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PREFACE 

There are three kinds of uncertainties in engineering problems. One is randomness, 

the second is fuzziness, and the third is non probability. Sometimes, the impact of 

uncertainty on engineering problems can not be ignored. Uncertainty has a great 

impact on buildings, dams, nuclear power plants, bridges, aircraft, machinery, 

vehicles, warship, etc. The material properties, geometry parameters and loads of 

the structure are assumed to be random, fuzzy and non probabilistic. 

In the first chapter, nonlinear stochastic finite elements for general nonlinear 

problems and elastoplastic problems are discussed, and three methods are proposed. 

In Chapter 2, the calculation formula of stochastic finite element is given by using 

the third-order Taylor expansion and a simple calculation method is addressed. The 

stress-strength interference model, Monte Carlo simulation, a new iterative method 

(NIM) of reliability calculation for the linear static problem and linear vibration are 

proposed. Reliability calculation methods using the homotopy perturbation method 

(MIHPD) and second order reliability method for the nonlinear static problem and 

nonlinear vibration are proposed. In Chapter 3, the structural fuzzy reliability 

calculation of static problem, linear vibration, nonlinear problem and nonlinear 

vibration is studied by using the stochastic finite element method. The normal 

membership function is selected as the membership function, and the calculation 

formula of fuzzy reliability is presented. In Chapter 4, Taylor expansion, Neumann 

expansion, Sherman Morrison Woodbury expansion and a new iterative method 

(NIM) for interval finite element calculation of static problems are proposed. In 

Chapter 5, Perturbation technology, Taylor expansion, Neumann expansion, 

Sherman Morrison Woodbury expansion and a new iterative method (NIM) for 

interval finite element calculation of structural linear vibration are addressed. 

Chapter 6 proposes five calculation methods of nonlinear interval finite element for 

general nonlinear problems and elastoplastic problems. In the seventh chapter, five 

methods of interval finite element calculation methods for nonlinear structures are 

presented. In the eighth chapter, two improved methods of random field are 

proposed. The midpoint method, local average method, interpolation method and 

improved interpolation method of interval field and fuzzy field are proposed. The 

calculation method of mixed field is introduced. In the last chapter, calculation 

methods of random interval finite element, random fuzzy finite element and random 

fuzzy and interval finite element are proposed by using Taylor expansion and 

Neumann expansion. 
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CHAPTER 1 
 

Nonlinear Stochastic Finite Element Method  

 

Abstract: Considering the influence of random factors on the structure, three 

stochastic finite element methods for general nonlinear problems are proposed. They 

are Taylor expansion method, perturbation method and Neumann expansion method. 

The mean value of displacement is obtained by the tangent stiffness method or the 

initial stress method of nonlinear finite elements. Nonlinear stochastic finite element 

is transformed into linear stochastic finite element. The mean values of displacement 

and stress are obtained by the incremental tangent stiffness method and the initial 

stress method of the finite element of elastic-plastic problems. The stochastic finite 

element of elastic- plastic problems can be calculated by the linear stochastic finite 

element method. 

Keywords: Nonlinear stochastic finite element method, Taylor expansion, Pertur-

bation technology, Neumann expansion, Elastic-plastic problem. 

 

INTRODUCTION 

In the fields of dams, buildings, earthquakes and so on, random factors have a great 

impact on the structure. Under random load and working environment, advanced 

numerical technology and famous finite element method are used to analyze 

structures. Most applications are limited to certain loads and working 

environments, although random and uncertain factors reach a considerable degree. 

Due to the spatial variability of material properties and the randomness of load, the 

research of stochastic finite elements has attracted more and more attention by 

many authors. Nonlinear structures are affected by random factors. In order to 

improve the calculation accuracy, the research of nonlinear stochastic finite 

elements is very necessary. 

 

The second order perturbation and stochastic second central moment technique 

solve homogenization of two-phase elastic composites [1]. Both Monte Carlo 

Simulation and perturbation Methods are examined [2]. The second-order 

perturbation and the second probabilistic moment method are applied to the stress-
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based finite element method [3]. The variability of displacements and eigenvalues 

of structures are studied using variability response functions [4]. The weighted 

integral and local average methods of the triangular composite facet shell element 

are presented [5]. The nonlinear behaviour of strand-based wood composites is 

simulated [6]. A stochastic formulation of shell structures with multiple uncertain 

materials and geometric properties is proposed [7]. Efficient approaches to finite 

element analysis reinforced concrete structures are dealt with [8]. Stochastic finite 

element analysis of shells is presented for the case of combined uncertain material 

and geometric properties [9]. A novel response surface method employing ad hoc 

ratios of polynomials as a performance function is presented [10]. Efficient iterative 

algorithms for the stochastic finite element method with application to acoustic 

scattering for solving problems are described [11]. This work studies elliptic 

boundary value problems with uncertain coefficients by the stochastic finite 

element method [12]. A projection scheme based on the preconditioned stochastic 

Krylov subspace is compared with [13]. Primal mixed finite-element 

approximation of the second-order elliptic problem is proposed [14]. A 

biodegradation using the perturbation based stochastic finite element method is 

analyzed [15]. A perturbation-based stochastic finite element method can be 

applied to solve some boundary values [16]. Multiscale finite element methods are 

applied to uncertainty quantification [17]. An alternative unsteady adaptive 

stochastic finite element is proposed to further improve the accuracy [18]. A 

Galerkin-based multi –point reduced –order model (ROM) is developed for design 

optimization [19]. The generalized spectral decomposition method for 

nonlinear stochastic problems is extended [20]. The stochastic perturbation 

technique and Monte Carlo simulation (MCS) method are used to analyse a cable-

stayed bridge system with varying material properties [21]. This paper presents a 

generic high dimensional model for stochastic finite element analysis [22]. 

Nonlinear bending response of laminated composite spherical shell panel with 

random system properties is investigated [23]. The investigation reported an 

approach for nonlinear multi-degree-of -freedom systems with uncertain properties 

to non-Gaussian random excitations [24]. This paper presents a stochastic nonlinear 

failure analysis of laminated composite plates with random material properties [25]. 

We consider the convergence properties of return algorithms in computational 

elasto-plasticity [26]. A plastic–damage model of seismic cracking of concrete 

gravity dams utilizing two different damping mechanisms is examined [27]. This 

work examines the effect of random geometric imperfections in the buckling 

analysis of portal frames with stochastic imperfections [28]. This paper investigates 

the effect of measurement noise and excitation for nonlinear finite element model 

https://www.sciencedirect.com/topics/engineering/reinforced-concrete-structure
https://www.sciencedirect.com/topics/engineering/reduced-order-model
https://www.sciencedirect.com/topics/computer-science/spectral-decomposition
https://www.sciencedirect.com/topics/computer-science/stochastic-problem
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updating [29]. This paper investigates stochastic analysis of structures with 

softening materials [30]. Nonlinear finite element modeling of reinforced concrete 

haunched beams are presented and discussed [31]. This work explores reliability 

sensitivity analysis of nonlinear structural systems under stochastic excitation [32]. 

This paper introduces adaptive condensed SFEs for nonlinear mechanical problems 

[33]. The Markov diffusion theory is applied in studying stochastic nonlinear ships 

rolling in random beam seas [34]. In this work, a computational framework for 

nonlinear finite element models is presented [35]. Subset simulation, a Markov 

chain Monte Carlo technique, can be used to estimate physical models and 

nonlinear finite element analysis [36]. In this paper, the nonlinear finite element 

approach is used to solve laminated composite thin hypar shells [37]. This paper 

investigates randomness in constituent material properties by presenting a reliable 

model for solving stochastic nonlinear equations [38]. The paper proposes a 

spectral stochastic formulation with a nonlinear analysis of framed structures [39]. 

This paper presents a nonlinear finite element model of adobe masonry structures 

[40]. A nonlinear proxy finite element analysis (PFEA) technique was developed 

to predict capacity assessment of older t-beam bridges [41]. Stochastic constitutive 

modeling of elastic-plastic is developed that is efficient for use in which the 

material properties are considered random variables [42]. To analyze the influence 

of uncertainty, the methodology of stochastic cohesive interface analysis of layer 

debonding is proposed [43].  

The finite element has become an important method for analyzing structures. 

Nonlinear structures are affected by random factors and 

sometimes they can not be ignored. Three stochastic finite element methods for 

general nonlinear problems are proposed. Three stochastic finite element methods 

for elastic-plastic problems are formulated. 

 

GENERAL NONLINEAR PROBLEMS 

 

When the material stress-strain is nonlinear, the stiffness matrix is not constant, 

which is related to strain and displacement. The global equilibrium equation of the 

structure is the following nonlinear equations 

 

{∅} = [𝑨(𝑼)]{𝑼} − {𝑭}=0                                                                                    (1) 

 

https://www.sciencedirect.com/topics/mathematics/markov-chain-monte-carlo
https://www.sciencedirect.com/topics/mathematics/markov-chain-monte-carlo
https://www.sciencedirect.com/topics/engineering/geometrically-nonlinear-analysis
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CHAPTER 2 
 

Reliability Calculation of Stochastic Finite Element 

 

Abstract: The stochastic finite element third-order perturbation method for linear 

static problems is formulated. The stress-strength interference model, Monte Carlo 

simulation and a new iterative method (NIM) of reliability calculation for the linear 

static problem and linear vibration are proposed. Reliability calculation methods 

using modified iteration formulas by the homotopy perturbation method (MIHPD) 

and second- order reliability method for a nonlinear static problem and nonlinear 

vibration are proposed. 

 

Keywords: The third-order Taylor expansion, Perturbation method, Linear static 

problem, Linear vibration, Nonlinear static problem, Nonlinear vibration, Stress-

strength interference model, Monte Carlo simulation, A new iterative method, 

Modified iteration formulas, Homotopy perturbation method. 

INTRODUCTION 

Finite element is a world recognized tool for analyzing structures. The influence of 

randomness on some structures cannot be ignored. Material properties, geometric 

parameters and applied loads of the structure have a great impact on dams, 

buildings, bridges, mechanical parts, etc. Considering the influence of random 

factors, the stochastic finite element is introduced. Stochastic finite element and 

structural reliability calculation methods are combined to calculate the reliability of 

the structure. 

Two methods are studied for a combination of finite element and reliability 

methods: the direct method and the quadratic response surface method [1].  An 

element-free Galerkin method was developed for the reliability analysis of linear-

elastic structures [2]. In this paper, finite element reliability methods of the first-

order reliability method (FORM) and importance sampling are considered [3]. 

Analytical methods, combined analytical and simulation-based methods, direct 

Monte Carlo simulations and the importance sampling strategies are used to analyze 

dynamic reliability [4]. Five reliability methods calculating the reliability of a 
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composite structure are given [5]. This paper presents a reliability analysis in 

geotechnics engineering based on mathematical theories [6]. Reliability of linear 

structures with parameter uncertainty under non-stationary earthquakes, the 

perturbation stochastic finite element methodis utilized in deriving reliability of 

linear structures [7]. Finite element reliability analyses of nonlinear frame 

structures are employed with sophisticated structural models [8]. In this paper, the 

reliability of a rotating beam with random properties is studied and a second- order 

perturbation method is used [9]. Probabilistic risk assessment using finite element 

analysis for bridge construction is proposed [10]. Advanced Monte Carlo methods 

for reliability analysis is proposed and uncertainty is regarded as random variables 

[11]. The context for this paper is FORM in finite element reliability analysis in 

conjunction with advanced finite element models [12]. The reliability assessment 

of uncertain linear struc- tures using stochastic finite elements is presented [13]. 

This paper deals with the reliability analysis using the stochastic finite element 

method [14]. The objective of this paper is to illustrate an approach for the lifetime 

reliability assessment of bridges [15]. This paper presents a method for a reliability 

assessment in structural dynamics [16]. This contribution presents a model 

reduction technique for reliability sensitivity analysis of nonlinear finite elements  

[17]. The main aim is to present the stochastic perturbation-based finite element 

method analysis of the reliability of the underground steel tanks [18]. Improving 

the reliability of the frequency response function (FRF) by semi-direct model 

updating is reported  [19]. This paper presents a reliability analysis of steady-state 

seepage by the stochastic scaled boundary finite element method [20]. This paper 

performs a probabilistic stability analysis for an existing earthfill dam using a 

stochastic finite element method based on field data  [21]. The paper presents a 

method for reliability analysis of slopes by conditional random finite element 

method [22]. The objective of the present work is to develop a probabilistic analysis 

of a Carbon-Nanotube-Reinforced-Polymer (CNRP) material by using the stress-

strength model and multiscale finite element model to determine the reliability  

[23]. The main aim of this paper is to present a reliability estimation procedure for 

a steel lattice tower based on the stochastic finite element method  [24]. This work 

presents a reliability analysis of structures equipped with friction-based devices  

[25]. The reliability approach and finite  element method are used to estimate failure 

probability  [26]. Dynamic reliability of structure is computed using Successive 

over Relaxation method or Neumann expansion  [30].  

In order to improve the calculation accuracy, the calculation formula of third-order 

perturbation stochastic finite element is presented. The reliability calculation 

https://www.sciencedirect.com/topics/engineering/finite-element-method
https://www.sciencedirect.com/topics/engineering/monte-carlo-method
https://www.sciencedirect.com/topics/engineering/random-variable-xi
https://www.sciencedirect.com/topics/mathematics/reliability-assessment
https://www.sciencedirect.com/topics/mathematics/linear-structure
https://www.sciencedirect.com/topics/engineering/finite-element-method
https://www.sciencedirect.com/topics/engineering/finite-element-method
https://www.sciencedirect.com/topics/engineering/frequency-response-function
https://www.sciencedirect.com/topics/engineering/seepage
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methods of linear static problem, linear vibration, nonlinear static problem and 

nonlinear vibration are studied using a stochastic finite element method. The stress 

strength interference model, Monte Carlo simulation, a new iterative method and a 

modified iteration method by homotopy perturbation method for stochastic finite 

element reliability calculation are developed. Second order reliability methods for 

nonlinear static problems and nonlinear vibration are proposed.  

Reliability Calculation of Static Problems 

The equilibrium equation is written as 

KU F          (1) 

where U = the displacement vector, F = the external force, K = the global stiffness 

matrix.  

By applying Taylor series at the mean point  1 2, , ,
T

na a a a of the random 

variables and the perturbation technology, the following equations are given by 

 
1

0 0 0U K F


         (2) 

 
1

0 0

i i i

U F K
K U

a a a

    
  

   
 (3)     

 
2 2 2

1
0 0

i j i j i j i j j i

U F K K U K U
K U

a a a a a a a a a a

        
               

   (4)     

  

𝜕3𝑈

𝜕𝑎𝑖
2𝜕𝑎𝑗

= (𝐾0)−1(
𝜕3𝐹

𝜕𝑎𝑖
2𝜕𝑎𝑗

−
𝜕3𝐾

𝜕𝑎𝑖
2𝜕𝑎𝑗

𝑈0 − 3
𝜕2𝐾

𝜕𝑎𝑖𝜕𝑎𝑗

𝜕𝑈

𝜕𝑎𝑖
 

−3
𝜕𝐾

𝑎𝑖

𝜕2𝑈

𝜕𝑎𝑖𝜕𝑎𝑗
)       (5) 

The Taylor expansion formula of U is 
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CHAPTER 3 
 

Fuzzy Reliability Calculation Based on Stochastic 

Finite Element  

Abstract: Based on the stochastic finite element, the fuzzy reliability calculation of 

structure with static problems, linear vibration, nonlinear problems and nonlinear 

vibration is studied. The mean and variance of stress are obtained by the stochastic 

finite element method. The normal membership function is generally selected as the 

membership function of engineering problems. The fuzzy reliability of structure can 

be obtained by using the calculation formula of fuzzy reliability. 

Keywords: Fuzzy reliability, Stochastic finite element, Static problem, Linear 

vibration, Nonlinear structure, Nonlinear vibration, Membership function. 

INTRODUCTION 

Stress is related to load, structure and other factors. As long as one of the factors is 

fuzzy, the stress is fuzzy. The strength value can be found in the design manual, but 

this information has a certain degree of fuzziness. Finite element analysis of 

complex structures is feasible. Based on the stochastic finite element method, a new 

calculation method of fuzzy reliability of structures is proposed. This method can 

calculate the fuzzy reliability of complex structures. 

A methodology is developed that uses Petri nets and fuzzy Lambda–Tau metho-

dology and solves for reliability [1]. This paper presents an approach to assessing 

the reliability of concrete structures [2]. This paper discusses the optimisation of 

the forming load path using a fuzzy logic control algorithm and finite element 

analysis [3]. Modelling of plane strain compression (PSC) test incorporating both 

the hybrid and the fuzzy finite element models have been undertaken [4].This work 

introduces a fuzzy finite element procedure to calculate frequency response 

functions of damped finite element models [5]. A fuzzy logic method for improving 

the convergence in nonlinear magnetostatic problems using finite elements is 

presented [6]. This paper presents an efficient method for the static design of 

imprecise structures including fuzzy data [7]. In this paper, the spectral element 

method and a fuzzy set is used to estimate frequency response function envelopes 

[8].  This    paper    uses    the    interval    and   fuzzy   finite  element  method  for  

https://www.sciencedirect.com/topics/engineering/frequency-response-function
https://www.sciencedirect.com/topics/physics-and-astronomy/finite-element-model
https://www.sciencedirect.com/topics/engineering/finite-element-method
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Based on the stochastic finite element method, a new method for calculating the 

fuzzy reliability of structures with linear problems, linear vibration, nonlinear 

problems and nonlinear vibration is proposed. The normal membership function is 

selected as the membership function. The calculation formulas are given 

respectively. 

 

dynamic analysis of finite elements with uncertain parameters [9]. A methodology 

of the fuzzy finite element method in the model updating welded joints has been 

highlighted [10]. Fuzzy logic, neural networks and three-dimensional finite element 

calculations are employed in order to develop a computerized model in a coalface 

longwall mining simulation [11]. A fuzzy model of the generator is developed using 

finite element and fuzzy methods for carrying out its leakage field analysis [12]. 

Fuzzy finite element methods are becoming increasingly popular for the analysis 

of structure [13]. A fuzzy finite element analysis based on the α-cuts method 

analyzed heat conduction problems with uncertain parameters [14]. Dynamical 

relaxed directional method for fuzzy reliability analysis is proposed for engineering 

problems under epistemic uncertainty [15]. This paper describes a fuzzy reliability 

method for the calculation of power systems [16]. A new algorithm has been 

introduced to construct the membership function of fuzzy system reliability using 

different types of intuitionistic fuzzy failure rates [17]. A new approach of the 

weakest t-norm based intuitionistic fuzzy fault-tree is proposed to evaluate system 

reliability [18]. The objective of this study is to develop a fuzzy reliability algorithm 

of basic events of fault trees through qualitative data processing [19]. This study is 

to analyze the fuzzy reliability of a repairable system using soft-computing based 

hybridized techniques [20]. The stress–strength reliability of fuzziness is 

investigated [21]. An approach to analyze the fuzzy reliability of a dual-fuel steam 

turbine mechanical propulsion system is presented [22]. The purpose of the present 

study is to analyse the fuzzy reliability analysis of DFSMC systems with different 

membership functions by applying-the fuzzy lambda-tau technique [23]. A novel 

approach is proposed to evaluate system failure probability using intuitionistic 

fuzzy fault tree analysis [24]. Fuzzy improved distribution function is introduced 

and the order statistics based on fuzzy improved distribution function is proposed 

[25]. A fuzzy maximum entropy approach is proposed to determine fuzzy reliability 

centered maintenance considering the uncertainty [26]. 

https://www.sciencedirect.com/topics/engineering/finite-element-method
https://www.sciencedirect.com/topics/engineering/finite-element-calculation
https://www.sciencedirect.com/topics/engineering/finite-element-calculation
https://www.sciencedirect.com/topics/engineering/steam-turbines
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Fuzzy Reliability Calculation of Static Problems Based on Stochastic Finite 

Element  

The governing equation of the finite element under static load can be written as 

    K F                                          (1) 

The mean and variance of structural displacement are obtained by Taylor 

stochastic finite element. 
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where  Var  is the variance of  . 

The mean and variance of the stress on the structure are obtained by Taylor 

stochastic finite element method 
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CHAPTER 4 
 

Static Analysis of Interval Finite Element  

 

Abstract: Four methods of interval finite element for static analysis are proposed. 

Using the second-order and third-order Taylor expansion , interval finite element for 

static analysis is addressed. Neumann expansion of interval finite element for static 

analysis is formulated. Interval finite element using Sherman -Morrison-Woodbury 

expansion is presented. A new iterative method (NIM) is used for interval finite 

element calculation. Four methods can calculate the upper and lower bounds of node 

displacement and element stress. 

Keywords: A new iterative method (NIM), Interval finite element, Neumann 

expansion, Taylor expansion, Sherman-Morrison-Woodbury expansion, Static 

analysis. 

 

INTRODUCTION 

Final element method deals with deterministic engineering problems has become a 

world recognized numerical analysis method. Stochastic finite element has been 

developed to analyze structure with stochastic parameters. Fuzzy finite element has 

been developed to analyze structure with fuzzy parameters. In the design of 

engineering problems, material properties, geometry parameters and loads are 

assumed to be interval variables. Instead of conventional finite elements, the 

interval finite element has been studied by many authors. 

This work analyzes structural systems using interval analysis [1]. A formulation is 

proposed for the interval estimation of displacement input with uncertainty 

[2].Interval calculation is used to analyze mechanical systems modeled with 

interval finite elements [3]. The uncertain parameters are assumed to be interval 

variables, and the bounds of the displacement are obtained by interval finite element 

methods [4]. To account for uncertainties in linear static problems, a interval linear 

equations is proposed [5]. The interval and fuzzy finite element method is used to 

analyze the eigenvalue and frequency response function analysis of structures [6]. 

This paper presents a method for computing linear systems with large uncertainties 

https://www.sciencedirect.com/topics/engineering/finite-element-method
https://www.sciencedirect.com/topics/engineering/finite-element-method
https://www.sciencedirect.com/topics/engineering/finite-element-method
https://www.sciencedirect.com/topics/engineering/frequency-response-function


64    Uncertain Analysis in Finite Elements Wenhui Mo 
 

  
 
 
 

[7].Affine arithmetic is an improving interval analysis in finite element calculations 

[8].This paper presents chosen computational algorithms for interval finite element 

analysis [9]. The article focuses on a new interval finite element formulation to 

reduce overestimation problems [10]. This study is deemed a contribution to novel 

parameterized intervals for solving problems with uncertainty [11]. Improved 

interval analysis of the second-order statistics of the response is proposed [12]. 

Optimization and anti-optimization solution of combined parameterized and 

improved interval analyses for structures with uncertainties is presented [13].The 

objective is to validate a methodology for multivariate uncertainty in interval finite 

elements [14]. Interval Finite element analysis of linear-elastic structures with 

uncertain properties is addressed [15]. This paper presents a flexible approach for 

intervalfinite element analysis [16]. 

Four static analysis methods of interval finite element are proposed. They are 
Taylor expansion method, Neumann expansion method, Sherman-Morrison-

Woodbury expansion method and a new iterative method (NIM). The calculation 

process and formulas of the four methods are given in detail 

 

Taylor Expansion for Interval Finite Element 

Interval variable ,a a 
 

is generated by the following formula 

( )
i

a a ia n i a
a a i

n n

  
                                  (1) 

1, 2, ,i n  

Material properties, geometry parameters and applied loads of structures are 

assumed to be interval variables. They are 1 21 2[ , ],[ , ], ,[ , ], ,[ , ]j nj na a a a a a a a . 

The equilibrium equation is written as 

 

KU F                                           (2)  

https://www.sciencedirect.com/topics/mathematics/multivariate
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where U = the displacement vector, F = the external force, K = the global stiffness 

matrix. 

By applying Taylor series at the midpoint of the interval variables, the following 

equations are given by 

 
1

0 0 0U K F


                                       (3) 

 
1

0 0

i i i

U F K
K U

a a a

    
  

   
         (4) 

 

 
2 2 2

1
0 0

i j i j i j i j j i

U F K K U K U
K U

a a a a a a a a a a

        
               

             (5)  

 
𝜕3𝑈

𝜕𝑎𝑖
2𝜕𝑎𝑗

= (𝐾0)−1(
𝜕3𝐹

𝜕𝑎𝑖
2𝜕𝑎𝑗

−
𝜕3𝐾

𝜕𝑎𝑖
2𝜕𝑎𝑗

𝑈0 − 3
𝜕2𝐾

𝜕𝑎𝑖𝜕𝑎𝑗

𝜕𝑈

𝜕𝑎𝑖
− 3

𝜕𝐾

𝑎𝑖

𝜕2𝑈

𝜕𝑎𝑖𝜕𝑎𝑗
)  (6) 

The Taylor expansion formula of U is 

  

   

 
  

   

1 1

1 2 1 2

2 2

1 1

1 2 1 1 2

2 2

0 0 0

1 , , , 1

0 0

1
0 0

, , , 1

0 0

1
=

!

1

1 !

k k

k k

m k

k k

km n

i i

k i i i i i i

i i i i

mn

i i

i i i i i i

i i i i

U
U U a a a

k a a a

a a a a

U
a a a

m a a a

a a a a



 






 

  

  




   

 

 



                 (7) 

 



 Uncertain Analysis in Finite Elements, 2022, 79-97 79 

Wenhui Mo 

All rights reserved-© 2022 Bentham Science Publishers 

 

 

 

CHAPTER 5 
 

Interval Finite Element for Linear Vibration  

 

Abstract: Interval variables have an effect on linear vibration. The linear vibration is 

transformed into a static problem by Newmark method. The perturbation method, 

Neumann expansion method, Taylor expansion method, Sherman Morrison 

Woodbury expansion method and a new iterative method of interval finite element 

for linear vibration are proposed. The detailed derivation processes are explored. 

Keywords: Linear vibration, Perturbation, Neumann expansion, Taylor 

expansion, Sherman Morrison Woodbury expansion, A new iterative method. 

INTRODUCTION 

Stochastic finite element has been studied for more than 50 years. Stochastic finite 

element requires statistical data. Obtaining statistics data is troublesome. Interval 

finite element does not need probability density function and statistical data. It is 

difficult to determine the probability density function in engineering applications. 

Linear vibration is sometimes greatly affected by interval variables. 

A combinatorial approach and an inequality-based method are used to solve interval 

equations [1]. The scatter of external loads identified by displacement input with 

uncertainty is estimated by the Lagrange multiplier method [2]. An iterative 

algorithm is a conservative solution for linear interval finite element analysis [3]. 

The newmethod is based on an element-by-element technique to solveuncertainty 

in mechanics problems [4]. Anti-optimisation of interval finite element  is proposed 

for uncertain structures analysis [5]. Interval boundary element methods have been 

explored in finite element analysis with parametric uncertainties [6]. The objective 

is to give a general overview of non-probabilistic finite element analysis with 

parametric uncertainty [7]. A method to calculate the static structures with 

uncertain-but-bounded axial stiffness is proposed [8].The elastic modulus of one-

dimensional heterogeneous solids is considered both a probabilistic and a non-

probabilistic approach [9]. The present paper is to determine bounds for the 

stationary stochastic response of truss structures via interval analysis [10] .A novel 

expression of the frequency response function (FRF) matrix of discretized 

https://www.sciencedirect.com/topics/engineering/finite-element-method
https://www.sciencedirect.com/topics/engineering/finite-element-method
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Considering the influence of interval variables on linear vibration, five calculation 

methods of interval finite element for linear vibration are proposed. They are the 

perturbation method, Neumannexpansion method, Taylor expansion method, 

Sherman Morrison Woodbury expansion method and a new iterative method. The 

calculation formulas are given respectively. 

Interval Perturbation Finite Element for Linear Vibration 

For a linear system, the dynamic equilibrium equation is given by 

          M C K F                                   (1)  

Where      , ,    are the acceleration, velocity and displacement vectors. 

  M K and  C are the global mass, stiffness and damping matrices obtained by 

assembling the element variables in the global coordinate system. 

For ease of programming, the comprehensive calculation steps of the Newmark 

method are as follows 

The matrices K ,  M  and  C  are formed. 

The initial values      , ,t t t    are given. 

After selecting step t and parameters ,  , the following relevant parameters are 

calculated:  

structures with uncertain-but-bounded parameters are formulated [11]. Reliability 

analysis of randomly excited structures with interval uncertainties is addressed and 

the improved interval analysis handles uncertain-but-bounded parameters [12]. A 

novel Interval finite element method is formulated to improve interval analysis 

[13]. Finite element analysis of structures is addressed for interval and stochastic 

finite element analysis [14]. The paper presents the formulation of a stochastic B-

spline wavelet on the interval finite element in elasto-statics analysis [15]. The 

paper presents an interval finite element method based on stochastic B-spline 

wavelet for beams [16]. 

https://www.sciencedirect.com/topics/engineering/finite-element-method
https://www.sciencedirect.com/topics/engineering/finite-element-analysis
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The stiffness matrix is defined as     

       CbMbKK 10

~


                                (12)  

The stiffness matrix inversion 
1

K


 
   is solved. 
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CHAPTER 6 
 

Nonlinear Interval Finite Element  

Abstract: Nonlinear structures in engineering are affected by uncertain parameters. 

Firstly, the displacement when the interval variable takes the midpoint value is 

obtained, and the nonlinear problem is transformed into a linear problem. Five 

calculation methods of nonlinear interval finite element for general nonlinear 

problems and elastoplastic problems are proposed. According to the perturbation 

technique, a perturbation method is proposed. According to Taylor expansion, Taylor 

expansion method is proposed. Neumann expansion, Sherman Morrison Woodbury 

expansion and a new iterative method are proposed. 

Keywords: Nonlinear structures, Elastoplastic problems, Perturbation method, 

Taylor expansion method, Neumann expansion, Sherman Morrison Woodbury 

expansion , A new iterative method. 

INTRODUCTION 

The influence of uncertain parameters on nonlinear structures can not be ignored 

sometimes. In order to improve the calculation accuracy of finite element, it is 

necessary to study the interval finite element of nonlinear structure. The influence 

of interval variables on engineering problems should be paid attention to. A static 

structural analysis problem with uncertain parameters can beexpressed a system of 

linear interval equations [1]. The sensitivity analysis of interval finite element is 

evaluated [2]. A new formulation has been given for the analysis of mechanical 

systems using interval finite elements methods [3]. A modified interval 

perturbation analysis of uncertain structures is presented [4]. Under loading, 

material and geometric uncertainty, a very sharp enclosure for the solution is 

obtained [5]. In order to reduce the calculation time, Interval and fuzzy dynamic 

analysis of finite elements are proposed [6]. The merits of the new approach are 

demonstrated by computing linear systems with large uncertainties, with 

applications to truss structures, leading to over 5000 variables and over 10000 

interval parameters [7]. This paper presents a novel method to solve interval finite 

element analysis [8]. A new interval finite element states sharp displacement 

bounds are produced by the Lagrange multiplier method [9]. Intervals describing 

variation are parameterized by trigonometric functions [10]. The method is adopted 

to improve the ordinary interval analysis, based on the so-called affine arithmetic 

[11]. Chosen numerical algorithms for interval finite element analysis are compared 
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Five methods for interval finite element calculation of nonlinear structures are 

proposed. They are perturbation method, Taylor expansion method, Neumann 

expansion, Sherman MorrisonWoodbury expansion and a new iterative method. 

The detailed derivation of five calculation methods is given respectively. 

General Nonlinear Problems 

When the material stress-strain is nonlinear, the stiffness matrix is not constant, 

which is related to strain and displacement. The global equilibrium equation of the 

structure is the following nonlinear equations. 

{∅} = K{δ}  − {F}=0                                   (1) 

where [K(δ)] is global stiffness matrix, {δ} is displacement matrix and 

{F} is a load matrix. 

Midpoint values of the elastic modulus, Poisson's ratio and load are substituted into 

the above formula. The displacement is calculated by the tangent stiffness method 

or initial stress method (See Chapter 1 for details). {δ}n+1 is the solution of Eq.1 

.After {δ}n+1 represents Eq.1, it becomes a linear equation containing interval 

variables of material properties, geometry parameters and applied loads of 

structures. 

Perturbation technology for nonlinear interval finite element  

Material properties, geometry parameters and applied loads are assumed to be 
interval variables. They are expressed as 

a = a + ∆a                                         (2) 

with the Monte Carlo method [12]. The improved interval analysis via extra unitary 

interval is proposed [13]. The principal idea is to solve an inverse problem for 

analyzing multivariate interval uncertainty [14]. A response surface approach is 

adopted for uncertainty propagation analysis which provides a method of interval 

finite element [15]. One model parameter over the domain is usually modelled 

using a series expansion for interval finite element analysis via convex hull pair 

constructions [16]. 

https://www.sciencedirect.com/topics/computer-science/inverse-problem
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a = a − ∆a                                         (3) 

Where a is midpoints of interval variables,∆a is a small perturbation. 

Eq.1 is rewritten  

    K F 
                                       (4)  

Using perturbation technology and representing{δ}n+1, we obtain 

 (5)  

where ∆[K] is a small perturbation of [K],∆{F} is a small perturbationof {F}. ∆{δ} 
is a small perturbation of {δ}in the following equations. 

Eq.5 is rewritten 

 (6) 

The Neumann expansion of 

-1

+K K
 takes the following form: 

 (7) 

Neglecting second-order terms, we get 

(8) 
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CHAPTER 7 
 

Nonlinear Vibration Analysis of Interval Finite 

Element 

  

Abstract: For the influence of non-probabilistic parameters on nonlinear vibration, 

the nonlinear vibration analysis of interval finite element is proposed. Using the 

Newmark method, nonlinear vibration is transformed into nonlinear equations. The 

midpoint values of interval variables are substituted into the nonlinear equations to 

calculate the displacement. The displacement value is substituted into the nonlinear 

equations, and the nonlinear equations become linear equations. Five calculation 

methods of interval finite element for linear vibration are extended to nonlinear 

vibration. 

Keywords: Nonlinear vibration analysis, Newmark method, nonlinear equations, 

linear equations, five calculation methods, interval variable, interval finite element. 

INTRODUCTION 

The influence of non-probabilistic parameters on nonlinear vibration can not be 

ignored sometimes. The influence of non-probabilistic parameters on nonlinear 

vibration must be considered in some engineering problems. The membership 

function of fuzzy finite element is difficult to determine in engineering. Interval 

variables in interval finite element are relatively simple. The engineering 

application of interval finite element is also more convenient. An interval truncation 

method is proposed to obtain solutions of large amounts of uncertainty [1]. The 

validity of the proposed method is investigated by finite element interval analysis 

in a flat plate [2]. This novel interval formulation is based on a adapting Rump’s 
algorithm for solving interval linear equations [3]. Anti-optimisation of uncertain 

structures is that the displacement surface produced by the uncertain parameters is 

monotonic [4]. The Lagrange multiplier method is applied in interval finite element 

[5]. The interval boundary element method is developed for considering uncertain 

boundary conditions [6]. The paper gives an overview of non-probabilistic finite 

element analysis in applied mechanics [7]. An interval-valued Sherman–Morrison–
Woodbury formula is used to inverse the interval stiffness matrix [8]. Interval 

versus stochastic analysis of structure are derived for the bounds of the interval 
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Five calculation methods of nonlinear vibration of interval finite element are 

presented. They are the perturbation method, Taylor expansion method, Neumann 

expansion, Sherman Morrison Woodbury expansion and a new iterative method. 

The detailed derivation of five calculation methods is given respectively. 

For a nonlinear system, the dynamic equilibrium equation is given by 

          M C K F                                   (1)  

 

where      , ,   are the acceleration, velocity and displacement vectors. 

   ,M K and  C are the global mass, stiffness and damping matrices. 

 

By using the Newmark method, Eq.1 becomes 

     
1

t t t t t tK F 


  
                                   (2) 

where, t t 
， K 

   and  t tF   indicate the displacement vector, stiffness matrix 

and load vector at a time t t . 

field [9]. Interval frequency response function matrix of truss structures with 

uncertain-but-bounded parameters is evaluated [10]. Rational Series Expansion 

(RSE) provides an approximate explicit expression of the frequency response 

functions with uncertain parameters [11]. The bounds of the interval reliability of 

structures under stationary stochastic excitations are evaluated [12]. Interval 

rational series expansion applying interval finite element analysis is proposed for 

the lower bound and upper bound of interval displacements and stresses [13]. A 

unified response surface method is thus developed for interval and stochastic finite 

element analysis under different uncertainty models [14]. Perturbation approach of 

interval finite element is used to calculate elasto-statics problems [15].The response 

statistics are obtained using the perturbation method of interval finite element based 

on a stochasticB-spline wavelet [16]. 

https://www.sciencedirect.com/topics/engineering/frequency-response-function
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Eq.2 is rewritten as 

     t t t t t tK F   
                                              (3) 

Material properties, geometry parameters and applied loads of structures are 

assumed to be interval variables. Midpoint values of the elastic modulus, Poisson's 

ratio ,geometry parameters and load are substituted into Eq.3.The incremental 

tangent stiffness method or initial stress method are used to solve displacement and 

stress(See Chapter 1 for details). {δ}n+1 is the solution of Eq.40 .  {σ}n+1 is the 

solution of stress. After {δ}n+1 represents Eq.3, it becomes a linear equation 

containing interval variables of Young’s modulus , Poisson’s ratio ,geometry 
parameters and loads. After {σ}n+1 represents stress formula (Eq.10,Eq.20 ,Eq.27 

,Eq.34,Eq.39), it contains interval variables of Young’s modulus , Poisson’s ratio 
and geometry parameters . Nonlinear stochastic finite element is transformed into 

linear stochastic finite element. 

Interval Perturbation Finite Element for Nonlinear Vibration 

Material properties, geometry parameters and applied loads are assumed to be 
interval variables. They are expressed as 

a = a + ∆a                                         

a = a − ∆a                                         (4) 

where a is midpoints of interval variables,∆a is a small perturbation. 

Eq.3 is rewritten  

    tttt FK  
~~


                                    (5)  

Using perturbation technology and representing {δ}n+1, we obtain 

+ + +t t t t t t t tK K F F
              (6)  
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CHAPTER 8 
 

Random Field, Interval Field, Fuzzy Field and 

Mixed Field 

  

Abstract: Material properties are assumed to be random parameters, interval 

parameters and fuzzy parameters. If the variation range is large, they are not assumed 

to be constants. Two improved methods of the random field are developed. The 

midpoint method, local average method, interpolation method and improved 

interpolation method of interval field are addressed. The midpoint method, local 

average method, interpolation method and improved interpolation method of the 

fuzzy field are presented. The calculation method of mixed field is discussed and the 

calculation formula is proposed. 

Keywords: Stochastic field, interval field, Fuzzy field, mixed field, The midpoint 

method, Local average method, Interpolation method, Improved interpolation 

method. 

INTRODUCTION 

Concrete and other composite materials have spatial variability, so the material 

properties should not be regarded as constants, but as random processes. The 

material properties are assumed to be interval parameters or fuzzy parameters. If 

the variation range is large, it should be treated as an interval field or fuzzy field. 

The material properties are random, non-probabilistic and fuzzy, and should be 

treated as mixed field .Midpoint method for the discretization of random fields is 

proposed and the influence of material properties and applied loads of structures is 

investigated [1]. Local spatial averages efficiently evaluate the matrix of 

covariances [2]. Uncertain structural parameter is regarded as Gaussian stochastic 

process and the two-dimensional local averaging technique is extended for 3D 

random field [3]. The local averages method of inhomogeneous random field and 

non-rectangular elements is proposed using Gaussian quadrature [4]. The method 

that the random field is discretized is analogous to the discretization of the 

displacement in finite element methods [5]. A method to evaluate the stochastic 

fields using Karhunen- Loeve expansion is developed [6]. A weighted integral 

method is proposed to compute the stochastic field of material parameters [7，8]. 
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An improvement of the midpoint method of stochastic field is presented [9]. The 

Karhunen–Loève (KL) expansion represents a random field that relies on the 

solution of an eigenvalue problem [10]. In order to cope with limitations on the 

applicability of the interval finite element analysis, the concept of interval fields is 

introduced [11]. The present paper determines the region of material properties and 

applied loads with uncertain-but-bounded parameters via interval analysis [12]. The 

uncertain flexibility is represented by both a random and an interval field to analyze 

the response variability of Euler–Bernoulli beams [13]. A method consisting of a 

combination of interval and random fields is proposed [14]. The improved interval 

analysis via extra unitary interval is proposed to solve the generalized interval 

eigenvalue problem [15]. A new discretization of the coupled interval field is 

performed to analyze the effects of Young's modulus uncertainty via interval finite 

element [16]. Anapproach for imprecise random field analysis using parametrized 

kernel functions is presented to handle imprecision [17]. 

Two improved methods of the random field are introduced. Four calculation 

methods of interval field are developed. Four calculation methods of fuzzy fields 

are presented. A mixed field calculation method is proposed. 

Stochastic Field 

The elastic modulus of the material, Poisson's ratio and the load on the structure are 

assumed to be random processes. If the random vector field is non-homogeneous 

or homogeneous, the quadrant is asymmetric, and the local average region of the 

random field is not rectangular. Gaussian integral is used to calculate the mean 

vector and covariance matrix. The elastic modulus is discussed as an example. 

Poisson's ratio, load, and so on. 

Improved local average method 

The elastic modulus of the element l is expressed as 

𝑏𝑙(𝑥) =
∭ 𝑏(𝑥)𝑣𝑙

𝑣𝑙
                                  (1) 

where 𝑣𝑙 is the volume of element l , b(x) is a random process representing the 

elastic modulus and bl(x) is the elastic modulus of element l  
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After coordinate transformation, the above formula is written in Jacobi form. The 

above formula is converted to Gaussian numerical integration. 

The elastic modulus of element l is expressed as 

 
 

1 1 1

, ,
n n n

i j k l i j k

k j i

l

l

WW W b

b x
V

  
  




                          (2) 

where w is the weight coefficient of the one-dimensional Gaussian integral. 

, ,i j k    are the integration points. n  is the number of integral points in each 

coordinate direction. 

The mean value of elastic modulus of the element  is 

 
 

1 1 1

, ,

( )

n n n

i j k l i j k
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


                        (3) 

where  , ,l i j kb     is  the mean of the elastic modulus of the Gaussian integral 

points ,  E  is the mean.. 

The covariance of elastic modulus of element  and element m is 

    

   
1 1 1 1 1 1

cov ,

cov( , , , , , )

l m

n n n n n n

i j k i j k l i j k m i j k

k j i k j i

l m

b x b x

W W W WW W b b

VV

       

       



    (4) 

where cov( ) is the covariance, 
mV  is the volume of element m. 

Improved Interpolation Method 

The stochastic process c (x) is approximately expressed as a shape function 
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CHAPTER 9 
 

Mixed Finite Element 

  

Abstract: The parameters of the structure contain random variables and interval 

variables. The Taylor expansion method and Neumann expansion method of random 

interval finite element are proposed. The parameters of the structure are random and 

fuzzy. Taylor expansion method and Neumann expansion method of the random 

fuzzy finite element are illustrated. The parameters of the structure are random, fuzzy 

and non-probabilistic. The mixed finite element calculation should be carried out 

using Taylor expansion and Neumann expansion. 

Keywords: Mixed finite element, Neumann expansion, Random interval finite 

element, Random fuzzy finite element, Random fuzzy and interval finite element, 

Taylor expansion. 

INTRODUCTION 

Finite element method deals with deterministic engineering problems. The 

influence of uncertain factors must be considered. Uncertain factors influence the 

strength and life of a structure. Many engineering problems should consider 

uncertain properties of material, geometry and loads. The structure is affected by 

two or three uncertain factors, and the structure should be calculated by the mixed 

finite element method. 

Several types of stochastic finite element methods exist in the literature :the Monte 

Carlo Simulation (MCS) [1-5] , the perturbation method [2, 6-9] and the spectral 

stochastic finite element method [10-13]. According to first-order or second-order 

perturbationmethods, calculation formulas of perturbation stochastic finite element 

method (PSFEM) are derived [2, 6-8]. Finite element solutions for material 

variability can be obtained by means of perturbation stochastic finite element [2]. 

A major advantage of perturbation stochastic finite element is that the multivariate 

distribution function need not be known [6]. The vibration equation of a system is 
transformed into a static problem by using the Newmark method and the Taylor 
expansion [7]. Considering the influence of random factors, sensitivity computation 
for a linear vibration is illustrated [8, 9]. The PSFEM is an adequate tool for 

nonlinear structural dynamics [14]. This paper presents a framework for probability 
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sensitivity estimation of a class of problems involving linear stochastic finite 

element models [15]. Fuzzy finite element analysis based on the theory of fuzzy 

sets is presented to take account of the uncertainty of the elastic modulus and 

Poisson’s ratio [16]. An elastoplastic finite element analysis with fuzzy parameters 
is proposed using fuzzy mathematics [17]. A fuzzy finite-element approach for 

vibration analysis involving vagueness is developed [18]. Finite element analysis 

of flexible multibody systems with fuzzy parameters is presented to predict the 

dynamic response and evaluate the sensitivity [19]. Neumann expansion for fuzzy 

finite element analysis can resolve the uncertain eigenvalue problem with fuzzy 
parameters [20].A unified respons esurface framework for interval and stochastic 

finite element analysis of structures with both probabilistic and non-probabilistic 

parameters is developed [21]. Modifications for the fuzzy and fuzzy–stochastic 

FEM is proposed [22]. The static analysis of structures subjected to uncertain loads 

using  the fuzzy and intervalfinite element method is investigated [23]. 

The calculation formula of random interval finite element is investigated using 

Taylor expansion and Neumann expansion. The stochastic fuzzy finite element 

method is developed. Two calculation methods of mixed finite elements are 

presented. 

Stochastic and Interval Finite Element 

The elastic modulus , Poisson's ratio of the material and the load on the structure 

are assumed to be random process and interval variables. The global equilibrium 

equation of the structure is the following linear equations 

[𝐾]𝑈 = {𝐹}                                         (1)  

The elastic modulus , Poisson’s ratio and loads of the structure are regarded as n 
random variables 1 2, , , , ,i na a a a  and n interval variables 1 21 2[ , ],[ , ],b b b b .

..,[ , ], ,[ , ]j nj nb b b b  

Taylor expansion method 

The partial derivative of Eq.1 with respect to ia  is given by 
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                              (2)  

where 
i

U

a




 is the partial derivative of U with respect to ia . 

The partial derivative of Eq.2 with respect to ja  is given by 
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where 
2

i j

U

a a



 
is the partial derivative of 

i

U

a




with respect to ja .The displacement 

is expanded at the mean points of the random variables, and the mean value is taken 

on both sides, we get 
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The variance of { }U can be calculated by the following formula: 

 
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n n

a a a a i j

i j i j

U U
Var U Cov a a
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                            (5) 

where  Var U is the variance of U. 

Chebyshev inequality can be rewritten as 

 
2

2
1P x


 


                                     (6) 

where, is the mean,  is the standard deviation,  is any positive number. 
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