology, Complex systems theory, and Computational Science in 

Engineering. 

The appendix section provides Fortran 90 programs and Linux scripts which allow 

you to reproduce the topics exposed in this work. “As of July 2022, Fortran was 

ranked 12th in the TIOBE programming community index, and that in addition to 

the C and C++ languages it is used today in scientific computing in Supercomputers 

platforms and High-Performance Computing clusters”. 
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DEDICATION 

A likely impossibility is always 
preferable to an unconvincing 

possibility. The story should never be 
made up of improbable incidents; 

there should be nothing of the sort in 
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384 – 322 BC 
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The first part of the book starts with the characterization of the random functions
with a review of the concepts of conditional probability and Bayes’ theorem. The
conditional probability is presented with over-dependent and independent random
events and an extension of these concepts is introduced with the multiplication rule.
Each section is self-contained so the unfamiliar reader can easily follow up on the
subject.

PRELIMINARIES 



Probability

Abstract In this section we review the main Probability operators that are strongly
associated with the main themes of this book which are Discrete-Time Markov
Chain Process, and Continuous-Time Markov Chain Process. the chapter begins
with the basic definition of: certain event, dependent event, independent event and
impossible event. Later we review the concept of conditional probability which
permeates all the following chapters as well as the multiplication rule. At the end
the Bayes’ Theorem is addressed which is the basis of the procedures described in
the last chapters as they are: Discrete and Continuous-Time Markov Chain Process.
All sections are exemplified in the simplest and most complete way possible, so that
the reader does not have difficulty in the use and language of these operators in the
following sections.

Keywords: Bayes’ Theorem, Certain Event, Conditional Probability, Dependent
Random Events, Impossible Event, Independent Random Events, Multiplication
Rule, Random Event.

1.1. Introduction

Conditional probability is fundamental in Markov Chain Process as it enables the
incorporation of changes that will modify the probability of random events as new
information is acquired. Therefore, correct reasoning and understanding are essen-
tial in the study of statistical inference and the association of variables, particularly
in the Markov Chain Process. In everyday life, sound decision-making in situations
of uncertainty is largely based on conditional reasoning.

1.2. Basic Definitions

Definition 1.1. Probability P is the certainty that a random event occurs, it can
be measured with a number between 0 and 1, where the minimum value 0 is an
impossible event and the maximum value 1 a certain event [1, 2].

Example 1.1. (i) Give an example of an impossible event. (ii) Give an example of a
certain event.
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CHAPTER 1 



Solution 1.1. (i) Number seven shown in a throw of a dice that only has the num-
bers 1 to 6. (ii) Any number of the dice shown in a throw.

Definition 1.2. A random event is a repeated experiment with an unknown result,
however, we do know the possible results it could take. The set of all possible
results is referred to as sample space Ω and a subset of the sample space Ω is
called random event; it is usually defined with capital letters

The probability P of a random event is (Eq. 1.1) the repetition of a random event
A, in relation to its sample space Ω, under controlled conditions

P(A) =
|A|
|Ω|

(1.1)

Example 1.2. Let´s take as an experiment the throwing of a dice where any of the
numbers has equal probability to show. (i) Define the sample space. (ii) Define some
of the random events. (iii) Define the probability of the random events defined in
(ii).

Solution 1.2. (i) Ω = {1,2,3,4,5}. (ii) A = {2,4,6}. B = {2,3}. (iii) P(A) =
3
6

.

P(B) =
2
6

.

1.3. Axiomatic Construction

Definition 1.3. Let a sample space Ω where a random event A ⊂ Ω occurs and a
real function P : A⊂Ω→ R that holds:

1. For all A, P(A) ∈ [0,1], i.e. P : A⊂Ω→ [0,1]

2. If A1∩A2 = /0 then P(A∪A2) = P(A1)+P(A2)

3. P(Ω) = 1

1.4. Properties

• P( /0) = 0

• For all P(Ac) = 1−P(A)

• For all A1,A2 then P(A∪B) = P(A1)+P(A2)−P(A1∩A2)

• If A∪B, then P(A)≤ P(B)

1.5. Conditional Probability

Definition 1.4. Let a sample space Ω and a random event A for P(A) > 0 and an
arbitrary random event B ∈ Ω. The probability that a random event B occurs, as
long as the random event A also occurs (in symbols P(B|A)), is defined as (Eq. 1.2)

P(B|A) = P(A∩B)
P(A)

(1.2)

 2    Markov Chain Process Carlos Polanco 



1.6. Random Event Types

If a sample space Ω is formed by a numerable set of n random events Ai where
A = {A1,A2, · · · ,An}, then P(A) is denoted as (Eq. 1.3)

P(A) =
n

∑
i=1

P(Ai) (1.3)

The probability of a set of random events is evaluated differently depending on
whether the outcome of an event succession is affected by the outcome of the pre-
vious event or not. In this sense, there are two types of events: dependent and inde-
pendent.

1.7. P(A∩B) and P(A|B)

The following example illustrates the difference between P(A∩B) and P(A|B).

Example 1.3. Suppose 2% of a group of people has influenza and the rest is
healthy. When choosing a random individual we identify that P(sick) = 2% = 0.02
P(healthy) = 98% = 0.98.
Let´s say that when applying a test to a healthy individual there is 3% of a false
positive, i.e. P(positive|healthy) = 3% P(negative|healthy) = 97%. Besides, there
is a probability of 5% of false negative when testing a person for influenza, i.e.
P(negative|sick) = 5% and P(positive|sick) = 95%.

(i) What is the probability of finding healthy individuals that test negative? (ii)
What is the probability of finding sick individuals that test positive? (iii) What
is the probability to find false positives? (iv) What is the probability to find false
negatives? (v) What is the probability to find positives? What is the probability that
an individual is sick with influenza if the result of the test is positive?

Solution 1.3. (i) P(healthy∩negative) = P(healthy)×P(negative|healthy) = 98%
×97% = 95.06%. (ii) P(sick∩ positive) = P(sick)×P(positive|sick) = 2%×95%
= 1.9%. (iii) P(healthy∩ positive) = P(healthy)×P(positive|healthy) = 98%×3
% = 2.94%. (iv) P(sick∩negative) = P(sick)×P(negative|sick) = 2%×5% = 0.1
%. (v) P(positive) = P(healthy∩ positive)+P(sick∩ positive) = 2.94%+1.9% =

5.58%. (vi) P(sick|positive) =
P(sickpositive)

P(positive)
=

1.9%
5.58%

= 34.05%.

1.8. Independent Random Events

Theorem 1.1. From Def. 1.2 P(A∩B) = P(A)P(B). This theorem is also known as
Multiplication Rule.

Corollary 1.1. Let A1,A2, · · · ,An ∈ Ω for independent random events that comply

with P
[ n⋂

i=1

Ai

]
> 0, the probability of P

[ n⋂
i=1

Ai

]
is Eq. 1.4

Probability Markov Chain Process  3 



Matrix Models

Abstract This chapter describes and provides an example of the matrix models:
Lefkovitch model, Leslie model, Malthus model, and stability matrix models. From
these the Discrete- and Continuous-Time Markov Chain Process is introduced.
These matrix models are presented as they were historically occurring, and it is
highlighted how the matrix structure offers a simple algebraic solution to problems
involving multiple variables, where the elements of those matrices are conditional
probabilities when going from a state A (row i) to a state B (column j). Once these
matrix models have been defined and exemplified, it is shown that the eigenval-
ues and eigenvectors of the conditional probability matrix determine the long-term
stability matrix of the Markov Chain Process.

Keywords: Continuous-Time Markov Chain Process, Discrete-Time Markov Chain
Process, Eigenvalues, Eigenvectors, Lefkovitch Model, Leslie Model, Malthus
Model, Stability Matrix Models.

2.1. Introduction

This chapter describes matrix models as a practical solution to the Markov Chain
Process that we will review in the following chapters. The matrix although they
began as a solution to describe the long-term behavior of populations, they were
soon applied to other problems. In this chapter we will show how these models
can solve problems that involve multiple factors, and how the transaction between
factors is solved –under matrix notation–, such as the step between elements within
the matrix, where the element in row i and column j connects with the next element
in that row.
It is important to note that matrix algebra involves non-laborious operations, and
that as shown in this chapter it is possible to use the calculation of eigenvalues
and eigenvectors of the matrix of transition probabilities to determine its long-term
behavior. The calculation of these elements does not offer greater difficulty since
it is a subject of Linear Algebra, although it is currently possible to determine the
eigenvalues and eigenvectors through webpages.

8 Markov Chain Process, 2023, 8-21   

Carlos Polanco 

All rights reserved-© 2023 Bentham Science Publishers 

 

 

 

CHAPTER 2 



2.2. Malthus Model

Definition 2.1. Malthus model[3] is a process or variable that increases in size
by a rate proportional to the number of elements present at each moment in time
(Eq. 2.1), with this restriction, the rate of growth will always be constant so the
variable will always increase in size. This model can be suitable in the short run,
but it is not possible to estimate in the long run, since other variables affecting the
growth are not considered in the model.

u f = u0ert (2.1)

Where ut represents variable N in time t, u0 is the size of the variable in time t0,
and r is the rate of growth of this variable.

Example 2.1. (i) Determine the population over time t = 4 for an initial population
u0 = 20 with a rate of growth of r = 1.1. (ii) Determine the time required to double
the initial population u0 = 20 with a rate of growth of r = 1.1.

Solution 2.1. (i) Substituting in (Eq. 2.2)

u f = u0ert ⇔ u f = 20e4.4⇔ u f = 1629.02 (2.2)

Remark 2.1. Note that in four units of time, the initial population 20 grew
1629
20
≈ 81

times.
(ii) Replacing in (Eq. 2.3) t = 0.63

2u0 = u0ert ⇔ 2 = e1.1t ⇔ ln2 = 1.1t⇔ ln2
1.1

= t (2.3)

2.3. Leslie Model

Definition 2.2. The Leslie model[4] is a stratification of the Malthus model that
separates the variable into time intervals or stages (Eq. 2.4), giving different prob-
ability values to the increasing or decreasing rates according to each stage

ut+1 = Put (2.4)

ut represents the variable ut in time t, ut+1 represents the variable in time t + 1,
and matrix P represents the increase/decrease rate, where each row corresponds to
a different type of variable.
Matrix P has the form (Eq. 2.5) restricted to: ai ≥ 0, i ∈ N, and 0 < bi ≤ 1, i ∈ N

Matrix Models Markov Chain Process  9 

 
 



P =



a1 a2 a3 · · · an

b1 0 0 · · · 0

0 b2 0 · · · 0

0 0 b3 · · · 0

...
...

...
...

...

0 0 · · · bn−1 0



(2.5)

Leslie matrix has this geometrical representation (Fig. 2.1).

State C State D

State BState A

Figure 2.1: Geometrical representation of Leslie matrix.

Example 2.2. From Leslie matrix P (Eq. 2.6) and the variable in the initial time t0
(Eq. 2.6). (i) Calculate u1 = Pu0. (ii) Calculate u2 = Pu1. (iii) Calculate u3 = Pu2.
(iv) Discuss the results.

P =



0.000 3.000 1.000 4.000 2.000

0.500 0.0000 0.000 0.000 0.000

0.000 0.2222 0.000 0.000 0.000

0.000 0.0000 0.444 0.000 0.000

0.000 0.0000 0.000 0.666 0.000


(2.6)
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Random Walks

Abstract In this chapter a review is made of the main Random walks in plane and
space, and then focus on two random walks that are important to the purpose of
this book: Gaussian-Dimensional Random Walk, and Markov-Dimensional Ran-
dom Walk. Its definition focuses on a random process where the position at a cer-
tain moment depends only on the previous step, this particularity is called Markov
condition and is essencially a Markov Chain Process. Random walks are used in
simulation in different disciplines for their simplicity to handle phenomena involv-
ing several variables. Its use in physics, chemistry, ecology, biology, psychology
and economics stands out. In this chapter we do not involve random walks in fi-
nite graphs since it is outside the purpose of this work. The definitions of these
processes are accompanied by graphic and analytical examples.

Keywords: Gaussian-Dimensional Random Walk, Markov-Dimensional Random
Walk, One-Dimensional Random Walk, Random Walks, Three-Dimensional Ram-
dom Walk, Two-Dimensional Random Walk

3.1. Introduction

A Random walk is essentially a process that allows to determine the probable lo-
cation of a point, whose movement is random, and that provides the probability in
each movement. Random walks are essentially a Markov processes, for which the
Markov Property is met, which means that the location of a point in an instant ti de-
pends only on the immediate previous instant ti−1. This paper describes in detail this
movement in the Plane and in Space. To then focus on this type of random walks
that respond to a Normal Distribution, called Gaussian-Dimensional Random Walk,
and another that depends on conditional probabilities, called Markov-Dimensional
Random Walk.

3.2. Random Walk

Random Walk[8] is a random process where the position of a particle at a certain
moment depends on two factors, its position at a previous moment and a random
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variable that determines its direction and the length of the next step. An example of
random paths is The Brownian motion.

Definition 3.1. A random walk is a function (Eq. 3.1) where g(α) is the random
function that determines the probability of taking the next step and α is the time
interval t ∈ R+ between steps.

f (t +α) = f (t)+g(α) (3.1)

3.3. One-Dimensional Random Walk

One-Dimensional Random Walk[9] is a random walk that acts in the field of the
real numbers R. An example of this random walk is (Prog. A.1).

Example 3.1. Give an example of a one-Dimensional random walk.

Solution 3.1. Let a real line and a point (0) located at the origin. Move one unit
to the right if the number shown when throwing the dice is even, or move one unit
to the left if the number shown is odd. After six throws the succession would be
{−6,−5,−3,−1,1,3,5,6}.

3.4. Two-Dimensional Random Walk

Two-Dimensional Random Walk[10] is a random walk that acts in the field of
the real numbers R2. An example of this random walk is (Prog. A.2).

Example 3.2. Give an example of a two-Dimensional random walk.

Solution 3.2. Let a space in R2 and a point at the origin (0,0). Move one unit to the
right if the number shown when throwing the dice is the sum s ∈ [1,3]. Move one
unit to the left if the sum is s∈ [4,6]. Move one unit upwards if the sum is s∈ [7,9],
and one unit downward if the sum is s ∈ [10,12]. After four double throws, the
random walk will be contained in a square of 96 lattices with the centre at the
origin in the space R2.

3.5. Three-Dimensional Random Walk

Three-Dimensional Random Walk[11] is a random walk that acts in the field
of the real numbers R3. An example of this random walk is (Prog. A.3).

Example 3.3. Give an example of a three-Dimensional random walk.

Solution 3.3. Let a space in R3 and a point at the (0,0,0) origin. Move one unit
to the right if when throwing the dice the sum is s ∈ [1,2]. Move one unit to the
left if the sum is s ∈ [3,4]. Move one unit upwards if the sum is s ∈ [5,6]. Move
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one unit downwards if the sum is s ∈ [7,8]. Move one unit at the front if the sum is
s ∈ [9,10]. Move one unit to the back if the sum is s ∈ [11,12]. After four double
throws, the random walk will be contained in a cube with 96 lattices with the centre
at the origin in the space R3.

3.6. Gaussian-Dimensional Random Walk
Gaussian-Dimensional Random Walk[12] is a random walk that acts in the field
of the real numbers Rn and follows a normal distribution. Example of this random
walk is (Prog. A.4).

Example 3.4. Give an example of Gaussian-Dimensional Random Walk.

Solution 3.4. Let a space in R2 and distance d that is the result from a random
number x ∈ [0,2] in the function (Eq 3.2). Locate a point at the origin (0,0) and
move the length d to the right if x ∈ [0,0.50], to the left if x ∈ [0.50,1.00], upwards
if x ∈ [1.00,1.50], or downwards if x ∈ [1.50,2.00]

f (x) =
1√
2π

e−
x2
2 (3.2)

3.7. Markov-Dimensional Random Walk

Markov-Dimensional Random Walk[13] is a random walk that acts in the field of
the real numbers Rn and follows a distribution based on the conditional probability
of the states represented by the transition matrix P (Eq. 3.3).
See Chapter 5, where the Discrete-Time Markov Chain Process algorithm is de-
scribed in detail

P =



P(a1|a1) · · · P(an|a1)

P(a1|a2) · · · P(an|a2)

...
. . .

...

P(a1|an) · · · P(an|an)


=



p11 · · · p1n

p21 · · · p2n

...
. . .

...

pn1 · · · pnn


(3.3)

Example 3.5. Give an example of a Markov-Dimensional Random Walk.

Solution 3.5. A man goes daily to store A or to store B. He never goes to store A
twice in a row, but if he goes to store B, then it is equally probable that he goes to
store A or store B the next day. (i) Determine the matrix of transition probabilities.
(ii) Draw a diagram to illustrate (i).

(i) The matrix of transition probabilities is (Eq. 3.4)

P =

P(a1|a1) P(a2|a1)

P(a1|a2) P(a2|a2)

=

p11 p12

p21 p22

=

 0 1

0.5 0.5

 (3.4)
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The second part of the book is dedicated to present the section Markov chain model
in detail and in a practical way, and the sections Discrete-Time Markov Chain Pro-
cess, Continuous-Time Markov Chain Process, and Law of Large Numbers. Each
section is self-contained so the unfamiliar reader can follow up on the subject.

BASIC CONCEPTS



Markov Chain Process

Abstract In this chapter, and from the historical introduction raised in the previ-
ous chapters, we introduce and exemplify all the components of a Markov Chain
Process such as: initial state vector, Markov property (or Markov property), ma-
trix of transition probabilities, and steady-state vector. A Markov Chain Process
is formally defined and by way of categorization this process is divided into two
types: Discrete-Time Markov Chain Process and Continuous-Time Markov Chain
Process, which occurs as a result of observing whether the time between states in a
random walk is discrete or continuous. Each of its components is exemplified, and
analytically all the examples are solved.

Keywords: Continuous-Time Markov Chain Process, Discrete-Time Markov Chain
Process, Ergodic Markov Chain Process, Initial State Vector, Markov Property,
Matrix of Transition Probabilities, Regular Matrix, States, Steady-State Vector,
Stochastic Matrix, Transition Probabilities

4.1. Introduction

A Markov Chain Process is a procedure that considers multiple variables evolving
randomly and independently over time, when the process stabilizes it is possible to
identify the development of the variables. For its characteristics, it has the potential
to be used in very different fields. In this chapter we will address all its components
and exemplify their use and the importance of each of them in the random process.
We will address the definition of a Markov Chain Process through its definition
and with an example of application so that the reader has a panoramic idea of this
random process. Then we will characterize its matrix of transition probabilities as
ergodic matrix from the definitions of regular matrix and absorbing matrix. Later
we will define the vector of initial conditions that interacts at the beginning with the
matrix of transition probabilities. Finally we will define in a general way a division
to the Markov Chain Process that we will apply in the rest of the book, Discrete-
Time Markov Chain Process and Continuous-Time Markov Chain Process. We will
leave for the next two chapters the detailed definition and the exemplification of
these last two random processes.
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4.2. Definition

A Markov Chain Process[14] is a succession of events where the probability that
a random event occurs depends on the immediately previous event. This type of
event has the particularity of “remembering” the last event, which conditions the
possibilities of future events. The dependence on the previous event makes Markov
Chain Process different from the succession of independent events, such as a coin
tossing.

Definition 4.1. A Markov Chain Process is a process where the transition prob-
abilities between states ai, whose probabilities pi j satisfy the Markov property
(Eq. 4.1). That is, the probability of the state ai+1 only depends on the probability
of the immediate preceding state an

P(at+1|at) (4.1)

If t is discrete it is a Discrete-Time Markov Chain Process, on the other hand, if
t is continuous it is a Continuous-Time Markov Chain Process.

4.3. Matrix of Transition Probabilities

Definition 4.2. In a Markov Chain Process, the set of probabilities pi j between
states ai and a j are the conditional probabilities[15] P(a j|ai) = pi j, grouped in
order in a matrix P named Matrix of Transition probabilities (Eq. 4.2). The sum
of the rows of matrix P must always be 1

P =



P(a1|a1) · · · P(an|a1)

P(a1|a2) · · · P(an|a2)

...
. . .

...

P(a1|an) · · · P(an|an)


=



p11 · · · p1n

p21 · · · p2n

...
. . .

...

pn1 · · · pnn


(4.2)

Example 4.1. A lady goes to store A or store B daily. She never goes to store A
twice in a row, but if she goes to store B, then it is equally probable that she goes to
store A or store B the next day. (i) Determine the matrix of transition probabilities.
(ii) Draw a diagram to illustrate (i).

Solution 4.1. (i) The matrix of transition probabilities is (Eq. 4.3)

P =

P(a1|a1) P(a2|a1)

P(a1|a2) P(a2|a2)

=

p11 p12

p21 p22

=

 0 1

0.5 0.5

 (4.3)

(ii) Here is a general diagram to illustrate this approach (Fig. 4.1)
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State A State B
p12

p21

p11 p22

Figure 4.1: Geometrical representation of states A and B, and their conditional
probabilities pi j.

So, the diagram for this example is (Fig. 4.2), where the states A and B substitute
stores A and B respectively. Let’s take a closer look at the probabilities. P(a1|a1)−

p11−0 is the probability that once she visited store A next day she goes there again,
according to the above statement this never happens, therefore, the probability is
zero. P(a1|a2) = p21 = 0.5 is the probability that having visited store B next day
she visits store A, again the statement mentions that having visited Store B it is
equally probable she visits store A or B, therefore, the probability is 0.5. Note that
the order of the sub-indices p21 and P(a1|a2) are reversed due to the meaning of
the operators. P(a2|a2) = p22 = 0.5 is the probability that once she visited store
B the next day she visits store B again, the statement indicates that having visited
store B it is equally probably she visits store A or B, therefore, the probability is
0.5. Finally, P(a2|a1) = p12 = 1 is the probability that once she visited store A next
day she visits store B, as the statement indicates it is not possible she visits store A
twice in a row, so the probability is p12 = 1.

Store A Store B

1

0.5

0 0.5

Figure 4.2: Geometrical representation of stores A and B, and their values of con-
ditional probabilities pi j.

4.4. Regular Matrix

Definition 4.3. A regular matrix[1] is a matrix of transition probabilities where
all elements at the Pn power are positive.

Example 4.2. Is the matrix Ex. 4.1 regular?

Solution 4.2.

P2 =

 0 1

0.5 0.5

×
 0 1

0.5 0.5

=

 0.5 0.5

0.25 0.75

 (4.4)
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Discrete-Time Markov Chain Process

Abstract In this chapter, we define the Discrete-Time Markov Chain Process op-
erator, all the initial components seen in the previous chapter are applied, and the
vector of final conditions as known as steady-state vector is defined and exempli-
fied, this vector shows the final state of the process and depends on the initial state
vector and the matrix of transition probabilities. The solution mechanism is shown
both by the iteration of the vector-matrix product and by determining the eigenval-
ues and eigenvectors of the matrix of transition probabilities. In an effort to catego-
rize the possible matrix of transition probabilities, they are illustrated as reducible
form, trasient form and recurrent form. In an effort to categorize the possible matrix
of transition probabilities, they are illustrated as reducible form, trasient form and
recurrent form. As a direct application of the Discrete-Time Markov process, the
Metropolis Algorithm is presented, as well as a regularity that can be observed in
the matrix of transition of probabilities and that is described in the section Law of
Large Numbers. Some full basic examples are provided to illustrate the definition
and operation of this ramdon walk.

Keywords: Discrete and Continuous-Time Markov Chain Process, Discrete-Time
Markov Chain Process, Eigenvalues, Eigenvectors, Initial State Vector, Steady-
State Vector, Markov Chain Monte Carlo, Metropolis Algorithm, Matrix of Transi-
tion Probabilities, Recurrent Form, Reducible Form, Regular Matrix, States, Steady
State Vector, Stochastic Matrix, Transition Probabilities, Trasient Form.

5.1. Introduction

A Discrete-Time Markov Chain Process [18] is a procedure that considers multi-
ple variables randomly evolving in a discrete-time. This can be compared to watch-
ing a movie frame by frame and not in continuous time. This section shows each
component of its mechanism, as well as the calculation of the steady-state vector,
as a result of the vector-matrix process and with the calculation of the invariant
phase of the matrix of transition probabilities, solving its characteristic polyno-
mial to identify the corresponding eigenvalues and eigenvectors. The algorithm of
a Discrete-Time Markov Chain Process is fully exemplified and solved, and vari-
ous changes are made to the model so that the dynamics of random walk can be
observed. The connectivity between nodes –which is implicit in the matrix of tran-
sition probabilities–, is defined and categorized under three possible forms: irre-
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ducible, transient, and recurrent, and figures are provided that allow to understand
each of these forms graphically. In its final part, this process is applied to define and
solve the Metropolis algorithm as a direct application of how this type of Markov
Chain Process can be used in other algorithms, and a particular type of infinite suc-
cession that can be observed in the matrix of transition of probabilities and that is
described under the Law of Large Numbers.

5.2. Definition

Definition 5.1. A Discrete-Time Markov Chain Process is a random process
where given a matrix of transition probabilities P and an initial state vector u0,
whose states occur in time t ∈ N that meets un = u0Pn, the steady-state vector un
only depends on the previous vector un−1.

The matrix of transition probabilities Pn from step n corresponds to time t = n
and the initial state vector u0 is equivalent to u0Pn.

5.3. Calculating the Stationary Distribution

The matrix of transition probabilities[19] Pn can be obtained by calculating the
steady state vector u f and the eigenvalues and eigenvectors ei. This means that the
matrix of transition probabilities Pn can be obtained by multiplying the matrix P
by itself an n number of times, or by the two analytical methods explained below.

5.3.1. Steady-State Vector

Theorem 5.1. If the matrix of transition probabilities P is regular, then there is a
steady-state vector[20] u f = (u1,u2, · · · ,un) that meets u f = u0Pn, so the com-
ponents of this steady-state vector u f are the rows of the matrix of transition
probabilities Pn.

Example 5.1. From the matrix of transition probabilities P (Eq. 5.1). (i) Determine
the steady-state vector x. (ii) Determine the matrix Pn with the method in Sect. 4.7.
(iii) Determine the matrix Pn using the steady-state vector. (iv) Discuss the results
of (ii) and (iii). (v) Draw the corresponding diagram of the states. (vi) Determine
the u f from u f = uiP6

P =

0.1 0.9

0.5 0.5

 (5.1)

Solution 5.1. (i) From Eq. 5.2 we get the equations 0.1u1 + 0.5(1− u1) = u and
0.9u1 +0.5(1−u1) = 1−u1, then u1 =

5
14 . The steady-state vector u f = ( 5

14 ,
9
14 )

(u,1−u) =

0.1 0.9

0.5 0.5

= (u,1−u) (5.2)
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(ii) Multiplying matrix P (Eq. 5.2) by itself we get Eq. 5.3

P6 =

0.35 0.64

0.35 0.64

=

 5
14

9
14

5
14

9
14

 (5.3)

To illustrate these states we re-express them as follows (Eq. 5.4)

P =


State A State B

State A 5
14

9
14

State B 5
14

9
14

 (5.4)

(iii) From the steady-state vector u f the matrix of transition probabilities P6 is
(Eq. 5.5)

P6 =

 5
14

9
14

5
14

9
14

 (5.5)

(iv) Both methods (ii) and (iii) are equivalent, however, if the squared matrix of
transition probabilities P is of a large order, it is advisable to calculate the matrix
power operation instead of solving the original system of equations.

(v) See Fig. 5.1

State A State B
9
14

9
14

5
14

5
14

Figure 5.1: Geometrical representation of states A and B, and their values of con-
ditional probabilities pi j, taken from matrix P.

(vi) If ui = (u1,u5) = (0.5,0.5) and the transition matrix P6 (Eq. 5.5) u f =
(0.35,0.64), then in the long term, it will remain in state B with a probability of
64% and in State A with a probability of 35%

u f = uiP6 = (0.5,0.5)

 5
14

9
14

5
14

9
14

= (0.35,0.64) (5.6)

5.3.2. Eigenvalues and Eigenvectors

From the steady-state vector u f Def. 6.4, where the matrix of transition probabilities
P meets u f = uP, we can see that the stationary distribution corresponds to the
eigenvalues[21, 22] λ from the system uP = λu associated with |P−λ I|= 0 [23].
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Continuous-Time Markov Chain Process

Abstract In this chapter, we introduce through formal definitions but also with
schematics and fully solved examples the main parts of the random walk Continuous-
Time Markov Chain Process. This chapter is particularly oriented to the modeling
of waiting lines which are cases of wide applicability in all scientific disciplines.
The chapter begins by describing the Exponential and Poisson distribution which
are articulated in the Continuous-Time Markov Chain Process as the elements of
the matrix of conditional probabilities, and then follow the same methodology of
the discrete case characterizing that matrix in aperiodic or irreducible to finally
solve it as a System of Linear Equations by the usual methods or through its diag-
onalization by means of its eigenvalues and eigenvectors.

Keywords: Aperiodic Matrix, Continuous-Time Markov Chain Process, Discrete-
Time Markov Chain Process, Distribution Functions, Ergodicity, Exponential Dis-
tribution, Initial State Vector, Irreducible Matrix, Markov Chain Process Markov
Matrix, Poisson Distribution, Stationary Distribution, Steady-State vector, Transi-
tion Matrix Diagonalisation.

6.1. Introduction

A Continuous-Time Markov Chain Process is a model where a random variable
takes positive real values in a space of S states and follows an Exponential Distri-
bution or Poisson Distribution that meets the Markov property, showing the future
behaviour of the stochastic process based on the current state. We try to approxi-
mate the solution to the continuous case in an analogous way to the discrete case
so that the reader takes advantage of the entire matrix procedure, to estimate the
long-term status of a random variable T (t), regardless of the initial distribution. It
will use a matrix of transition probabilities taking two different transition rates on
a queue system.
Analogous to the discrete case we also categorize the matrix of transition probabili-
ties in: irreducible matrix, aperiodic matrix and study the phenomenon of ergodicity
that contributes to characterize a Continuous-Time Markov Chain Process. From
this categorization we define the matrix of transition probabilities whose inputs are
parameters of the Exponential or Paoisson Distributions, and we propose a solution
as a System of Linear Equations that involves a vector-matrix operation between
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a vector of initial conditions and the matrix of transition probabilities. Its solution
turns out to be the steady-state vector. Finally, we review the use of eigenvectors
and eigenvalues to solve that System of Linear Equations.

Definition 6.1. A Continuous-Time Markov Chain Process is a process where
the transition probabilities between states ai whose probabilities pi j satisfy the
Markov property (Eq. 6.1). That is, the probability of the state ai+1 only depends
on the probability of the immediate preceding state an.

P(at+1|at) (6.1)

6.2. Distribution Functions

Continuous-Time Markov Chain Process is an operator that uses an Exponential
Distribution (or Poisson distribution) to simulate the transition rates from state i to
state j, while the inverse transition, i.e. from state j to state i, a Poisson distribution
(or Exponential distribution) is used.

6.2.1. Exponential Distribution

Definition 6.2. A continuous random variable T is exponentially distributed if its
function has the form Eq. 6.2 with λ > 0 and whose geometrical behaviour is
Fig. 6.1.

f (t,λ ) = λe−λ t (6.2)

For t ∈ R+, where the mean of T is the reciprocal of λ , i.e. E[T ] =
1
λ

.

4

3

2

-1 210-2

1

Figure 6.1: Geometrical representation of f (t) = 10e−10t .

The Exponential Distribution meets the Markov property, which states that the
future value of a random variable x(t) only depends on its actual value and it is
independent of the previous behaviour of that variable.
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Proof. On one hand, the probability between 0 and t is Eq. 6.3
ˆ t

0
λe−λα dα = 1− e−λ t (6.3)

On the other hand, the probability between t0 and t0 + t is Eq. 6.4
´ t0+t

t0
λe−λα dα´

∞

t0
λe−λα dα

= 1− e−λ t (6.4)

Therefore, the probability does not depend on a previous event.

6.2.2. Poisson Distribution

Definition 6.3. A continuous random variable T is distributed as the Poisson distri-
bution f if its function has the form Eq. 6.5 with λ > 0, whose geometric behaviour
is Fig. 6.2

f (k,λ ) =
e−λ λ k

k!
(6.5)

For k ∈ Z+, λ > 0 represents the number of times the phenomenon is expected to
occur over a time Interval t.

Figure 6.2: Geometrical representation of the Poisson distribution f (k,λ ) = e−λ λ k

k!
for λ = 2.

The Poisson distribution satisfies the Markov property stating that the future value
of a random variable x(t) depends only on its present value. This can be deduced
by noticing that the Poisson distribution is a variant of the Exponential distribution.

Consider that k = 1 in Eq. 6.5 is
1
k

λe−λ , so the Exponential distribution character-
istics are received from the Poisson distribution.

Continuous-Time Markov Chain Process Markov Chain Process  53 



There is a wide variety of applications for the Markov Chain Process, some of them
are Predictive Computational Science, Urban Complex Systems, Computational
Finance, Complex Systems Theory, Computational Science in Engineering, and
Computational Biology, it has also the potential for the application in new fields.

CASES



Computational Urban Issues

Abstract This chapter defines a Discrete-Time and Continuous-Time Markov
Chain Process oriented to the flow of people from one point to another in a region
or city, from their transit in different neighbourhoods. This is a current problem
that affects more and more countries due to the growth of communication routes
and means of transport, and that has been modeled under different mathematical
approaches. On the other hand, it is a multifactorial problem. In discrete type mod-
eling we have registered in the matrix of conditional probabilities the conditional
probabilities to go from a region i to another region j. In the case of continuous
type modeling we have considered the rate of pedestrian mobility between regions.

Keywords: Neighbourhoods, Conditional Probabilities, Continuous-Time Markov
Chain Process, Discrete-Time Markov Chain Process, Frequent Mobility Routes in
the City, Initial State Vector, Steady-State Vector, Transition Matrix, Routes

7.1. Frequent Mobility Routes-Discrete-Time case

7.1.1. Introduction

Mobility is a multifactorial problem [34] that with new routes and means of trans-
port is continuously transformed, it is strongly associated with population growth
but involves different and varied factors such as the type of transport and the la-
bor and recreational activity of the population. Determining the optimal route to
get daily to and from a workplace in a city o region urbana, is an issue that has
been addressed under very different approaches. In this section we will approx-
imate the prediction model considering the conditional probabilities of crossing
between neighborhoods. To then assume different initial positions in the region and
different conditional probabilities between regions.

This can be done with a Discrete-Time Markov Chain Process, whose transition
matrix P corresponds to the different sub-regions Ci that a person will use regularly
to get to work (Fig. 7.1).
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Figure 7.1: Example of a city map with the different neighbourhoods represented.

7.1.2. Materials and Methods

To design this model, 11 neighbourhoods Ci from a city were chosen (Fig. 7.1),
the conditional probabilities pi j represent all the routes used by the people in the
neighbourhood to get to their workplace (Table 7.1). Table 7.1 expresses the rela-
tive frequencies of all the routes per inhabitant in an origin neighbourhood i when
transiting to the destiny neighbourhood j.

In this sense, we are considering all possible destinations by neighbourhood and
not only the representative route, as could be the farthest or nearest destination.
Therefore, all the elements in each row are non-zero.
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· · · C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 0.09 0.09 0.09 0.08 0.10 0.10 0.10 0.08 0.09 0.09 0.09
C2 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.09 0.08 0.09 0.09
C3 0.09 0.09 0.09 0.07 0.11 0.10 0.10 0.09 0.08 0.09 0.09
C4 0.09 0.09 0.09 0.07 0.12 0.09 0.10 0.08 0.09 0.08 0.10
C5 0.09 0.10 0.10 0.07 0.10 0.09 0.10 0.08 0.09 0.09 0.09
C6 0.10 0.09 0.09 0.08 0.08 0.09 0.11 0.09 0.09 0.09 0.09
C7 0.08 0.08 0.09 0.09 0.10 0.12 0.10 0.06 0.08 0.10 0.10
C8 0.10 0.10 0.08 0.11 0.09 0.13 0.10 0.07 0.08 0.10 0.10
C9 0.10 0.09 0.07 0.11 0.09 0.13 0.08 0.06 0.06 0.09 0.11
C10 0.09 0.09 0.08 0.10 0.10 0.12 0.09 0.07 0.07 0.10 0.09
C11 0.11 0.08 0.07 0.09 0.10 0.08 0.10 0.10 0.09 0.09 0.09

Table 7.1: Conditional probabilities for the origin-neighbourhood (rows) and
destiny-neighbourhood (columns).

The conditional probabilities in Table 7.1 were randomly built. From this table we
built matrix P (Eq. 7.1).

P =



C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 0.09 0.09 0.09 0.08 0.10 0.10 0.10 0.08 0.09 0.09 0.09
C2 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.09 0.08 0.09 0.09
C3 0.09 0.09 0.09 0.07 0.11 0.10 0.10 0.09 0.08 0.09 0.09
C4 0.09 0.09 0.09 0.07 0.12 0.09 0.10 0.08 0.09 0.08 0.10
C5 0.09 0.10 0.10 0.07 0.10 0.09 0.10 0.08 0.09 0.09 0.09
C6 0.10 0.09 0.09 0.08 0.08 0.09 0.11 0.09 0.09 0.09 0.09
C7 0.08 0.08 0.09 0.09 0.10 0.12 0.10 0.06 0.08 0.10 0.10
C8 0.10 0.10 0.08 0.11 0.09 0.13 0.10 0.07 0.08 0.10 0.10
C9 0.10 0.09 0.07 0.11 0.09 0.13 0.08 0.06 0.06 0.09 0.11
C10 0.09 0.09 0.08 0.10 0.10 0.12 0.09 0.07 0.07 0.10 0.09
C11 0.11 0.08 0.07 0.09 0.10 0.08 0.10 0.10 0.09 0.09 0.09


(7.1)

We multiply matrix P (Eq. 7.1) by itself to get matrix Pn (Eq. 7.9).

Note 7.1. For this calculations see Prog. A.10.

Pn =



C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

C1 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.09 0.09
C2 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.09 0.09
C3 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.09 0.09
C4 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.09 0.09
C5 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.09 0.09
C6 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.09 0.09
C7 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.09 0.09
C8 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.09 0.09
C9 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.09 0.09
C10 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.0r87 0.08 0.09 0.09
C11 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.0r87 0.08 0.09 0.09


(7.2)
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Computational Biology Issues

Abstract This chapter defines Discrete and Continuous-Time Markov Chain Pro-
cess aimed to identify the preponderant function of a protein from the analysis of
its sequence, adapting the matrix of transition probabilities so that the elements of
the latter are occupied by the relative frequencies of the interactions of the pairs
of amino acids located there. The chapter illustrates in detail this methodology and
robustness to rescue the preponderant activity among other possible functions that
the protein could offer, if minimal changes were made in its primary structure. The
present approach is presumed to be used for the construction of synthetic proteins.

This chapter defines Discrete and Continuous-Time Markov Chain Pro-
cess aimed to identify proteins from the specific regularities found in their se-
quences.

Keywords: Amino acids, Continuous-Time Markov Chain Process, Discrete-Time
Markov Chain Process, Initial State Vector, NP Non-polar, N Polar, P− Negative
Charge, P+ Positive Charge, Polarity Profile, Preponderant Function of Proteins,
Proteins, Sequences, Steady-State Vector, Structural Proteomics, Transition Matrix

8.1. Protein Structure - Discrete-Time Case

8.1.1. Introduction

Proteins are the functional units of living organisms, they transform into tissue,
organs, and bones. All the elements that make up a living organism are formed
by them and so are bacteria and viruses. Proteins usually have different functions,
however, some of these functions are preponderant. This last objective is a current
topic for various research groups since the construction of new drugs or antibiotics
that can be used to alert or strengthen the immune system of humans depends on it.
The identification of proteins from the regularities found in their sequences (linear
representation of the amino acids) provides different mathematical-computational
approaches, one of them is to get a polarity profile [35, 36, 37, 38, 39, 40, 41,
42] from the sequence of the protein, which is formed by amino acids that can be
extracted from a group of 20.
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As every amino acid has a specific polarity profile, it can be verified if the occur-
rence of polarity characterizes the different functional groups of proteins. In this
work, a Discrete-Time Markov Chain Process is developed whose transition ma-
trix P represents the four different polarity groups: P+ positive charge, P− negative
charge, N polar, and NP non-polar.

8.1.2. Materials and Methods

To build the model we considered these four polarity groups, and the conditional
probabilities pi j that represent the polarity groups found in a chosen set of se-
quences (Table 8.1). Table 8.1 expresses the relative frequency of a pair of amino
acids transiting from the left amino acid i to the right amino acid j.

The procedure is to get a set of sequences representative of the characteristic sought,
then we read these proteins by pairs from right to left, e.g. if the protein -expressed
in the correspondent polarity values- is [P−, N, P+, · · ·], then in matrix P we add 1
in [P−, N], and in [N, P+], and so forth.

Assume the incidences expressed as conditional probabilities are in (Table 8.1).

· · · P+ P− N NP

P+ 0.25 0.35 0.20 0.20
P− 0.10 0.60 0.25 0.05
N 0.05 0.15 0.70 0.10
NP 0.40 0.50 0.05 0.05

Table 8.1: Conditional probabilities for origin-polarity (rows) and final-polaridad
(columns).

The conditional probabilities in Table 8.1 were randomly built. With this informa-
tion we build matrix P Eq. 8.1

P =


P+ P− N NP

P+ 0.25 0.35 0.20 0.20
P− 0.10 0.60 0.25 0.05
N 0.05 0.15 0.70 0.10

NP 0.40 0.50 0.05 0.05

 (8.1)

Then, we multiply matrix P Eq. 8.1 by itself to get matrix Pn Eq. 8.9

Note 8.1. For this calculation see Prog. A.11.

Pn =


P+ P− N NP

P+ 0.13 0.38 0.41 0.09
P− 0.13 0.38 0.41 0.09
N 0.12 0.37 0.41 0.09

NP 0.13 0.37 0.41 0.09

 (8.2)
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The steady-state vector u f = u0 lim
n→∞

Pn and taking matrix Pn (Eq. 8.9) and the ini-

tial state vector u0 = (0.25, · · · ,0.25) we get the steady-state vector u f .

8.1.3. Results

So, if we take the initial state vector u0 = (1/4, · · · ,1/4), we get the steady-state
vector u f (Eq. 8.3).

u f = (0.125,0.375,0.411,0.089) (8.3)

When comparing u0 (Eq. 8.4) with u f (Eq. 8.3) we can see that the preferential
polarity interactions are P−, N, P+, and NP.

u0 = (0.250,0.250,0.250,0.250) (8.4)

However, if we change the value of the initial state vector, see u0 (Eq. 8.5), reducing
the frequency of the two polarities P+ and P− the steady-state vector u f (Eq. 8.6)
will show an increase at both ends of the vector u f .

u0 = (0.200,0.200,0.300,0.300) (8.5)

u f = (0.125,0.375,0.411,0.089) (8.6)

Also, if we alter the values of the initial state vector u0 (Eq. 8.7), reducing the
frequency of the polarity groups N and NP, the steady-state vector u f (Eq. 8.8)
shows an increase in the central polarity groups P− and N of the vector u f .

u0 = (0.300,0.300,0.200,0.200) (8.7)

u f = (0.125,0.375,0.411,0.089) (8.8)

Finally, if we change matrix P isolating the polarity group P+ (Eq. 8.9), we will see
a significant change in the steady-state vector u f (Eq. 8.10).

P =


P+ P− N NP

P+ 0.00 0.37 0.41 0.09
P− 0.12 0.37 0.41 0.09
N 0.12 0.37 0.41 0.09

NP 0.00 0.37 0.41 0.09

 (8.9)

u f = (0.014,0.082,0.098,0.019) (8.10)

8.1.4. Discussion

When the elements of matrix P are modified they can provide information about
the polarity group of a specific set of sequences, or produce synthetic proteins.
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Computational Financial Issues

Abstract This chapter defines Discrete or Continuous-Time Markov Chain Process
aimed at predicting market trends, taking the ratings that the stock exchange gives
to shares. The chapter is developed through two cases that affect in different ways
the corresponding matrix of transition probabilities, in the discrete case conditional
probabilities are assumed for each of the groups of shares that were registered in
that matrix, and in the continuous case different forward and backward speeds be-
tween shares are assumed.

Keywords: A, AA, AAA, B, BB, BBB, C, CC, CCC, Conditional Probabilities,
Continuous-Time Markov Chain Process, Discrete-Time Markov Chain Process,
Initial State Vector, Market Trends, Stock Markets, Steady-State Vector, Transition
Matrix.

9.1. Prediction of Market Trends-Discrete-Time
case

9.1.1. Instroduction

Predicting the near future of the stocks from their supply and demand is a funda-
mental issue in financial markets [43]. Here, we develop a Discrete-Time Markov
Chain Process whose matrix of transition probabilities P represents the the proba-
bility of moving from one share to another among these possibilities AAA, AA, A,
BBB, BB, B, CCC, CC, C, D. A share depends on the supply and demand and these
are susceptible to multiple factors of a different kind. Knowing the progression of a
share or block of shares in the medium term is crucial for financial decision-makers.
In this work, we develop a Discrete-Time Markov Chain Process whose matrix of
transition probabilities P corresponds to the ten described types of ratings that a
share can have, with AAA being the highest value share, and D the lowest value
share.
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9.1.2. Materials and Methods

To build the model ten types of shares will be taken and the conditional probabil-
ities pi j will represent the rating groups found in the block of shares (Table 9.1).
Table 9.1 expresses the relative frequencies of the shares when moving from one
type of share i to the next j.

The procedure is to select a block of shares to build all possible conditioned proba-
bilities, considering that in ten types of ratings there will be 81 different transitions.

Assume that the incidences are expressed as conditional probabilities (Table 9.1).

· · · AAA AA A BBB BB B CCC CC C D

AAA 0.90 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
AA 0.40 0.50 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A 0.01 0.40 0.50 0.03 0.01 0.01 0.01 0.01 0.01 0.01

BBB 0.01 0.01 0.40 0.50 0.03 0.01 0.01 0.01 0.01 0.01
BB 0.01 0.01 0.01 0.40 0.50 0.03 0.01 0.01 0.01 0.01
B 0.01 0.01 0.01 0.01 0.40 0.50 0.03 0.01 0.01 0.01

CCC 0.01 0.01 0.01 0.01 0.01 0.40 0.50 0.03 0.01 0.01
CC 0.01 0.01 0.01 0.01 0.01 0.01 0.40 0.50 0.03 0.01
C 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.40 0.50 0.03
D 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.40 0.50

Table 9.1: Conditional probabilities for initial-shares (rows) and final-shares
(columns).

The conditional probabilities in Table 9.1 were built at random and matrix P
(Eq. 9.1) was built with this information.

P =



AAA AA A BBB BB B CCC CC C D

AAA 0.90 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
AA 0.40 0.50 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
A 0.01 0.40 0.50 0.03 0.01 0.01 0.01 0.01 0.01 0.01

BBB 0.01 0.01 0.40 0.50 0.03 0.01 0.01 0.01 0.01 0.01
BB 0.01 0.01 0.01 0.40 0.50 0.03 0.01 0.01 0.01 0.01
B 0.01 0.01 0.01 0.01 0.40 0.50 0.03 0.01 0.01 0.01

CCC 0.01 0.01 0.01 0.01 0.01 0.40 0.50 0.03 0.01 0.01
CC 0.01 0.01 0.01 0.01 0.01 0.01 0.40 0.50 0.03 0.01
C 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.40 0.50 0.03
D 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.40 0.50


(9.1)

Then, we multiply matrix P Eq. 9.1 by itself to get matrix Pn Eq. 9.9.

Note 9.1. See this calculation Prog. A.12.
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Pn =



AAA AA A BBB BB B CCC CC C D

AAA 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02
AA 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02
A 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02

BBB 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02
BB 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02
B 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02

CCC 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02
CC 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02
C 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02
D 0.42 0.09 0.08 0.08 0.07 0.07 0.06 0.05 0.03 0.02


(9.2)

Taking the steady-state vector u f = u0 lim
n→∞

Pn, matrix Pn (Eq. 9.9) and the initial

state vector u0 = (0.10, · · · ,0.10) we get the steady-state vector u f .

9.1.3. Results

If we take the initial state vector u0 = (1/10, · · · ,1/10) we get the steady-state
vector u f Eq. 9.3

u f = (0.421,0.093,0.085,0.081,0.076,0.070,0.062,0.052,0.038,0.021) (9.3)

When comparing u0 (Eq. 9.4) with u f (Eq. 9.3) we find that the preferred type of
share is AAA.

u0 = (0.100,0.100,0.100,0.100,0.100,0.100,0.100,0.1000.100,0.100) (9.4)

However, if we change the values of the initial state vector, see u0 Eq. 9.5, reducing
the frequency of the AAA and AA shares, the steady-state vector u f (Eq. 9.6) shows
a substantial decrement in the AAA u f shares.

u0 = (0.050,0.050,0.050,0.250,0.100,0.100,0.100,0.1000.100,0.100) (9.5)

u f = (0.421,0.093,0.085,0.081,0.076,0.070,0.062,0.052,0.038,0.021) (9.6)

And if we change the values of the initial state vector u0 Eq. 9.7, reducing the
frequency of the CC, C and D shares, the steady-state vector u f (Eq. 9.8) does not
show a substantial change compared to vector u f (Eq. 9.6).

u0 = (0.010,0.100,0.100,0.100,0.100,0.100,0.100,0.2500.050,0.000) (9.7)

u f = (0.421,0.093,0.085,0.081,0.076,0.070,0.062,0.052,0.038,0.021) (9.8)
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Computational Science Issues

Abstract This chapter introduces a Hierarchical Markov Chain Process over a hi-
erarchical network whose nodes are Discrete-Time Markov Chain and Continuous-
Time Markov Chain Processes. We consider it useful to carry out this non-exhaustive
analysis to discuss the advantages and disadvantages of a random walk of this na-
ture and its possible application, particularly in real-time and in unsupervised mode.
Examples are provided under the discrete and continuous schemes.

Keywords: Continuous-Time Markov Chain Process, Discrete-Time Markov Chain
Process, Hierarchical Markov Process, Homogeneous Markov Chain Process, Ini-
tial State Vector, Steady-State Vector, Transition Matrix

10.1. Hierarchical Markov Chain Process -
Discrete-Time Case

10.1.1. Introduction

This chapter introduces the Hierarchical Markov Chain Process (HMCP), over a hi-
erarchical network whose elements or nodes are Discrete-Time Markov Chain Pro-
cesses. The structure of an HMCP is a directed network where the different states
are determined within various Discrete-Time Markov Chain Processes (Fig. 10.1),
so the steady-state vector of a process i is the initial state vector of a process j. This
chapter is not intended to be exhaustive, but to exemplify how it is possible to cou-
ple Discrete-Time Markov Chain Processes in a network, providing this network
with random walks. This introduction is accompanied by a numerical example and
it explains how to modify the network.

In this sense, a Hierarchical Markov Chain Process is a Semi-Markov Process or
Markov renewal process.

Note 10.1. “Semi-Markovian processes provide a very flexible structure for mod-
elling phenomena that evolve over time as they combine the probabilistic struc-
ture of a Markov chain and a renewal process. In other words, semi-Markovian
processes model systems whose transitions between states occur according to a
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Markov chain and the times at which such transitions occur are random and form a
process of renewal” [44].

Figure 10.1: Example of the structure of a Hierarchical Markov Chain Process.

Schematically, the process presented here fractally replicates an MC over the en-
tire region, in multiple MCi j over each subregion resulting from partitioning the
original region, so each MCi j will be representative of that subregion.

If we coloured each subregion of the value of the steady-state vector u f , we could
see continuity between the two adjacent subregions.
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10.1.2. Materials and Methods

To build the model, we have n levels and each level has m Discrete-Time Markov
Chain Processes (MCi j) (Fig. 10.1). The conditional probabilities pi j represent all
the states (Table 10.1). Table 10.1 expresses the relative frequencies of the states
when transiting from one to another i.e., from the initial-state i to the final-state j.

In this sense, all possible states in MCi j are considered, therefore, all the elements
in each row are non-zero.

· · · A B C D

A p11 p12 p13 p14
B p21 p22 p23 p24
C p31 p32 p33 p34
D p41 p42 p43 p44

Table 10.1: Conditional probabilities pi j of MCi j.

10.1.3. Results

The conditional probabilities in Table 10.1 were randomly built. This information
was used for the matrix of transition probabilities P (Eq. 10.1). Note that each MCi j
has a matrix P and all these matrices must have the same dimension.

P =


A B C D

A p11 p12 p13 p14
B p21 p22 p23 p24
C p31 p32 p33 p34
D p41 p42 p43 p44

 (10.1)

Then, we multiply matrix Pi j (Eq. 10.1) by itself to get matrix Pn
i j (Eq. 10.2).

Pn
i j =


A B C D

A q11 q12 q13 q14
B q21 q22 q23 q24
C q31 q32 q33 q34
D q41 q42 q43 q44

 (10.2)

Since the steady-state vector u f
i j = u0

i j lim
n→∞

Pn
i j, where matrix Pn

i j is matrix P multi-

plied n times by itself (Eq. 10.2), the initial state vector u0
i j is the vector that feeds

the process MCi j, and the steady-state vector u f
i j is the resultant vector of the pro-

cess MCi j.

For convenience, if there is no hierarchy in the Hierarchical Markov Chain Process,
it will be called Homogeneous Markov Chain Process, particularly if it is used to
develop an application to know the dissemination of an epidemic outbreak [45].
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Computational Medicine Issues

Abstract This chapter first introduces a Discrete-Time Markov Chain Process
aimed to predict the spread of a disease in a region, based on the census of the sub-
jects: S, susceptible; Ia, Active infected; In, Inactive infected; Na Subject dead by
natural causes; Nm Subject killed by the disease. Later, is introduced a Continuous-
Time Markov Chain Process to predict the spread of a disease based on different
census of the subjects: S, number of susceptible individuals; I, number of infected
individuals; and R number of recovery individuals. Both methods are known to be
effective in issuing early warnings for serious respiratory infections. Both cases are
exemplified and discussed.

Keywords: Conditional Probabilities, Continuous-Time Markov Chain Process,
Discrete-Time Markov Chain Process, Epidemic Disease, Hierarchical Markov
Chain Process, Homogeneous Markov Chain Process, Initial State Vector, Markov
Chain Process, Steady-State Vector, Transition Matrix

11.1. Pandemic Spread Rate-Discrete-Time Case

11.1.1. Instroduction

The spread of a diseaseindewith pandemic potential indexPandemic
is a public security issue, whose impact claims millions of human lives
and impacts all countries. An early warningindexEarly Alert allows to reduce the
number of infections and consequently deaths, on the other hand, however there is
no general criterion to decree such an alert. This work aims to determine the future
changes of five states associated with the process described: S, susceptible; Ac, Ac-
tive infected; In, Inactive infected; Na Subject dead by natural causes; Nm Subject
killed by the disease [46, 47, 48].

The profile of these five states characterize with a fingerprint a disease with pan-
demic potential. This work develops a Discrete-Time Markov Chain Process whose
transition matrix of transition probabilities P corresponds to these five states.
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11.1.2. Materials and Methods

To construct the model, these five states are taken and the conditional probabilities
pi j represent the figures found in a region (Table 11.1). Table 11.1 expresses the
relative frequencies to transit from state i to state j.

Assume that the incidences expressed as conditional probabilities are in Table 11.1.

· · · S Ia In Na Nm

S 0.15 0.25 0.20 0.20 0.20
Ac 0.10 0.35 0.45 0.05 0.05
In 0.05 0.15 0.30 0.40 0.10
Na 0.00 0.00 0.00 0.85 0.15
Nm 0.00 0.00 0.00 0.15 0.85

Table 11.1: Conditional probabilities for an initial-disease (rows) and final-disease
(columns).

The conditional probabilities of Table 11.1 were built at random and they were used
for matrix P Eq. 11.1

P =



S Ia In Na Nm

S 0.15 0.25 0.20 0.20 0.20
Ac 0.10 0.35 0.45 0.05 0.05
In 0.05 0.15 0.30 0.40 0.10
Na 0.00 0.00 0.00 0.85 0.15
Nm 0.00 0.00 0.00 0.15 0.85

 (11.1)

Then, matrix P Eq. 11.1 was multiplied by itself to get matrix Pn (Eq. 11.9).

Note 11.1. For this calculation see Prog. A.13.

Pn =



S Ia In Na Nm

S 0.00 0.00 0.00 0.50 0.50
Ac 0.00 0.00 0.00 0.50 0.50
In 0.00 0.00 0.00 0.50 0.50
Na 0.00 0.00 0.00 0.50 0.50
Nm 0.00 0.00 0.00 0.50 0.50

 (11.2)

Since the steady-state vector u f = ui lim
n→∞

Pn, taking matrix Pn (Eq. 11.9) and the

initial state vector u0 = (0.25, · · · ,0.20), we get the steady-state vector u f .

11.1.3. Results
Taking the initial state vector u0 = (1/5, · · · ,1/5), we get the steady-state vector u f
Eq. 11.3
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u f = (0.000,0.000,0.500,0.500) (11.3)

When comparing u0 (Eq. 11.4) with u f (Eq. 11.3) we can see that the most chosen
states are Na y Nm.

u0 = (0.200,0.200,0.200,0.200) (11.4)

However, if we change the values of the initial state vector, see u0 (Eq. 11.5), re-
ducing the frequency of the two first states S and Ac, the steady-state vector u f
(Eq. 11.6) shows an accumulation at the ends of the vector u f (Fig. 7.1).

u0 = (0.100,0.100,0.260,0.260,0.260) (11.5)

u f = (0.000,0.000,0.001,0.493,0.486) (11.6)

And if we change the values of the initial state vector u0 (Eq. 11.7), reducing the
frequency of the states Na and Nm, the steady-state vector u f (Eq. 11.8) shows the
same distribution of vector u f (Eq. 11.6).

u0 = (0.260,0.260,0.260,0.100,0.100) (11.7)

u f = (0.000,0.001,0.001,0.494,0.483) (11.8)

Finally, if we change matrix P decreasing the state S (Eq. 11.9), we will not see a
significant modification in the steady-state vector u f (Eq. 11.10).

P =



S Ia In Na Nm

S 0.00 0.40 0.20 0.20 0.20
Ac 0.00 0.35 0.45 0.05 0.05
In 0.00 0.15 0.30 0.40 0.10
Na 0.00 0.00 0.00 0.85 0.15
Nm 0.00 0.00 0.00 0.15 0.85

 (11.9)

u f = (0.000,0.000,0.000,0.500,0.500) (11.10)

11.1.4. Discussion

If the elements of the transition matrix P are modified, they can provide information
about the pandemic potential of a region to feature this region or to compare it with
other regions.

The Discrete-Time Markov Chain Process approach to determine the spread of a
disease from the variables S, Susceptible subject; Ac, Active infected; In, Inactive
infected; Na Subject dead of natural causes; and Nm Subject killed by the disease,
is an extension of other approaches.

One of these approaches uses three variables S, Susceptible subject; I, Infected
subject; and R Recovered subject, which provides a simple and powerful model to
predict a close future from the stabilization of the Markov Chain Process.
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Computational Social Sciences Issues

Abstract This chapter defines a Discrete-Time and Continuous-Time Markov
Chain Process aimed to identify the language used to write a text. This is a brief
introduction to show the usefulness of both random walks in the recognition of a
language, and how these methods can lead to deepen the recognition using other
possible structural language. An example is established and solved from diphthongs
of the English language.

Keywords: Conditional Probabilities, Continuous-Time Markov Chain Process,
Discrete-Time Markov Chain Process, Discrete-Time and Continuous-Time Markov
Chain Process, English Diphthongs, Initial State Vector, Matrix of Transition Prob-
abilities, Natural Language Recognition, Steady-State Vector, Transition Matrix.

12.1. Natural Language Recognition -
Discrete-Time Case

12.1.1. Instroduction

The identification of the language in which a text is written from the frequency of
its consonants and vowels [49] is a topic that has been approached in different ways.
In this work, we developed a Discrete-Time Markov Chain Process whose matrix
of transition probabilities P uses English diphthongs. The elements of the matrix
correspond to the frequency of the diphthongs in the text, so the matrix represents
the profile of the language of the text and the Discrete-Time Markov Chain Process
uses it to identify the same language in other texts.

12.1.2. Materials and Methods

The following text was used to build this model:

—“The noise was ended now. The smoke drifted like thin, gray wisps of fog above
the tortured earth and the shattered fences and the peach trees that had been whittled

100 Markov Chain Process, 2023, 100-105   

CHAPTER 12 

Carlos Polanco 
All rights reserved-© 2023 Bentham Science Publishers 

 

 

 



into toothpicks by the cannon fire. For a moment silence, if not peace, fell upon
those few square miles of ground where just a while before men had screamed and
torn at one another in the frenzy of old hate and had contended in an ancient striving
and then had fallen apart, exhausted.”— [Clifford Simak, ”Way Station”,1963].

The conditional probabilities pi j represent the occurrence of the English diphthongs
found in the text {ay, ea, ee, ie, oi, oo, and ow} (Table 12.1). Table 12.1 expresses
the absolute frequency of the occurrences of all these diphthongs when reading the
text from left to right

It should be noted that a typical Discrete-Time Markov Chain Process would have
considered the occurrences when reading the text, however, this work addresses
this issue in a more restrictive way since the diphthongs are in English language
and, therefore, some occurrences will be zeros (Table 12.1).

· · · a e i o u w y

a 0.00 0.00 0.00 0.00 0.00 0.00 1.00
e 4.00 1.00 0.00 0.00 0.00 0.00 0.00
i 0.00 1.00 0.00 0.00 0.00 0.00 0.00
o 0.00 0.00 1.00 1.00 0.00 1.00 0.00
u 0.00 0.00 0.00 0.00 0.00 0.00 0.00
w 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 12.1: Absolute frequencies for English diphthongs.

The conditional probabilities in (Table 12.1) were randomly built and this table was
used for matrix P (Eq. 12.1).

P =



a e i o w u w y

a 0.000 0.000 0.000 0.000 0.000 0.000 1.000
e 0.800 0.200 0.000 0.000 0.000 0.000 0.000
i 0.000 1.000 0.000 0.000 0.000 0.000 0.000
o 0.000 0.000 0.333 0.333 0.000 0.333 0.000
u 0.000 0.000 0.000 0.000 0.000 0.000 0.000
w 0.000 0.000 0.000 0.000 0.000 0.000 0.000
y 0.000 0.000 0.000 0.000 0.000 0.000 0.000


(12.1)

Then, matrix P (Eq. 12.1) is multiplied by itself to get matrix Pn (Eq. 12.2).

Note 12.1. This calculation can be seen in (Prog. A.15).

Pn =



a e i o w u w y

a 0.000 0.000 0.000 0.000 0.000 0.000 1.000
e 0.032 0.008 0.000 0.000 0.000 0.000 0.000
i 0.000 1.000 0.000 0.000 0.000 0.000 0.000
o 0.014 0.035 0.035 0.035 0.000 0.035 0.033
u 0.000 0.000 0.000 0.000 0.000 0.000 0.000
w 0.000 0.000 0.000 0.000 0.000 0.000 0.000
y 0.000 0.000 0.000 0.000 0.000 0.000 0.000


(12.2)
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Since the steady-state vector u f = u0 lim
n→∞

Pn, and taking matrix Pn (Table 12.9) and

the initial state vector u0 = (0.142, · · · ,0.142), we get the steady-state vector u f .

12.1.3. Results

If we take the initial state vector u0 = (1/7, · · · ,1/7), we get the steady-state vector
u f (Eq. 12.3).

u f = (0.136,0.081,0.015,0.015,0.000,0.015,0.114) (12.3)

When comparing u0 (Eq. 12.4) with un (Eq. 12.3) we see that the diphthong with
less probability has 0.000, while the others have equal probability 0.091.

u0 = (0.142,0.142,0.142,0.142,0.142,0.142,0.142) (12.4)

However, if we change the value of the initial state vector, see u0 (Eq. 12.5), re-
ducing the frequency of the diphthongs in the first third, the steady-state vector u f
(Eq. 12.6) shows an accumulation at the extremes of the vector u f .

u0 = (0.102,0.102,0.142,0.142,0.142,0.182,0.182) (12.5)

u f = (0.130,0.079,0.015,0.015,0.000,0.015,0.082) (12.6)

If we change the value of the initial state vector u0 (Eq. 12.7), reducing the fre-
quency of the diphthongs in the last third, the steady-state vector u f (Eq. 12.8)
shows an increase at the opposite end of vector u f .

u0 = (0.182,0.182,0.142,0.142,0.142,0.102,0.102) (12.7)

u f = (0.143,0.083,0.015,0.015,0.000,0.015,0.146) (12.8)

Finally, if we change matrix P isolating the diphthongs ea (Table 12.9), we can see
a significant modification in the steady-state vector u f (Eq. 12.10).

P =



a e i o w u w y

a 0.000 0.000 0.000 0.000 0.000 0.000 1.000
e 0.000 1.000 0.000 0.000 0.000 0.000 0.000
i 0.000 1.000 0.000 0.000 0.000 0.000 0.000
o 0.000 0.000 0.333 0.333 0.000 0.333 0.000
u 0.000 0.000 0.000 0.000 0.000 0.000 0.000
w 0.000 0.000 0.000 0.000 0.000 0.000 0.000
y 0.000 0.000 0.000 0.000 0.000 0.000 0.000


(12.9)

u f = (0.000,0.354,0.000,0.000,0.000,0.000,0.000) (12.10)
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Computational Operations Research Issues

Abstract This chapter introduces Discrete and Continuous-Time Markov Chain
Process aimed to predict the behavior of a waiting line, based on the probabilities
of going from the state i to the state j, and also from velocity rates lambda and
retracement mu. In both cases a numerical example is provided that shows the me-
chanics of both random walks as well as the pertinent observations when altering
these parameters, and discusses the possibility of these parameters being altered in
real time in an unsupervised algorithm.

Keywords: Conditional Probabilities, Initial State Vector, Markov Chain Process,
Queuing Theory, Steady-State Vector, Transition Matrix

13.1. Queuing Theory-Discrete-Time Case

13.1.1. Instroduction

A waiting line [50] is a process inherent in many disciplines, its attention depends
on whether or not other procedures can be concluded in opportunity, in this work
the simple case is addressed on the possibility of advance or setback depends on the
previous immediate experience. The Queuing Theory deals with the opportunity of
an element in a waiting line to get a predetermined final state. This work is aimed
to determine a Discrete-Time Markov Chain Process that simulates a waiting line
where subject i transits from state Ei to state En (Fig. 13.2).

E1start E2 E3 E4 En

−λ1

λ1

µ2

λ2

−λ2

µ3

λ3

−λ3

λ4

−λ4

µ4 µn

−λn

Figure 13.1: Geometrical representation of a waiting line with conditional proba-
bility rates for a discrete case.

106 Markov Chain Process, 2023, 106-111   

CHAPTER 13 

Carlos Polanco 
All rights reserved-© 2023 Bentham Science Publishers 

 

 

 



13.1.2. Materials and Methods

To build the model, we have five states and the conditional probabilities pi j repre-
sented by λi and µi (Table 13.1). Table 13.1 expresses the relative frequencies or
transition rates from state i to state j.

Assume that the incidences expressed as conditional probabilities correspond to
Table 13.1.

E1 E2 E3 E4 Ei En

E1 −λ λ 0.00 0.00 · · · 1.00
E2 −µ µ +λ µ 0.00 · · · 1.00
E3 0.00 −µ µ +λ µ · · · 1.00
E4 0.00 0.00 −µ µ +λ µ 1.00
...

...
...

...
...

. . .
...

En 0.00 0.00 0.00 0.00 · · · 1.00

Table 13.1: Conditional probabilities for the initial state (rows) and final state
(columns).

The conditional probabilities in Table 13.1 were randomly built and they were used
to build matrix P Eq. 13.1.

P =


E1 E2 E3 E4

E1 −0.30 0.30 0.00 1.00
E2 −0.30 0.80 0.50 0.00
E3 0.00 −0.30 0.80 0.50
E4 0.00 0.00 0.00 1.00

 (13.1)

Then, matrix P (Eq. 13.1) was multiplied by itself to get matrix P5 (Eq. 13.7).

Note 13.1. For this calculation see Prog. A.13.

P5 =


E1 E2 E3 E4

E1 −0.02 −0.10 0.08 1.00
E2 −0.10 −0.43 0.14 1.19
E3 0.05 −0.09 −0.38 1.41
E4 0.00 0.00 0.00 1.00

 (13.2)

With the steady-state vector u f = u0 lim
n→∞

Pn, matrix Pn (Eq. 13.7), and the initial

state vector u0 = (1.00,0.00,0.00,0.00) we get the steady-state vector u f .

13.1.3. Results

If we take the initial state vector u0 = (1.00,0.00,0.00,0.00) we get the steady-state
vector u f Eq. 13.3
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u f = (0.003,−0.014,0.002,1.008) (13.3)

When comparing u0 (Eq. 13.4) with un (Eq. 13.3), we find that it gets to state E4 in
five units of time. Note that if we increase the accuracy, this state will be reached
after seven or eight units of time.

u0 = (1.000,0.000,0.000,0.000) (13.4)

However, if we alter the values of the initial state vector, see u0 (Eq. 13.5), by
reducing the frequency of the first state, the steady-state vector u f (Eq. 13.6) shows
an accumulation at the ends of vector u f .

u0 = (0.050,0.350,0.350,0.250) (13.5)

u f = (0.006,−0.015,−0.022,1.032) (13.6)

Finally, if we alter the matrix P decreasing the value λ (Eq. 13.7), we see that the
convergence to the last state is much longer. This can be seen in the values of the
steady-state vector u f for the fifth unit of time (Eq. 13.8)

P =


E1 E2 E3 E4

E1 −0.10 0.10 0.00 1.00
E2 −0.10 0.90 0.20 0.00
E3 0.00 −0.10 0.90 0.20
E4 0.00 0.00 0.00 1.00

 (13.7)

u f = (0.004,−0.039,−0.034,1.069) (13.8)

13.1.4. Discussion

In my opinion, there is no better application scenario for the Markov Chain Process
than to solve cases of waiting lines, for their pressing need to be solved. Daily we
can see them either to provide supplies or some kind of service. Even the banking
system has recently adopted the use of a “single queue” to improve the service.

Now, this is implemented in supermarkets that had a similar problem than Banks.
How many cashiers had to be opened to satisfy the buyer’s demand? How to predict
this demand to have the right numbers to optimize the service? This is a problem
that can be successfully modelled by a Discrete-Time Markov Chain Process.

The elements of the matrix of transition probabilities P with the conditions in Ta-
ble 13.1, correctly characterize a waiting line in discrete mode and the path to the
end of the waiting line will depend on the values of λ y µ .

The Queuing theory is focused on the broad study of mathematical models on wait-
ing lines. It does not solve the problem of getting a balance between the costs in-
volved in the service and the waiting time to get the service. However, it provides
valuable information to solve this problem.

The information it provides about the behaviour of the waiting line –if it is contin-
uously growing or if it tends to stabilize–, the performance of the service, and the
average waiting time makes it possible to characterize the scenario to study.
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Computational Information System Issues

Abstract This chapter defines a PageRank System for ranks web pages according to
the transit detected in them. This simulation uses Discrete-Time and Continuous-
Time Markov Chain Processes. For both approximations, numerical examples of
both conditional probabilities and transition rate rates are provided. While both
models are treated separately, in the end the desirability of designing a mixed net-
work is discussed.

Keywords: Conditional Probabilities, Continuous-Time Markov Chain Process,
Discrete-Time Markov Chain Process, Initial State Vector, Markov Chain Process,
Steady-State Vector, PageRank System, Row-Vector of Final Conditions, Row-
Vector of Initial Conditions, Transition Matrix

14.1. PageRank System - Discrete-Time Case

14.1.1. Instroduction

The attention of web pages [51, 52] is a topic of the recent discipline called Data
Mining that seeks to position web pages by their demand for content. All web
browsers aspire to be efficient in the opportunity to display the web pages with the
most searched content. In this sense, a network scheme is proposed here for the
attention of traffic between web pages. This chapter defines a network of Discrete-
Time Markov Chain Processes (DMCP) that simulate internet page rank operators.
These operators rank the web pages linked to them according to the demand or
transit in that DMCP (Fig. 14.2).

In this sense, a Web pages Traffic Process is a Semi-Markov Process or Markov
renewal process (Note 14.1)

Note 14.1. “Semi-Markovian processes provide a very flexible structure for model-
ing phenomena that evolve over time as they combine the probabilistic structure of
a Markov chain and a renewal process. In other words, semi-Markovian processes
model systems whose transitions between states occur according to a Markov chain
and the times at which such transitions occur are random and form a process of re-
newal” [44].
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Figure 14.1: Network of Discrete-Time Markov Chain Processes.

14.1.2. Materials and Methods

To build the model we have two Discrete-Time Markov Chain Processes DMCPA
and (DMCPB, four Web pages (Fig. 14.2), and the conditional probabilities pi j
for each one of them (Table 14.1) altered according to the increase in traffic from
DMCPA to DMCPB.

· · · OA OB W1 W2 W3 W4

OA 0 PA 1−PA 0 1−α−PA 0
OB PB 0 0 1−PB 0 1−α−PB
W1 0 0 1 0 0 0
W2 0 0 0 1 0 0
W3 0 0 0 0 1 0
W4 0 0 0 0 0 1

Table 14.1: Conditional probabilities pi j of DMCPi.

The conditional probabilities in Table 14.1 were randomly built and used to get
matrix P (Eq. 14.1). Note that each DMCPi has a matrix P and all of them have the
same size.
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P =



OA OB W1 W2 W3 W4

OA 0 PA 1−PA 0 1−α−PA 0
OB PB 0 0 1−PB 0 1−α−PB
W1 0 0 1 0 0 0
W2 0 0 0 1 0 0
W3 0 0 0 0 1 0
W4 0 0 0 0 0 1

 (14.1)

Then, we multiply matrix Pi (Eq. 14.1) by itself to get matrix Pn
i , this will give the

preference trend of the web pages.

Thus, the row-vector of final conditions u f
i = ui

i lim
n→∞

Pn
i -where matrix Pn

i is matrix

P multiplied n times by itself (Eq. 14.2)- is the row-vector of initial conditions, ui
i

is the vector that feeds the process DMCPi, and the vector of final conditions u f
i is

the vector resulting from the process DMCPi.

Pn =



OA OB W1 W2 W3 W4

OA 0 q12 q13 q14 q15 0
OB q21 0 0 q24 0 q26
W1 0 0 q33 0 0 0
W2 0 0 0 q44 0 0
W3 0 0 0 0 q55 0
W4 0 0 0 0 0 1

 (14.2)

Probabilities Pa and PB are altered as the result of the preference of each DMCPi in
the web pages.

Note in Fig. 14.2 that once the four pages are ranked, the probability they stay there
is 100%.

On the other hand, the two operators A and B are altered in their transition matrices,
according to the preference for any of the web pages they connect. Note that each
operator has communication with the four web pages and with both operators.

14.1.3. Discussion

This type of network makes it possible to orient the preferences of the operators to
the web pages with more demand. Thus, it is possible to know and rank the web
pages with each Discrete-Time Markov Chain Process.

You may have noticed when searching in a browser that the first ten web pages are
the same if you repeat the search minutes later. This has to do directly with the
search engines the browser uses.

However, if you do the same search one hour later, it is likely that the order of the
web pages changes or that a new one appears.

This occurs because the search engine has a page rank system that will show the
list of web pages that match the criteria programmed for that page rank.

One of the selection criteria used by the page rank system is to show the busiest
(most searched) pages.
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Future Uses

Abstract This chapter makes a quick review of how the methods studied in this
work, the Discrete and Continuous-Time Markov Chain Processes, can be applied
to different fields and it explores their use con different approaches. It also examines
how the applicability of these random walks can affect diverse disciplines with
different impacts. The implementation of these methods can even have the option
of self-learning programming.

Keywords: Algebra, Artificial Intelligence, Autonomous Decisions, Continuous
Model, Deterministic Techniques, Differential System, Discrete Model, Discrete-
Time Markov Chain Process, Granularity, Hidden Markov Model, Linear Alge-
bra, Markov Chain Process, Matrix of Transition Probabilities, Matrix System,
Network, Nodes, Partial Differential Equations, Patterns, Real Field, Real-Valued
Functions, Stochastic Techniques, Structural Proteomics, Unsupervised Method,
Vector-Valued Functions, Vertices

15.1. Scope

All disciplines use different techniques to recognize patterns. To categorize these
techniques, we will divide them into deterministic and stochastic. The first group
aims to construct real variable functions or vector functions to determine, with total
precision, the location and time the variable occurs. The second group gives up
precision and index the variable to a probable value for location and time.

However, sometimes precision places insuperable problems as a system of partial
differential equations in the real field will not provide solutions due to the density
of the field. On the other hand, a Discrete-Time Markov Chain Process is a ma-
trix system where the number of rows or columns is the number of the variables
involved.

Bearing this in mind, stochastic systems are much more efficient than deterministic
ones in problems that involve multiple variables.
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15.2. Main Possibilities

There is a variation to a Markov Chain Process, the Hidden Markov Model, which
is an indirect search for a determined pattern. Suppose we are looking to identify a
regularity in an object and it cannot be isolated to search for it explicitly, however, it
is known that it directly correlates with an observable regularity in another object,
so the Hidden Markov Model searches the second observable pattern. This is an
indirect search that widens the scope of the Markov Chain Process.

Particularly, some examples of the extension of the Markov Chain Process can be
seen in these chapters.

Chap. 6 describes the procedure of a continuous model, and although getting its
stabilization implies solving the problem with Linear Algebra its operation proce-
dure is analogue to a discrete model which can be solved (Chap. 5) also with Linear
Algebra.

Chap. 7 describes a problem of mobility between neighbourhoods within a city,
in this problem, it is observed that it is feasible to build a computational network
whose nodes turn out to be a Discrete or a Continuous-Time Markov Chain Process
that can be solved in real-time so that the use of mixed models is possible.

Chap. 8 describes the use of the matrix of transition probabilities P as the pro-
file searched, considering 16 elements to describe this profile. This case, besides
showing the applicability in Structural Proteomics, shows the possibility of using
different components of the Markov Chain Process as effective predictors or dis-
criminants.

Chap. 9 introduces a model that studies three possible states of a financial share,
in which the convenience of applying a Markov Chain Process to solve problems
involving multiple variables is observed, and where differential systems or systems
in differences are not practical.

Chap. 10 describes an extension of the Markov Chain Process, which makes it
possible to address the nodes of network with different granularity . This network
can also be implemented with vertices as differential systems and the Discrete-Time
Markov Chain Process as nodes .

Chap. 11 The current pandemic caused by the SARS-CoV-2 virus shows the need
for epidemiological systems focused on issuing early warnings for serious infec-
tions that affect the respiratory system. This is a multifactorial phenomenon that
involves clinical and non-clinical variables. This profile shows that a Discrete and
Continuous-Time Markov Chain Process network that is resolved in real time can
be an efficient and unsupervised system that alerts medical authorities.

Chap. 12 The recognition of a language is very necessary before the emergence
of computational lexicographic analysers since each grammar is different. In this
case, it was observed that the use of diphthongs is a useful alternative to distinguish
the language since adjustments to the algorithm can occur in real-time. Just as the
grammatical structure of diphthongs is characteristic, another structure can be used
as long as it is strongly associated with the language studied.

Chap. 13 studies a simple model of waiting lines, this is a problem that is faced in
all scientific and non-scientific disciplines, and where the Markov Chain Process
have turned out to be suitable for resolution. In that approach it was recommended
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a network of random walks that were solved and self-adjusted in real time, being
this a viable and useful option.

Chap. 14 describes a way to rank web pages from the DMCPs transit dispatchers
where the matrix of transition probabilities is altered. This is a problem related to
massive information over the internet that requires very fast and efficient search
engines, so the priority on the top web pages is the quality of their information
instead of the payment of fees to place them there.

In all the cases of application reviewed in this work, it was found that it is feasible to
strengthen the model by assigning them –as nodes of a network– that in turn can be
self-modified from the results found in each self-evaluation, this way, it is possible
to build an unsupervised method or ”artificial intelligence” to make autonomous
decisions.

It should be noted that only if the long-term solution is required, it is necessary to
carry out the algebraic operations. Otherwise, the Discrete-Time and Continuous-
time Markov Chain Processes require defining the matrix and operating the simu-
lation, so the model gets stabilized.

There are many other applications of the Markov Chain Process in different fields.
This book aims to introduce the theory with application cases, motivating its use
with the simplicity of the algebra involved and its ability to address multiple vari-
ables simultaneously.

There are many types of random walks [53, 54] equally efficient, however, the
objective of this work has been covered with this compilation of cases.
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Solutions Chapter 1

Solution 1.1. (i) A third face coming up when tossing a double-face coin. (ii) Only
one face appearing when tossing a double-face coin. (iii) Marking a different num-
ber in a pack of 20 cards, shuffle them and picking up one.

Solution 1.2. (i) Ω = {Side A, Side B}. (ii) A = {A}. B = {B}. (iii) P(A) =
1
2

.

P(B) =
1
2

.

Solution 1.3. If both events are dependent. (i) P(A|B) = P(A∩B)
P(B)

=
1
5
1
4

=
5
4
. (ii)

P(B|A) = P(A∩B)
P(A)

=
1
5
1
3

=
5
3
. (iii) P(A∪B) = P(A)+P(B)−P(A∩B) =

1
3
+

1
4
− 1

5
.

Solution 1.4. i) E = Yellow, red, green ii) P(yellow) = 4/17; P(red) = 6/17; P(green)
= 7/17.

Solution 1.5. The probability a person likes vanilla ice cream is P(A). The proba-
bility a person likes chocolate ice cream is P(B) = 0.50. The probability a person

likes vanilla and chocolate ice cream is P(A∪B) = 0.30, so P(A|B) = P(A∩B)
P(B)

=

0.30
0.50

= 0.60.

Then, the probability a person likes vanilla ice cream, since he/she likes chocolate
is P(A|B) 60%.

Solution 1.6. We have to calculate P(4|par). P(4|par) =
P(4∩ par)

P(par)
. Since P(par)

= 3/6 = 1/2 and P(4∩ par) = the probability that 4 and an even number come out
is = 1/6. Then, P(4|par) = (1/6)/(1/2) = 1/3.

Solution 1.7. P(B|A) = P(A∩B)
P(A)

=
0.05
0.025

= 0.020, therefore, the conditioned prob-

ability is higher than the a priori probability (0.30). This is not always the case,
sometimes the conditioned probability is equal or lower than the a priori probabil-
ity.
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Solution 1.8. See Eq.1.1

P(I|D) =
P(I)×P(D|I)

P(I)×P(I|D)+P(E)×P(E|D)+P(O)×P(O|D)

=
0.30×0.85

0.30×0.85+0.30×0.60+0.40×0.30
= 0.46

(1.1)

Solution 1.9. Let A1 be the event of “having an accident for high level of alcohol
in blood”, A2 the event of “having an accident for careless driving”, A3 the event
of “having an accident for other causes”, and D the event of “having a fatal acci-
dent”. Since the intersection of these events meet Bayes’ theorem, the probability
of having an accident for excessive alcohol intake is (Eq. 1.2).

P(A1|D) =
P(A1)×P(D|A1)

P(A1)×P(D|A1)+P(A2)×P(D|A2)+P(O)×P(O|D)

=
0.60×0.30

0.60×0.30+0.20×0.20+0.20×0.50
= 0.56

(1.2)
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Solutions for Chapter 2

Solution 2.1. (i) Substituting in (Eq. 2.31)

ut = u0ert ⇔ ut = 30e9.9⇔ ut = 597911.11 (2.31)

Remark 2.1. Note that in three units of time the initial population 30 grew
597911

30
≈ .19930

times.

(ii) Substituting in (Eq. 2.32) t = 0.21

2u0 = u0ert ⇔ 2 = e3.3t ⇔ ln2 = 3.3t⇔ ln2
3.3

= t (2.32)

Solution 2.2. (i)

u1 = Pu0 =


0.000 7.000 6.000

0.580 0.000 0.000

0.000 0.720 0.000

×


1.000

5.375

0.000

=


37.62

0.58

03.87

 (2.33)

(ii)

u2 = Pu1 =


0.000 7.000 6.000

0.780 0.000 0.000

0.000 0.720 0.000

×


37.62

0.58

03.87

=


27.28

21.81

00.42

 (2.34)

(iii)

u3 = Pu2 =


0.000 7.000 6.000

0.780 0.000 0.000

0.000 0.720 0.000

×


27.28

21.81

00.42

=


111.22

13.27

11.22

 (2.35)

(iv) There is no convergence in (i–iii).

Solution 2.3. See (Fig. 2.5)
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Appendix A
Computational Programs

Abstract This chapter presents the computational programs that were used to cal-
culate all the automated processes in this book. These programs were developed in
language Fortran 90 and Linux scripts.

A.1. One-dimensional random walk program

! Author: Carlos Polanco
! Date: July, 2022.
!

IMPLICIT none

INTEGER i, j
INTEGER ifin
DOUBLEPRECISION xi

53 FORMAT (f6.4,1x,A4)

!
! Procedure to generates the random walk

ifin = 1
DO j = 1, 20
CALL rnd001 (xi, i, ifin)
IF (xi.ge.0.50) then

WRITE (6, 53) xi, " - - - >"

ELSE
WRITE (6, 53) xi, "< - - - "

ENDIF
enddo

200 CLOSE (1)
STOP
END

!
! Generation of random numbers
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!
SUBROUTINE rnd001 (xi, i, ifin)
INTEGER i, ifin
DOUBLEPRECISION xi
i = i * 54891
xi = i * 2.328306e-10 + 0.5D00

xi = xi * ifin
END SUBROUTINE rnd001

Input
c None

Output
0.7181 --->
0.9005 --->
0.9302 --->
0.5819 --->
0.3915 <---
0.0878 <---
0.0049 <---
0.1470 <---
0.4478 <---
0.4493 <---
0.6186 --->
0.5033 --->
0.3815 <---
0.2592 <---
0.2323 <---
0.3724 <---
0.5112 --->
0.9830 --->
0.7876 --->
0.8857 --->
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A.2. Two-dimensional random walk program

! Author: Carlos Polanco
! Date: July, 2022.
!

IMPLICIT none

INTEGER i, j
INTEGER ifin
DOUBLEPRECISION xi

53 FORMAT (f6.4,1x,A5)

ifin = 1
DO j = 1, 20

!
! Procedure to generates the two dimensional random walk

CALL rnd001 (xi, i, ifin)
IF (xi.ge.0.25) then

WRITE (6, 53) xi, "Down"
ENDIF
IF (xi.ge.0.75) then

WRITE (6, 53) xi, "Top"
ENDIF

IF ( (xi.ge.0.25) .and. (xi.le.0.50) ) then
WRITE (6, 53) xi, "Left"

ENDIF

IF ( (xi.ge.0.50) .and. (xi.le.0.75) ) then
WRITE (6, 53) xi, "Right"

ENDIF
enddo

200 CLOSE (1)
STOP
END

!
! Generation of random numbers

SUBROUTINE rnd001 (xi, i, ifin)
INTEGER i, ifin
DOUBLEPRECISION xi
i = i * 54891
xi = i * 2.328306e-10 + 0.5D00

xi = xi * ifin
RETURN
END SUBROUTINE rnd001
Input
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