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PREFACE

Yeasts: from nature to bioprocesses travels back in time through the history of yeasts from the
early days up to now, with an evolutionary, taxonomic, and biotechnological approach. Along
this  journey,  its  chapters  present  numerous  bioprocesses  which use  these  microorganisms,
from the Neolithic revolution to the present.

While the budding yeasts subphylum has been estimated to appear on earth about 400 million
years ago, some yeast species known today are certainly more recent, such as the workhorse
Saccharomyces cerevisiae, which probably diverged from its sister species approximately 5
million years ago. Indeed, yeasts play a fundamental ecological role in nutrient recycling and
angiosperm reproduction. Thus, directly and indirectly, they have guaranteed the maintenance
of  the  biodiversity  of  plants  and,  consequently,  animals  that  establish  an  ecological
relationship with them. Yeast ecology has a chapter of its own in this book, although other
chapters have also punctuated this theme in different contexts.

The main yeast genera are discussed in specific chapters of the book. Likewise, important
biotechnological  applications  of  these  microorganisms  are  also  addressed  in  different
chapters. It should be noted that industrial sectors dependent on yeasts comprise a trillion-
dollar annual market value. Therefore, yeasts stand out as the most profitable microorganisms
in industrial microbiology.

Although humans  appeared  on earth  much more  recently,  several  yeast  species  have  been
widely domesticated by them, aiming for yeast-based bioprocesses. Given the benefits that
yeasts provide to humanity, either as the leading figures in various bioprocesses or indirectly
through their ecological role, the book ends up bringing up a question that has already been
asked other times before: would yeasts be the best friends of humans? Although the question
does  not  need  to  be  categorically  answered,  the  reading  of  Yeasts:  from  nature  to
bioprocesses will undoubtedly convince the reader of the importance of these microorganisms
for the development of civilization, economy, and science.

We wish everybody an excellent reading.

Beyond grateful,

Sérgio Luiz Alves Júnior
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CHAPTER 1

Origin and Evolution of Yeasts
Thato  Yoliswa  Motlhalamme1,  Nerve  Zhou2,  Amparo  Gamero3,  Ngwekazi
Nwabisa  Mehlomakulu4,  Neil  Jolly5,  Carolina  Albertyn-Pohl6  and
Mathabatha  Evodia  Setati1,*
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Abstract:   Yeasts  are  generally  unicellular  fungi  that  evolved  from  multicellular
ancestors in distinct lineages. They have existed in this form for millennia in various
habitats on the planet, where they are exposed to numerous stressful conditions. Some
species have become an essential component of human civilization either in the food
industry as drivers of fermentative processes or health sector as pathogenic organisms.
These  various  conditions  triggered  adaptive  differentiation  between  lineages  of  the
same  species,  resulting  in  genetically  and  phenotypically  distinct  strains.  Recently
genomic  studies  have  expanded  our  knowledge  of  the  biodiversity,  population
structure, phylogeography and evolutionary history of some yeast species, especially in
the context of domesticated yeasts. Studies have shown that a variety of mechanisms,
including  whole-genome  duplication,  heterozygosity,  nucleotide,  and  structural
variations, introgressions, horizontal gene transfer, and hybridization, contribute to this
genetic and phenotypic diversity. This chapter discusses the origins of yeasts and the
drivers  of  the  evolutionary  changes  that  took  place  as  organisms  developed  niche
specializations in nature and man-made environments. The key phenotypic traits that
are  pivotal  to  the  dominance of  several  yeast  species  in  anthropic  environments  are
highlighted.
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INTRODUCTION

The  term  “yeast”  generally  refers  to  a  polyphyletic  group  of  unicellular  or
dimorphic fungi that maintain a unicellular cell structure through most of their life
cycle, divide asexually through budding or fission, and have a sexual structure not
enclosed in fruiting bodies [1]. As members of the Kingdom Fungi, yeasts share a
common  ancestor  with  other  opisthokonts,  all  of  which  are  believed  to  have
transitioned  from  unicellular  to  multicellular  organisms.  However,  the  yeasts
seem to have subsequently “de-evolved” back to unicellularity from multicellular
filamentous  ancestors  in  distinct  lineages  of  Ascomycota,  Basidiomycota  and
certain Mucoromycota, containing more complex forms of fungi [2] and have lost
most  of  the  genes  associated  with  multicellularity.  This  “de-evolution”  was
accompanied  by  convergent  changes  in  regulatory  networks,  reduction  and
compaction of  the genome marked by extensive gene losses  [1 -  3].  Evidently,
3000 – 5000 genes, including those encoding plant cell wall degrading enzymes,
fungal cell wall synthesis and modification, hydrophobins and fungal lysozymes,
were dispensed, while genes required for essential cellular processes such as DNA
replication,  sequence  recognition,  chromatin  binding  and  chromosome
segregation were retained [4]. Moreover, it is hypothesized that the transcription
factors regulating the Zn-cluster gene family, which contributes to the suppression
of  filamentous  forms  throughout  the  life  cycle  and  under  different  conditions,
were expanded [4]. Yeasts have evolved at least five times independently within
the  Kingdom  Fungi.  Today,  yeasts  are  mainly  distributed  in  two  phyla,  the
Ascomycota  and  Basidiomycota.  Within  the  Ascomycota,  they  are  distributed
between two subphyla, the Saccharomycotina (representing almost two-thirds of
all  known  yeast),  the  Taphrinomycotina  (representing  ~  3%  of  the  total  of
members  of  the  Ascomycota)  [5].

Interestingly,  even  in  their  unicellular  life  forms,  some  yeasts  can  display
multicellular  growth  under  specific  environmental  conditions.  For  instance,
dimorphic yeasts can switch from yeast to multicellular hyphae or pseudohyphae.
These  include  pathogenic  fungi  of  mammals,  such  as  Candida  spp.  (e.g.,  C.
albicans,  C.  parapsilosis,  C.  dubliensis,  C.  guilliermondii  and  C.  lusitaniae),
Exophiala  dermatidis  and  Trichosporon  cutaneum,  as  well  as  phytopathogens
such as Taphrina deformans, Ustilago maydis, Ophiostoma ulmi and saprophytic
biotechnologically important yeasts such as Saccharomyces cerevisiae, Yarrowia
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lipolytica  and  Debaryomyces  hansenii.  In  pathogenic  fungi,  the  yeast-mycelial
switch is involved in virulence; however, in other yeasts, this switch is induced in
response  to  environmental  stimuli,  e.g.,  nutrient  limitation,  pH,  oxygen
availability,  ethanol  concentrations,  etc  [6,  7].  Pseudohyphal  or  hyphal  growth
leads to clonal multicellularity, where daughter cells “stay together” after mitotic
divisions. Alternatively, individual single cells can form multicellular aggregates
generally referred to as flocs. In S. cerevisiae, where such aggregates have been
extensively  studied,  a  group  of  proteins  called  flocculins  is  responsible  for  the
phenotype [8]. While most ascomycetous yeasts are distributed in the subphylum
Saccharomycotina, a few unicellular or dimorphic fungi in which the unicellular
form is restricted to specific environmental conditions also exist in the subphylum
Pezizomycotina [5].

Multicellularity improves yeast access to complex substrates, allows for efficient
nutrient uptake, and enhances the stress and toxin resistance [3, 8]. Despite these
benefits,  most  yeasts  maintain  a  long-term  single-celled  lifestyle.  With  this
morphology and limited dispersal, most yeasts have evolved adaptive mechanisms
that allow them to thrive in liquid environments containing concentrated simple
sugars  (e.g.,  plant-derived  liquids,  such  as  fruit  juices,  honeydew,  and  nectar),
where they have a fitness advantage over prokaryotes [1, 2]. Such adaptations are
explained  by  many  genetic  features  that  have  undergone  multiple  rounds  of
modifications  to  endow  different  species  with  traits  that  allow  for  niche
specialization. These genetic signatures and their associated phenotypes will be
discussed in detail in subsequent sections.

MOLECULAR DRIVERS OF EVOLUTION

Gene losses, expansions and concomitant fine-tuning were the important drivers
in  the  switch of  yeast  from their  multicellular  origins  to  single-celled  lifestyle;
these  and  additional  modifications  have  also  contributed  significantly  to  yeast
evolution and species diversification. Mainly, these modifications include Whole-
Genome  Duplication  (WGD),  Large  Scale  Genome  Rearrangements  (LSGR),
Horizontal  Gene  Transfer  (HGT),  Copy  Number  Variations  (CNV).  WGD is  a
process  by  which  additional  copies  of  the  genome  are  generated  due  to
nondisjunction during meiosis. Through this process, organisms can acquire more
than  two  complete  sets  of  chromosomes,  leading  to  a  change  in  ploidy.
Acquisition  of  genome  copies  can  arise  through  interspecies  hybridization,
resulting  in  allopolyploids  or  intraspecies  hybridization,  leading  to
autopolyploidization.  WGD  is  typically  followed  by  inter-chromosomal
rearrangements and the loss of one of the gene duplicates [9]. Large-scale genome
rearrangements may occur through chromosome duplications or aneuploidy, thus
creating copy number variations that may change gene dosage [10]. CNVs refer to
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CHAPTER 2

Ecology: Yeasts on their Natural Environment
Sergio Álvarez-Pérez1,*

1  Department  of  Animal  Health,  Faculty  of  Veterinary  Medicine,  Complutense  University  of
Madrid, Madrid, Spain

Abstract: Yeasts are prevalent in most habitats on Earth, where they often reach high
abundance and establish species-rich communities. To date, most research efforts have
focused  on  cataloging  the  prevalence  and  diversity  (at  the  phylogenetic  and/or
physiological level) of yeasts in different habitats and searching for reservoirs of novel
yeast taxa. However, little is known regarding the ecological roles that yeasts play in
their  natural  habitats  or  the  relationships  that  they  maintain  with  other  coexisting
organisms. This chapter provides a general overview of yeast habitats, with attention to
the response of yeasts to diverse abiotic and biotic factors. Furthermore, the chapter
presents  a  detailed  description  of  some  relevant  systems  where  yeasts  interact  with
other  macro-  and  microorganisms,  namely  the  insect  microbiome,  phylloplane,
decaying  cactus  tissues,  angiosperm  flowers,  human  microbiome,  and  industrial
processes.  Future  challenges  in  the  study  of  yeast  ecology  are  briefly  discussed.

Keywords:  Anthropogenic  environment,  Aquatic  habitat,  Atmosphere,  Cactus,
Community,  Dispersal,  Diversity,  Ecology,  Environmental  factor,  Evolution,
Floral nectar, Flower, Human mycobiome, Industrial process, Insect microbiome,
Multipartite interaction, Phylloplane, Soil, Symbiosis, Yeast.

INTRODUCTION

Virtually,  all  ecosystems  on  Earth  contain  yeasts.  These  taxonomically  and
phylogenetically  diverse  unicellular  fungi  colonize  most  terrestrial  and  aquatic
habitats,  including  those  most  inhospitable,  and  can  also  be  found  in  the
atmosphere [1 - 5]. Furthermore, many yeast species are integral to human society
as they are involved in the production of diverse food products, beverages, and
industrial chemicals, and may act as human or animal pathogens. In addition, they
provide  excellent  study  models  for  use  in  cell  biology  and  other  disciplines.
However, the ecology of most known yeast species is still poorly understood, and
even  the  natural  habitats  of  renowned  model  yeasts  such  as  Saccharomyces
cerevisiae  are  far  from  being  fully  characterized  [6,  7].
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An  important  hurdle  in  the  study  of  yeast  ecology  is  that,  until  recently,  most
studies of yeast presence in natural and anthropogenic environments have utilized
culture-based  approaches,  which  tend  to  be  biased  toward  the  most  abundant
members  of  a  community  and  often  neglect  low-abundance  and  slow-growing
species  [4,  8,  9].  Additionally,  the  use  of  different  sampling  strategies,  culture
media,  and  incubation  conditions  has  made  it  difficult  to  compare  the  results
obtained in different studies. Fortunately, recent developments in next-generation
sequencing and other DNA-based culturing-independent methods have improved
our knowledge regarding the diversity and habitat distribution of yeasts and other
fungi in nature [10, 11].

This chapter provides a general overview of yeast habitats, with a special focus on
the response of yeasts to diverse environmental factors. Subsequently, it  delves
into a more detailed description of some systems where yeasts interact with other
macro-  and  microorganisms,  often  participating  in  multipartite  interactions.
Finally,  future  challenges  in  the  study  of  yeast  ecology  are  briefly  discussed.

YEAST HABITATS

Yeast  abundance  and  diversity  in  natural  and  anthropogenic  habitats  are
determined by a variety of abiotic and biotic factors that frequently exhibit spatial
heterogeneity and temporal variation (Table 1). In addition, such growth-limiting
factors usually come into force together and simultaneously, mutually influencing
each other, so that the outcome of these interactions may be difficult to predict [2,
3]. Moreover, there are large-scale phenomena, such as climate and biogeography,
which  manifest  themselves  through  changes  in  abiotic  and  biotic  factors  (e.g.,
temperature, humidity, solar radiation, soil composition, vegetation, and animal
vectors) [2].

Table 1. Overview of the main environmental factors that influence the metabolic activity, growth, and
survival of yeasts [2, 3, 5].

Factors Short Description

Temperature Temperature influences yeast growth and generation time. Most yeasts are mesophilic, and
grow  best  between  20  and  30  °C.  Some  species,  mostly  pathogens  of  warm-blooded
animals, can grow at 37 ºC. The few yeast species capable of growing at 48–50 ºC are
considered  thermotolerant,  rather  than  truly  thermophilic.  Temperatures  >50  °C  are
usually lethal for vegetative yeast cells. The lower temperature limit of growth for some
psychrotolerant  species  may  extend  below  0  °C,  if  water  remains  fluid  (e.g.,  in  salty
seawater).

Light and solar
radiation

Yeasts  are not  photosynthetic organisms,  so illumination is  not  a  requirement for  their
existence. However, ultraviolet radiation can be lethal.
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Factors Short Description

Pressure Under natural conditions, the normal atmospheric pressure does not affect yeast growth.
However, in the deep sea and some industrial processes, yeast cells must withstand high
pressure. The viability of yeast cells decreases with increasing pressures above 100 MPa,
and the cells are destroyed between 200 and 300 MPa.

Water activity Water  availability,  generally  expressed  as  water  activity  (aw),  is  an  important  factor
affecting yeast growth. Most yeasts can grow well at water activities 0.95–0.90. Only a
few  yeast  species  require  reduced  water  activity  and  are  considered  truly  xerophilic.
Nevertheless, many yeast species can grow at high sugar and/or high salt concentrations
and are classified as xerotolerant.

Oxygen
dependence

Yeasts are basically aerobic organisms. Fermentative yeasts, which represent around half
of the species described to date, are only facultative anaerobes.

pH In general, yeasts prefer a slightly acidic medium and have an optimum pH between 4.5
and 5.5, but most species tolerate a wide range of pH values (generally between 3 and 10).
Some species can grow at a strongly acidic pH (≤1.5). The tolerance to low pH depends
on the type of acidulant, with organic acids possessing a stronger inhibitory effect than
inorganic  acids.  Although  acidic  conditions  are  better  tolerated  than  alkaline  ones,
numerous  yeast  species  can  thrive  at  pH  above  10.

Nutrient
availability

Yeasts require some sources of carbon, nitrogen, mineral salts, and certain vitamins and
growth  factors.  Differences  among  yeast  species  in  their  ability  to  assimilate  specific
nutrients play a major role in habitat specificity. In general, cosmopolitan yeast species are
generally the most heterogeneous in their nutritional abilities, whereas yeasts that have
specialized habitats exhibit narrower nutritional potentials.

Presence of
toxic
compounds

Ethanol,  which  is  the  main  product  of  alcoholic  fermentation,  exerts  a  toxic  effect  on
various yeast species. Saccharomyces cerevisiae can tolerate 13–15% ethanol, and some
strains  even  >18%.  Carbon  dioxide  (CO2),  which  is  the  second  product  of  alcoholic
fermentation, rarely accumulates at inhibitory concentrations under natural conditions, but
yeasts  living  in  the  intestinal  tract  of  animals  may  be  subjected  to  high  CO2

concentrations. CO2  can dissolve in water and, depending on the pH, form bicarbonate
ions that inhibit yeast growth. Acetate, lactate, and other weak organic acids widely used
as  preservatives  in  the  food  industry  (e.g.,  benzoic  and  sorbic  acid)  exert  specific
inhibitory effects on yeasts. Plant and animal tissues contain diverse compounds that may
inhibit yeast growth.

Interaction with
other organisms

In their natural habitats, yeasts often interact with different macro- and microorganisms.
Such interactions can be facultative or obligate, mutual or unidirectional, and they may
have  a  positive  (+),  negative  (-)  or  neutral  (0)  effect  on  the  partners  involved.  The
following  modalities  are  possible:  mutualism  (+/+  interaction),  competition  (-/-),
commensalism  (+/0),  amensalism  (-/0),  and  predation/parasitism  (+/-).

Among all  the yeast  species  found in any habitat,  it  is  important  to  distinguish
those that are essential components of the community from those that are transient
members [4]. Moreover, while some yeast species are ubiquitous generalists that
occupy a wide geographic range and can dwell in different habitats, other species
seem to have a more restricted distribution [5]. Determining whether a given yeast
species  is  an  essential  or  transient  member  of  the  community,  or  is  a  habitat

(Table 1) cont.....
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CHAPTER 3

Yeast Taxonomy
J. Alfredo Hernández-García1, 2, Esaú De-la-Vega-Camarillo2, Lourdes Villa-
Tanaca2 and César Hernández-Rodríguez2,*

1  Universidad  Autónoma  de  Nuevo  León,  Facultad  de  Ciencias  Forestales,  Departamento  de
Silvicultura, Carretera Nacional No. 85, Km. 145, Linares, Nuevo León C.P. 67700, México
2  Instituto  Politécnico  Nacional,  Escuela  Nacional  de  Ciencias  Biológicas,  Departamento  de
Microbiología, Ciudad de México C.P. 11340, México

Abstract:  The  massive  parallel  sequencing  technology,  applied  to  the  taxonomy of
microorganisms,  has  been  affecting  the  traditional  phenotypic  and  molecular
phylogenies based on the sequence of a single gene or a small handful of genes. The
exponential  accumulation  of  new,  entire  genome  sequences  of  microorganisms  in
public  databases  in  recent  years,  especially  in  the  fields  of  taxonomic  and
biotechnology,  is  driving  a  conceptual  revolution  in  the  way  of  understanding  the
concepts of species in microorganisms in general and fungi in particular. The problems
of drawing species boundaries, reclassification of species, discovering new taxa and
clades, recognizing synonyms, and new species for science can now be addressed with
genomic  approaches.  Derived  from  all  this,  much  more  robust  high-resolution
phylogenies, based on core genomes or broad collections of genes and their deduced
proteins, are currently being reconstructed. Although this effort is still far from being a
canon in the taxonomy of yeasts, it will gradually turn into a change and challenge that
researchers  are  taking  into  account  due  to  the  great  power  and  reliability  of  these
genomic approaches and bioinformatics tools. Likewise, the complete sequence of the
genomes of the strains of microorganisms of industrial or biotechnological interest will
allow  limiting  biopiracy,  help  protect  patents,  recognize  the  appellation  of  origin,
discourage  violations  of  intellectual  property  rights,  and  resolve  conflicts  over  the
rights of the commercial exploitation of microorganisms. In this chapter, an effort is
made  to  compare  conventional  taxonomy techniques  with  the  latest  work  involving
genomic sciences as a key tool in yeast taxonomy.

Keywords:  Bioinfomatics,  Orthologues,  Phylogenomics,  Yeast,  Yeast
Taxonomy.

Sérgio Luiz Alves Júnior, Helen Treichel, Thiago Olitta Basso and Boris Ugarte Stambuk (Eds.)
All rights reserved-© 2022 Bentham Science Publishers

* Corresponding author César Hernández-Rodríguez: Instituto Politécnico Nacional, Escuela Nacional de Ciencias
Biológicas, Departamento de Microbiología, Ciudad de México C.P. 11340, México; Tel: +52 5557296000; ext: 62554;
E-mail: chdez38@hotmail.com

mailto:chdez38@hotmail.com


Yeast Taxonomy Yeasts: From Nature to Bioprocesses   59

INTRODUCTION

Phenotypic Taxonomy of Yeast

Formerly,  the  techniques  used  in  yeast  taxonomy  were  mainly  based  on
phenotypic  traits  and  physiological  characteristics  [1].  The  identification  and
description of new species depended on the comparison of morphological features
as  well  as  on biochemical  and physiological  profiles  with previously described
species  [2].  Fermentation  and/or  assimilation  of  several  sugars,  organic  acids,
alcohols, sugar alcohols, starch, and different nitrogen sources, as well as growth
differences,  were  used  for  both  identification  and  formal  description  of  new
species.  Gradually,  new biochemical  tests,  such  as  polysaccharide  composition
assays  of  the  cell  wall  and capsule,  mycocin susceptibility,  and electrophoretic
comparisons of enzymes, are being used to determine subtle differences among
closely related strains [3]. However, these approaches require large numbers of
tests,  chemical  standards  and  substrates,  substantial  equipment,  sensitive
techniques, and type strains to identify an isolate or describe a new species; such
studies  were  generally  only  performed  by  specialists  in  yeast  taxonomy.
Consequently,  only  a  few  laboratories  in  the  world  had  the  capacity  to  fully
identify  or  describe  new  yeast  species.  The  time-consuming  phenotypic
characterization  of  pure  cultures  and  the  formal  description  of  the  new species
became  a  bottleneck  for  non-specialist  scientists,  who  resigned  themselves  to
reporting their isolates and strains only at the genus level. In retrospect, we can
see that  many new yeasts of industrial  or ecological  interest  that  were reported
before the mid-90s were only characterized to the genus level due to difficulties in
analyzing all evidence for proper identification and because of the low number of
species formally described.

However,  as  more  strains  of  each  species  were  isolated  and  phenotypically
characterized, it became evident that a great phenotypic intraspecific diversity was
universal to many yeast species, which complicated their adequate identification,
species limits, and species concepts [4, 5].

MOLECULAR TAXONOMY OF YEAST

At the global level, the importance of the identification of yeasts with the use of
molecular methods is remarkable. Genetic characterization of ascomycete yeasts
began with the determination of DNA base composition, traditionally expressed
as  CG  content,  which  could  provide  information  on  the  dissimilarity  of  two
organisms  but  not  on  their  similarity  since  two  organisms  that  are  not
phylogenetically  related  often  have  a  similar  CG  content  [6].  Among  yeasts,  a
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ratio between 28 and 50% GC was calculated, whereas, in basidiomycete yeasts, it
ranged  between  50  and  70%  GC.  The  wide  margins  of  these  intervals  were
insufficient  and  useless  as  elements  for  the  identification  of  species  [7].

Later, genetic relatedness using nuclear DNA-DNA reassociation or hybridization
of DNA-DNA techniques impacted the taxonomy of fungi in general and that of
yeasts in particular because it revealed a clearer picture of similarity and allowed
to  recognize  synonymy  of  many  species,  providing  a  quantitative  value  as  a
percentage  of  the  differences  [8].  Although  DNA-DNA  hybridization  is  a
laborious method, the technique had a marked impact on yeast recognition, even
if it did not solve the issue of the genetic differentiation of closely related species
[9]. An arbitrary minimum cutoff value of 70% of the DNA association of two
species  was  considered  sufficient  to  recognize  two  strains  as  belonging  to  the
same species [10]. The DNA-DNA reassociation values were subsequently related
to  the  percentage  of  similarity  of  the  bacterial  16S rRNA gene.  Thus,  a  DNA-
DNA reassociation value of 70% was equivalent to a 97% percent similarity of
the 16S rRNA gene [11].  In recent  years,  an alternative measurement has been
adopted:  the  mean  nucleotide  identity  (ANI),  which  is  calculated  by
computational  comparison  of  two  sequences  of  complete  genomes.  An  ANI
percentage of  95–96% generally corresponds to the threshold of  70% in DNA-
DNA hybridization [12, 13].

However,  it  was not  until  the advent of  sequencing gene and non-coding DNA
fragments that molecular biology methods became important due to their ease of
performance, economy and universality. Gene sequencing was a relatively easy,
quick  and  powerful  method  of  identifying  until  species  level  many  microbial
groups  by  phylogenetic  reconstruction  and  nucleotide  similitude  supported  by
bioinformatics software tools. As seen in Fig. (1C), the yeast ribosomal regions
offer  several  possibilities  for  sequencing,  but  domain  2  of  large  subunit  26S
ribosomal RNA (26S r RNA or 26S/28S LSU) was initially used as a molecular
marker  because  it  apparently  contained  sufficiently  variable  information  to
distinguish between closely related species [14]. However, the sequencing of both
D1 and D2 domains (D1/D2) of 26S rRNA yeast genes (~600 bp) quickly became
a popular  tool  for  Ascomycota yeast  identification,  and the sequence databases
suddenly became enriched.
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Abstract:  The  monophyletic  Saccharomyces  sensu  strictu  genus  is  composed  of  8
species and several interspecies hybrids. Strains of this genus have been used in various
processes  that  form  a  significant  part  of  human  culture  and  history.  These  include
brewing, baking, production of wine and several other fermented beverages, and more
recently, the production of biofuels, drugs, and chemicals. They can be found in the
most diverse environments on almost all continents worldwide. A prominent example
is  the species  S.  cerevisiae,  which has  a  remarkable  history with humankind.  In  the
present chapter, we illustrate the habitats of the Saccharomyces species and their long-
lasting domestication process, as well as the hybridization that occurs between various
species of this genus and their underlying industrial applications. We then finalize the
text  with  an  emblematic  case  study  of  its  application  in  industrial  sugarcane-based
ethanol production, as performed in Brazil.

Keywords:  Diversity,  Domestication,  Ethanol,  Fermented  beverages,
Fermentation  processes,  Habitat,  Hybridization,  Stress,  Sugarcane,
Saccharomyces,  yeast.

INTRODUCTION

The monophyletic Saccharomyces sensu strictu genus is actually composed of 8
species: S. arboricola, S. cerevisiae, S. eubayanus, S. jurei,  S. kudriavzevii, S. mi-
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katae,  S. paradoxus, S. uvarum, and several interspecies   hybrids,   including S.
bayanus and S. pastorianus [1]. Saccharomyces is considered a ubiquitous genus
as it can be found in the most diverse natural environments. For example, non-
domesticated Saccharomyces species have already been isolated on all continents
on Earth, except for one (Antarctica). Saccharomyces species have been identified
both in freshwater and seawater as well as in soil, fruits, and the gastrointestinal
tracts  of  various  animals  [1  -  5].  The  domestication  of  Saccharom  yces  began
even before the domestication of animals by humankind, spanning for thousands
of years, during the course of winemaking, brewing, baking, and more recently,
the production of fuels and chemicals [6].

Natural  or  artificial  hybridization between strains  or  species  is  a  very common
phenomenon that occurs in almost all sexually reproducing groups of organisms.
Moreover, hybrids normally provide a selective advantage in a given environment
[7]. Their chimeric genomes usually exhibit unique phenotypic traits that are not
necessarily  intermediate  between  those  present  in  the  progenitors.  Therefore,
Saccharomyces  hybrids  have  found  important  industrial  applications  across
industries,  including  the  ones  mentioned  above.

Humans  have  consistently  exploited  one  particular  species,  S.  cerevisiae,  for  a
myriad of bioprocesses [8,  9].  Specifically,  in bioethanol production, this yeast
species  performs  pivotal  roles  in  Brazil,  enabling  the  country  to  produce
renewable and green fuel for transportation, contributing to sustain its renewable
energy  matrix,  which  constitutes  an  interesting  case  study  for  yeast  industrial
biotechnology.  In  this  aspect,  Brazil  has  the  most  economical  and  sustainable
ethanol fermentation process in the world, with a very favorable energy balance.

SACCHAROMYCES HABITATS: WHERE?

Although Saccharomyces yeasts are widely recognized for their biotechnological
applications through which they have co-existed with humans for approximately
10,000 years, they can be found in the most diverse natural environments. Due to
thousands of years of domestication of the species of this genus (please, refer to
the next section), which began even before the discovery of microorganisms [10],
the distribution of Saccharomyces around the planet is a two-way street with its
domesticators:  on  the  one  hand,  archaeological  records  and  analysis  of  genetic
sequencing point out that similar fermentative processes were conducted by the
polyphyletic  strains  of  Saccharomyces  in  different  places  on  the  planet,
demonstrating that fermentations started by naturally occurring yeasts [11 - 16],
while on the other, there are indications that human beings may have transported
these  yeasts  to  regions  where  they  were  not  previously  found.  Given  the  close
millennial  relationship  between  Saccharomyces  and  humans,  the  presence  of
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some  species  in  certain  places  on  Earth  has  been  attributed  to  the  migratory
movements  of  humanity  [13,  15],  as  recently  reported  for  the  presence  of
Holarctic strains of S. uvarum in Patagonia [17]. As a matter of fact, this region of
South America harbors two genetically differentiated populations of S. uvarum,
with  one  of  them  being  closely  related  to  the  North-hemisphere  strains.  It  is
believed that this Holarctic-derived population is a result of the introduction of
apple trees by European immigrants in the 16th century [17].

To  the  best  of  our  knowledge,  non-domesticated  Saccharomyces  species  have
already been isolated on all continents on Earth, with the exception of Antarctica
[16,  18,  19].  The  City  of  Fairbanks,  in  central  Alaska,  US,  accounts  for  the
northernmost  point  (65°59′  N),  where  a  wild  strain  of  Saccharomyces  (of  the
species S. ellipsoideus) was found [20]. In the southern hemisphere, the Martial
Glacier in Ushuaia (Tierra del Fuego, Argentina) appears as the place of isolation
of a wild member of Saccharomyces (of the species S. uvarum) of greater south
latitude  (54°77'  S)  [21].  Finally,  Auckland,  New  Zealand  is  the  most  easterly
point (174°46' E) and the Island of Hawaii, US (155°50' W), the most westerly
point,  where  non-domesticated  representatives  of  this  genus  (of  species  S.
cerevisiae and S. paradoxus, respectively) have been reported [22, 23]. However,
at the opposite ends of longitude, both places are Pacific islands relatively close to
each  other  (~7200  km).  In  addition  to  their  wide  distribution  on  the  planet,
interestingly,  a  strain  of  the  main  species  of  this  genus  —S.  cerevisiae— even
surpassed the limits of our biosphere and survived on a 40-day space flight in the
Russian space station Mir, despite having presented mutation frequencies up to
three  times  higher  than  those  observed  in  their  parental  counterpart  strain  that
stayed on the ground [24].

Therefore,  these  yeasts  are  also  versatile  concerning  different  temperature
conditions. Despite being considered mesophilic microorganisms, in the extreme
South and North regions where these yeasts have been found, the average annual
temperature  is  between –1 °C and 2  °C,  reaching up to  –20 °C in  winter  (data
from  CLIMATE-DATA  –  www.climate-data.org).  One  of  the  warmest  places
where wild Saccharomyces strains have been found may be the Amazonian Forest
biome. In this environment, Barbosa and co-workers [25] found these yeasts when
they carried out a survey of wild Saccharomyces populations in the Brazilian state
of  Roraima,  which  is  cut  by  the  Equator.  In  this  region  of  Brazil,  the  average
minimum and maximum temperatures range between 22 °C and 34 °C (data from
the Weather Forecast and Climate Studies Center of Brazil – www.cptec.inpe.br).
These  data  demonstrate  the  adaptive  diversity  within  a  single  genus  and  the
consequent  facilitation  of  its  domestication  processes.

http://www.climate-data.org
http://www.cptec.inpe.br
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CHAPTER 5

Candida
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Abstract:  The  genus  Candida  represents  a  huge  repertoire  of  fungal  species  with
diverse functions. These unicellular yeasts possess great clinical significance because
of the high level of pathogenicity exhibited by some members of the genus. Moreover,
several  species  of  Candida  are  highly  valued  industrially  as  microbial  platforms  to
produce  commercial  products.  Therefore,  there  is  a  persistent  need  to  describe  the
genus  as  a  whole,  considering  its  immense  applications  in  both  medical  and
biotechnological grounds. The genus is being continuously explored, with new species
regularly emerging as pathogenic. However, since most of the in-depth research has
been focused on a few species of these yeasts, therefore, only the pathogenic species
have been described in this chapter, reviewing the underlying characteristics that label
their pathogenicity, which include their incidence of occurrence among the population,
spread  of  infection,  factors  affecting  the  host  immune  system,  and  disease  control.
Further, the major studies identifying the biotechnological potential of the species have
been discussed.

Keywords:  Adhesin,  Biodegradation,  Biofilm,  Bioremediation,  Biosurfactants,
Candidiasis,  CTG  clade,  Drug  resistance,  Enzymes,  Hyphae,  Non-albicans
Candida,  Parasexual,  Pathogenic,  Phagocytes,  Pseudohyphae,  Single-cell  oil,
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INTRODUCTION

The genus Candida contains a mixed population of unicellular yeasts, which are
difficult  to  group  by  their  morphological  or  physiological  characteristics.  The
species belonging to this genus do not share similar types of distinctive features.
The  term  ‘Candida’  loosely  refers  to  imperfect  fungi  as  the  members  do  not
exhibit  a  clearly  defined  sexual  cycle.  However,  the  name  originates  from  the
Latin word ‘candidus’ meaning white, as pigmentation is usually absent in these
yeasts [1]. In  1923, the Danish  microbiologist Christine Berkhout  first classified
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nine  yeast  species,  originally  assigned  to  the  Monilla  genus,  to  this  new taxon
based  on  certain  morphological,  biochemical,  and  physiological  characteristics
[2]. Since then, the genus was reassigned several times, and finally, with the aid
of molecular biology tools, a definite classification has been possible. Different
species  of  these  yeasts  are  widely  distributed  in  natural  ecosystems  and  are
usually found in human microflora as saprophytes. However, some of them can
become opportunistic pathogens given a congenial host environment.

(I). CANDIDA: A POLYPHYLETIC GENUS

The  genus  currently  comprises  around  200  species  of  ascomycetous  yeasts
(kingdom: Fungi, division: Ascomycota, subdivision: Saccharomycotina) grouped
under Hemiascomycetes class and Saccharomycetaceae family [1]. The cell shape
and size vary from species to species and also on the environmental conditions,
but usually range from ovoid to elongate, and (1-8) μm x (1-6) μm [3, 4]. Cells
may or may not form mycelium; pseudohyphae and occasionally true hyphae are
observed [1, 5]. The usual mode of reproduction is budding, but the sexual cycle
is observed in some cases [6]. Typically, Candida  species are aerobic, glucose-
fermenting yeasts, unable to assimilate nitrate or inositol, and do not synthesize
carotenoids  [1,  4].  A  small  number  of  Candida  species  are  efficient  pentose-
utilizers that have been exploited for the effective use of hemicellulosic wastes.
Numerous studies also focused on these yeasts metabolizing plant byproducts and
subsequent  bioconversion  to  important  biotechnological  compounds  such  as
antibiotics,  vitamins,  complex  alkanes,  and  biofuel  [7].  Several  species  like  C.
tropicalis,  C.  maltosa,  C.  famata,  C.  guilliermondii,  and  C.  krusei  have  been
extensively employed for the industrial production of value-added metabolites [8].
Despite  such  immense  biotechnological  potential,  the  genus  has  gained  its
importance because of the pathogenesis and clinical significance of many species,
the foremost being C. albicans, closely followed by C. tropicalis, C. parapsilosis,
and C. glabrata.

Despite the numerous attempts at reclassification, a common evolutionary origin
has  not  been  established  among  the  members  of  this  genus;  hence  the  genus
Candida  appears  to  be  a  polyphyletic  group  posing  a  substantial  problem  in
characterizing the species. A breakthrough came in 1989 when Kawaguchi et al.
described a different codon usage for CTG (or CUG) codon in C. cylindraceae
(currently known as C. rugosa), which was found to code for serine instead of the
usual leucine [9]. Further investigation by Sugita and Nakase identified 67 such
species exhibiting alternative codon usage [10]. Currently, phylogenetic clustering
based on whole-genome sequencing has divided the Saccharomycotina yeasts into
two major groups- 1) CTG clade with species exhibiting non-classical translation
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of  CUG  into  serine  (Fig.  1),  and  2)  non-CTG  clade  including  whole-genome
duplication  (WGD)  clade  comprising  yeasts  which  have  undergone  genome
duplication,  including  Saccharomyces  species  and  the  pathogenic  C.  glabrata.
While  many  of  the  Candida  species  belong  to  the  CTG  clade,  including  C.
albicans, C. dubliniensis, C. tropicalis, C. parapsilosis, C. maltosa, C. famata, C.
guilliermondii,  C.  lusitaniae,  C.  oleophila,  and  C.  rugosa,  which  are  mostly
pathogenic, the non-Candida yeast Pichia stipitis also falls in this group [11 - 14].
Such reassignment of codon has been correlated with the length of the isoprene
chain  present  in  coenzyme  Q9  (Co-Q9),  the  predominant  ubiquinone  found  in
these species [10].

Fig. (1). Phylogenetic distribution of Candida species of yeasts. Most of the important pathogens of the
genus  fall  into  the  CTG  clade  translating  the  CUG  codon  into  serine,  except  for  the  highly  frequent  C.
glabrata, which falls in the WGD clade and is more closely related to S. cerevisiae. The figure is taken from
Papon et al., 2013 [15].

Normally mistranslation of codons is seen in organisms as an adaptive response to
various  stresses.  For  example,  the  mistranslation  of  UGA  stop  codon  to
selenocysteine in response to oxidative stress in neurons has been reported [16].
Likewise,  the  mistranslation  of  CUG  in  C.  albicans  is  an  example  of  stress-
induced  response,  although  3%  of  codons  are  still  translated  as  leucine  in  the
yeast  following  standard  codon  usage  pattern  [17].  Misincorporation  of  serine
initiates  a  cascade  of  morphological  changes  in  the  organism,  altering  its
pathogenicity  and  susceptibility  to  the  host  immune  system  and  morphogenic
transition. Miranda et al. reported that CUG mistranslation dramatically changes
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Abstract:  Pichia pastoris  are  heterotrophic  yeasts  able  to  use many carbon sources
such  as  glucose,  glycerol,  and  methanol;  they  are  unable,  however,  to  metabolize
lactose.  Their  methylotrophic  properties,  high  yield,  efficient  post-translational
modifications,  and  secretion  of  recombinant  proteins,  alongside  a  lack  of
hyperglycosylation, a post-translational process similar to that of mammals, and low
maintenance costs for large-scale applications, make this yeast a promising alternative
to  produce  recombinant  proteins.  The  main  recombinant  products  obtained  from P.
pastoris  include  vaccines  and  other  biopharmaceuticals,  enzymes,  proteins,  and
pigments. Pichia spp. are also used in ethanol production and many other foods such as
fermentation of coffee, cocoa, and olives, as well as alcoholic beverages. The use of
Pichia yeasts in wastewater treatment and in fungal control of stored grains and fruit
has also been reported. This chapter will discuss the environmental diversity of many
species of Pichia, especially P. pastoris. Furthermore, the main uses of Pichia spp. in
many bioprocesses will also be explored.
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INTRODUCTION

The methylotrophic yeast Pichia pastoris, also known as Komagataella pastoris,
has been commercialized   by the Phillips Petroleum Company as   a   source   of
single-cell protein (SCP) destined for animal feed. It grows using methanol as a
carbon source,  causing overexpression of  alcohol  oxidase enzyme (AOX1) [1].
However, the increase in oil prices around 1970 negatively affected the use of P.
pastoris  as  SCP  [2].  Later  on,  Phillips  Petroleum  contacted  Salk  Institute
Biotechnology/Industrial  Associates,  Inc.  (SIBIA)  seeking  to  develop  a  Pichia
strain that could be used as a host cell for recombinant protein production [3, 4].
Based on the success this strain has shown as host, many different companies and
research groups refined the initial protein expression system seeking to improve
the  recombinant  protein  expression  rate.  Its  potential  applications  now  include
synthetic biology and whole-cell biotransformation.

The first record of protein production through biological systems for human use
was a protein-based smallpox vaccine developed by Edward Jenner in 1796. From
1990 onwards, the biotechnology industry has been using microbial fermentation
techniques  to  obtain  products  to  be  used  in  many  different  areas,  such  as  the
production  of  cleaning  agents,  fabrics,  medicines,  plastics,  and  even  nutrition
supplements.  With  the  advent  of  recombinant  DNA,  it  is  now  possible  to  use
cultures  of  yeast,  mold,  bacteria,  mammal  cells,  and even bugs  in  recombinant
protein production (RPP) [5].

Escherichia  coli  is  one  of  the  most  commonly  used  microorganisms  in
recombinant protein research, mostly due to its quick duplication time, high cell
density, fully mapped genome, and low cost. However, the use of E. coli also has
disadvantages, such as the lack of post-translational processing (glycosylation),
reduced  yield  of  recombinant  products,  presence  of  inactive  proteins,  and
potential production of cytotoxic compounds [6, 7]. Many proteins are not able to
be expressed in E. coli  strains, as they require exact levels of post-translational
maturity and, as such, must be produced by methylotrophic yeasts [8].

In  this  regard,  yeasts  such  as  Pichia  pastoris,  Saccharomyces  cerevisiae,
Hansenula polymorpha, and Kluyveromyces lactis are the most prominent [9, 10].
These yeasts tend to be applied in the production of heterologous proteins, mostly
due to their high yield, strain stability, rapid growth, high cell density, and post-
translational  processing  similar  to  that  of  mammals  [11];  however,  their
glycosylation pattern remains different from that of human cells [12, 13]. The use
of  non-conventional  yeasts  has  become  a  promising  alternative,  merging
microbial advantages and eukaryotic protein processing  while  displaying  several
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advantages over S. cerevisiae regarding pathway requirements, product profiles,
and overall cell physiology [6, 14].

Regarding the protein expression system using recombinant DNA techniques, P.
pastoris  displays  improved  productivity  rates,  more  efficient  post-translational
modifications,  better  secretion  of  recombinant  proteins,  lack  of  hyper-
glycosylation, reduced costs for large-scale production and maintenance, as well
the  ability  to  grow  under  high  cell  density  conditions  (up  to  130  g/L)  when
compared to S.  cerevisiae  [4,  15,  16].  P. pastoris  also secretes low amounts of
endogenous proteins, which helps with the purification process, and adapts well to
genetic  manipulation,  which  allows  the  use  of  advanced  genetic  modification
tools  (i.e.,  CRISPR/Cas9).  These  factors,  in  tandem  with  P.  pastoris’  low
production  costs  [17,  18],  make  it  a  versatile  option  for  biotechnological
expression  systems.

Pichia pastoris has been successfully used in the production of many recombinant
heterologous proteins [4, 19 - 21] and multiple enzymes, such as α-amylase [19],
β-mannanase [22], and β-glucosidase [23] to be used in chemical, pharmaceutical,
and  food  industries.  Furthermore,  the  increase  in  knowledge  of  P.  pastoris’
properties, the availability of genome data, and the development of new tools for
cloning multiple genes have expanded its applications in industrial processes and
in the production of important  chemical  compounds via  metabolic engineering.
These  compounds  and  processes  include  xanthophylls  [24],  carotenoids  [25],
hyaluronic acid [26], ricinoleic acid [27], ethanol [28, 29], isobutanol [30], xylitol
[31  -  33],  cocoa  fermentation  [34],  vaccine  production  [35  -  42],  biocontrol
systems [43 - 45], and removal of dyes and colorings from wastewaters [31 - 33].

PICHIA: A DIVERSITY OF ENVIRONMENTS

More than 100 species  of  Pichia  have been discovered,  most  of  them found in
rotting plants or symbiotically with insects; some, however, can be found in the
necrotic  tissues  of  some  cacti  (Pichia  cactophila)  [46],  in  cured  cheeses  (P.
membranifaciens)  [47,  48],  raw  milk  and  fresh  cheese  (P.  anômala)  [49],  and
even some citruses [50]. Many of these Pichia species might even be present in
many  foods,  beverages,  and  products  with  high  sugar  content,  as  undesirable
contaminants. Some of these species are able to utilize organic acids present in
many foods, causing spoilage, usually as a thin film on the surface of pickles [51],
beer,  and  wines.  Among  all  yeasts,  Pichia,  Candida,  Saccharomyces,  and
Rhodotorula are the genera most commonly associated with spoilage of juices and
wines,  as  these  products  contain  microflora  naturally  resistant  to  the  product’s
acidity. The main effects of the spoilage brought by these microorganisms include
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CHAPTER 7

Brettanomyces:  Diversity  and  Potential
Applications in Industrial Fermentation
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Abstract:  Although  mainly  known  for  their  role  in  wine  spoilage,  Brettanomyces
yeasts  have  been  increasingly  recognized  as  having  beneficial  effects  on  fermented
beverages.  These  microorganisms  can,  for  instance,  increase  flavor  complexity,  a
property  that  can  be  controlled  by  understanding  the  physiological,  genetic,  and
biochemical traits of Brettanomyces species in fermentation processes. Moreover, their
genetic  diversity,  exceptional  stress  and low-pH tolerance,  and peculiar  metabolism
suggest great potential for bioethanol production. This chapter summarizes the most
notable features of Brettanomyces, briefly highlights recent insights into their genetic
characteristics,  and  discusses  potential  applications  in  industrial  fermentation
processes,  such  as  for  the  production  of  specialty  beers,  wines,  and  bioethanol.

Keywords:  Acetic  acid,  Aroma,  Beer,  Bioethanol,  Bioprocess,  Crabtree  effect,
Custers  effect,  Fermentation,  Oak  barrel,  Off-flavor,  Spoilage  yeast,  Volatile
phenol,  Wine.

INTRODUCTION

Usually considered no more than a spoilage yeast, Brettanomyces isolated from
ale  beer  was  in  fact,  the  first  microorganism to  be  patented  in  history.  Unique
flavors produced by the fungus have become associated with British beers, hence
the genus name Brettanomyces, derived from the Greek words brettano (British)
and myces (fungus). Since the first description in 1904 [1], Brettanomyces species
have been isolated in wineries and breweries all over the world [2]. The taxonomy
of the genus has gone through several reclassifications over the years. In 1940,
Custers [3] performed the first systematic study of Brettanomyces yeasts. Initially,
the   classification   was based   solely   on   asexually   reproducing (anamorphic)
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variants. In 1960, the genus Dekkera  was proposed as a teleomorphic (sexually
reproducing) counterpart of Brettanomyces after the observation of ascospores in
some  strains.  More  recent  molecular  DNA  techniques  revealed  no  differences
between anamorphic and teleomorphic forms, and currently, there is no separation
between these groups.  Both terms (Brettanomyces  and Dekkera)  are commonly
used  in  wine  research,  but  the  term  Brettanomyces  is  preferred  in  industrial
settings  [4  -  6].

Molecular  analysis  of  the  genus  identified  five  species,  the  anamorphs  B.
bruxellensis,  B.  anomalus,  B.  custersianus,  B.  naardenensis,  and  B.  nanus,  the
first two of which also occur as teleomorphs, known as Dekkera bruxellensis and
Dekkera  anomala  [5].  The  species  primarily  associated  with  winemaking  is  B.
bruxellensis (or D. bruxellensis), although recent wine-related investigations often
include  D.  anomala  along  with  D.  bruxellensis,  as  current  methods  have  had
difficulty in differentiating between these two species [6].

Brettanomyces  is  a  controversial  yeast  that  has  gained  increasing  attention  in
recent years because of its association with wine spoilage and the production of
ethyl phenols. The yeast grows slowly; therefore, it usually imparts intense flavors
(volatile  phenols)  in  aged  beverages,  the  so-called  Brett  flavors  and  odors,
described  as  strong,  smoky,  or  aromatic  [7,  8].  Such  descriptors  may be  either
negative  or  positive  depending  on  compound  concentration  and  consumer
expectation  [9,  10].  This  chapter  presents  a  summary  of  the  major  phenotypic
characteristics,  growth  patterns,  and  roles  of  Brettanomyces  in  fermentation
processes, encompassing from beverage off-flavors to future perspectives in the
production of spontaneously fermented beer, wine, and bioethanol.

DIVERSITY OF BRETTANOMYCES HABITATS

Brettanomyces is ubiquitous in nature. The yeast can be isolated from fermented
food  products,  particularly  during  post-fermentation  processing  and  aging  of
alcoholic beverages such as wine, beer, and cider, and is scarcely found outside
these  environments  [6].  Brettanomyces  niches  comprise  spontaneous  alcoholic
fermentation media with high ethanol concentrations, low pH, absence of readily
fermentable nitrogen and carbon sources,  and low oxygen [11].  Once alcoholic
fermentation is completed, the remaining traces of residual sugars are sufficient
for the proliferation of this slow-growing yeast [4]. Brettanomyces shows a high
preference for fermented media, but it usually occurs at low concentrations and is,
therefore, not considered a contaminant. Contamination only occurs when other
microorganisms  have  been  inhibited,  evidence  of  the  yeast’s  exceptional
resistance  to  low-nutrient  conditions,  which  allows  it  to  adapt  to  harsh
environments  and  outcompete  other  microorganisms  [6,  11].  Malolactic
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fermentation  and  aging  in  used  oak  barrels  are  recognized  as  the  most  critical
stages of wine production for Brettanomyces contamination. Low concentrations
of free sulfur dioxide (SO2) and residual sugars, yeast autolysis with the nutrient
release, presence of cellobiose (the main disaccharide in wood), and difficulty in
sanitizing  used  barrels  are  factors  that  favor  Brettanomyces  growth  and  wine
contamination  [4].

Microbial contamination is an inevitable, undesired, complex event. Knowledge
of  yeast  growth  requirements  and  awareness  of  natural  occurrence  in  raw
ingredients may facilitate the identification of unwanted spoilage microorganisms.
Brettanomyces is the most monitored yeast, particularly in winemaking [12]. The
prevalence  of  Brettanomyces  on  grape  skins  is  remarkably  low,  as  previously
assessed with the aid of an enrichment medium [13]. Brettanomyces has not yet
been  detected  in  the  air  during  the  first  stages  of  harvesting  [12],  but  it  was
identified  in  air  samples  of  crush  pads,  tanks,  barrels,  and  bottling  rooms  of  a
winery  [14,  15].  Dweck  et  al.  [16]  observed  that  flies,  known to  be  vectors  of
Brettanomyces,  react  to  the  yeast’s  smell.  As  expected,  it  was  not  difficult  to
detect the yeast in washing water and winery equipment used at advanced stages
of  vinification,  oak  aging,  and  bottle  aging  [12,  17,  18].  Differences  in  yeast
population levels throughout winemaking can be attributed to production stage,
time  of  year,  degree  of  cleanliness,  and  cleaning  protocols  [12,  17].  Barrel
sanitation is a very difficult task, and the use of sanitizing agents, such as SO2,
may contribute to the development of tolerant strains, as will be discussed in the
following  paragraphs  [4].  Chemicals,  ozone,  biofilms,  and  sonication  are
alternative methods recommended for barrel and equipment sanitation to decrease
Brettanomyces populations and volatile phenol production, but the effectiveness
of such methods is debatable [4, 19]. Fig. (1) shows some factors associated with
the presence of Brettanomyces during winemaking.

Fig. (1). Factors promoting the growth of Brettanomyces populations during winemaking.
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CHAPTER 8

Spathaspora and Scheffersomyces: Promising Roles
in Biorefineries
Thamarys Scapini1, Aline F. Camargo1, Jéssica Mulinari2, Camila E. Hollas3,
Charline Bonatto1, Bruno Venturin3, Alan Rempel4, Sérgio L. Alves Jr.5 and
Helen Treichel1,*

1  Laboratory  of  Microbiology  and  Bioprocess,  Federal  University  of  Fronteira  Sul  (UFFS),
Erechim/RS, Brazil
2  Laboratory  of  Membrane  Processes,  Department  of  Chemical  Engineering  and  Food
Engineering,  Federal  University  of  Santa  Catarina  (UFSC),  Florianópolis  SC,  Brazil
3 Center for Exact and Technological Sciences, Graduate Program in Agricultural Engineering,
Western Paraná State University (UNIOESTE), Cascavel PR, Brazil
4 Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF),
Passo Fundo/RS, Brazil
5  Laboratory  of  Biochemistry  and Genetics,  Federal  University  of  Fronteira  Sul,  Chapecó/SC,
Brazil

Abstract: Currently, biotechnologies that aim to optimize the residual lignocellulosic
biomass  are  receiving  widespread  attention,  mainly  when  it  comes  to  developing
integrated  systems  that  allow  the  generation  of  multi-products  in  industrial  plants,
especially for ethanol production. One of the main bottlenecks for efficient conversion
of lignocellulosic biomass into ethanol is the limitation of Saccharomyces cerevisiae,
the  most  widely  used  yeast  in  bioethanol  production,  in  metabolizing  xylose.  This
pentose is the main constituent of the hemicellulose fractions in plant cell walls and the
second most abundant monosaccharide in lignocellulosic biomass.  This challenge is
being overcome by the isolation and intense molecular evaluation of new yeast species,
mainly  members  of  the  genera  Spathaspora  and  Scheffersomyces,  since  they  have
shown high capacities for xylose assimilation, which has been corroborated through
studies aimed at improving ethanol production and other products via the association of
these yeasts with improved fermentation capacity. In this sense, this chapter addresses
the recent advances in the identification of novel isolates of the genera Spathaspora
and  Scheffersomyces,  particularly  emphasizing  the  applications  of  these  genera  in
ethanol and xylitol production.
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INTRODUCTION

The  current  model  of  society  is  characterized  by  increased  consumption  of
biomass,  which  puts  the  environmental  systems  under  pressure  to  meet  the
growing  demand.  Unchecked  development  and  limited  resources  make  waste
management a key component to sustaining the current consumption pattern. The
current  linear  thinking  model,  “take-make-dispose,”  is  no  longer  sustainable,
necessitating the shift  to  a  circular  economy, based on the use of  waste  as  raw
materials to acquire new products [1, 2].

Due to the necessity to change production systems, the biorefinery concept has
been highlighted as a more holistic view of the exploration of biomass, ensuring
the  maximum  use  of  the  structure  of  the  raw  material  by  generating  different
products  in  the  same  industrial  plant.  This  configuration  enables  the
lignocellulosic  biomass  conversion  in  energy,  chemicals,  or  biomaterials,  thus
adding  value  to  waste,  minimizing  the  impacts  of  production  activities,  and
ensuring  the  sustainability  of  these  activities  [3].

The  conversion  of  lignocellulosic  biomass  is  dependent  on  fractionating  the
complex structure formed by different polymers, such as cellulose, hemicellulose,
lignin, and pectin, in varying concentrations depending on the type of biomass [4].
Among the sugars released from the lignocellulosic biomass, glucose is released
from  cellulose.  This  hexose  is  a  high-affinity  substrate  for  various
microorganisms, showing high conversion rates into ethanol. The primary sugar
released from hemicellulose hydrolysis is xylose, which is the most abundant in
xylan.  However,  unlike  glucose,  xylose  offers  low  conversion  efficiency  by
microorganisms  [5].  The  successful  conversion  of  lignocellulosic  biomass  into
bioproducts depends on the efficient use of the released sugars, such as glucose,
D-xylose,  cellobiose,  galactose,  rhamnose,  arabinose,  and  mannose,  by  the
microorganisms  suitable  to  produce  value-added  products  [6,  7].

Second-generation  ethanol  is  one  of  the  leading  products  resulting  from  the
biotechnological processes involving the use of lignocellulosic biomass, and is a
fundamental  fuel  to  meet  the  demand  and  change  the  current  energy  matrix.
Besides ethanol, other products of high added value can be obtained from these
residues by biological routes, such as xylitol, a sugar-alcohol with great industrial
applicability  (e.g.,  pharmaceutical  and  food),  which  is  currently  obtained  via
expensive chemical processes. This further emphasizes the importance of finding
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economically and environmentally viable alternatives to get these products as well
as the importance of the biorefinery approach [8].

Traditionally,  yeasts  of  Saccharomyces  cerevisiae  and  Zymomonas  mobilis
species are used industrially, but they either metabolize the pentoses found in the
hydrolysates  with  low  efficiency  or  do  not  metabolize  them  at  all  [9].  New
approaches  to  prospect  strains  capable  of  acting  widely  in  the  fermentation
process  of  complex  substrates  using  different  sugars  have  gained  strength,
presenting  underutilized  and  unexploited  bioresources  with  relevant
characteristics for industrial exploration in biorefineries. In this scenario, yeasts of
the genera Spathaspora and Scheffersomyces are highlighted as some species that
can convert hexose and pentose sugars to ethanol and xylitol, which are isolated
from different environments and which have shown a wide spectrum of industrial
applications.

The performance evaluation of these yeast species is being explored as a valuable
bioresource  for  the  configurations  of  multi-product  industrial  plants.  The
metabolic capacity for pentoses and hexoses and the possibility of changes in the
fermentative conditions to obtain different products have been intensely explored.
In this scenario, this chapter aims to address the characteristics of yeasts of the
genera  Spathaspora  and  Scheffersomyces,  emphasizing  the  environments  from
which  they  can  be  isolated  and  the  primary  studies  on  their  application  in
fermentation  systems,  emphasizing  the  production  of  ethanol  and  xylitol.

SCHEFFERSOMYCES  AND  SPATHASPORA  PHYLOGENY  AND
TAXONOMY

Scheffersomyces and Spathaspora yeasts have also demonstrated the potential for
converting mixed sugars, which is interesting for biorefineries as products, such
as xylitol,  enzymes, and ethanol,  can also be obtained [7,  10].  The relationship
between  these  genera  was  described  by  Kurtzman  e  Suzuki  [11]  as  being
relatively closely related due to the fermentative capacity of D-xylose present in
the species of both genera.

The genus Spathaspora  was first  described in 2006 by Nguyen and co-workers
[12] to accommodate the single species Sp. passalidarum. The yeast was isolated
from the intestine of Odontotaenius disjunctus  (beetle) in Louisiana (USA) and
highlighted  for  its  characteristics  of  fermenting  xylose  as  well  as  its  distinct
morphology,  containing  a  single  ascospore  with  curved  ends,  unlike  any  other
known yeast [12, 13]. Spathaspora means a type of wide sword (spatha) and seed
(spora),  which  was  also  named  in  honor  of  Joseph  W.  Spatafora  for  his
contributions  to  the  field  of  insect-fungus  interactions,  which  were  extremely
relevant  to  the  discovery  of  this  yeast  [12].
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CHAPTER 9

Engineered  Saccharomyces  or  Prospected
non-Saccharomyces:  Is  There  Only  One  Good
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Abstract: Biorefineries require residual biomass as a raw material for their processes.
Among all the possible products, 2G ethanol is undoubtedly the most studied and is
probably the most desired in environmental terms. Carbohydrate-rich feedstocks used
in biorefineries are mainly composed of polysaccharides, cellulose and hemicellulose
(xylan),  which  initially  require  the  action  of  hydrolytic  enzymes  to  release  their
constituent  monosaccharides,  mostly  glucose  (from  cellulose)  and  xylose  (from
hemicellulose).  The  conversion  of  glucose  into  ethanol  is  carried  out  by  the  yeast
Saccharomyces cerevisiae with an efficiency close to the theoretical maximum yield (>
90%). Although it is the most widely used yeast in alcoholic fermentation processes, S.
cerevisiae  cannot  metabolize  xylose  unless  it  undergoes  genetic  or  evolutionary
engineering. However, in recent decades, wild yeasts with an innate capacity to ferment
this pentose and even hydrolyze the polysaccharides from lignocellulosic biomasses
have been isolated and characterized from natural environments. Facing this duality,
we  conducted  a  major  literature  review  and  presented  the  data  both  in  favor  of
engineering  S.  cerevisiae  and  the  prospective  use  of  wild  yeasts  in  this  chapter.  To
analyze the strengths of each strategy, this chapter also highlights the applications of
integrated hydrolysis and fermentation processes and the possibility of simultaneously
generating xylitol as the second product in biorefineries.
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INTRODUCTION

In  terms  of  maximum  production  volume,  fuel  ethanol  processing  is  the  most
extensive  process  to  employ  yeast  as  a  fermenting  microorganism.  The  world
production of biofuel exceeds 100 billion liters per year. In this scenario, the USA
and  Brazil  are  the  two  largest  producers,  with  ~60  and  ~30  billion  liters/year,
respectively.  These  data  place  both  countries  at  the  forefront  of  bioethanol,
although  they  have  significantly  different  first-generation  processes.  In  US
production,  yeasts  ferment  corn  starch  hydrolysates,  whereas  in  Brazilian
production, these microorganisms primarily ferment sucrose from the juice and
molasses obtained from the milling of sugarcane [1].

Almost all ethanol production in both countries relies on the yeast Saccharomyces
cerevisiae. This species is one of the best-studied eukaryotes, and its presence in
fermentation processes dates back to the Neolithic revolution. Over thousands of
years  of  coexistence  with  humanity,  this  yeast  suffered  different  selective
pressures that ended up domesticating it and generating a true workhorse microbe
for  the  fermentation  industry  [1].  Although  strains  of  S.  cerevisiae  differ
genetically and phenotypically depending on the industrial sector in which they
are  found,  some common characteristics  make  the  species  the  preferred  one  in
alcoholic fermentation, such as the ability to ferment sugars efficiently even in the
presence of oxygen and to tolerate: (i) high concentrations of ethanol in the final
stages  of  fermentation,  (ii)  the  low  pH  levels  of  the  medium,  (iii)  the  osmotic
stress  caused  by  the  high  concentrations  of  sugars,  and  (iv)  the  hydrostatic
pressure caused by the large volume of liquid contained in the fermentation tanks
[2 - 4]. This yeast also stands out for being among the best glucose fermenters [5],
which is  the most  abundant sugar in lignocellulosic residues,  a  biomass rich in
cellulose  and hemicellulose  used as  raw material  in  biorefineries  [6  -  8].  From
these residues, biorefineries can, separately or concomitantly, produce different
fermentation  products,  including  xylitol  and  second-generation  ethanol  (2G
ethanol)  [9  -  13].  Taking  Brazil  as  an  example,  and  considering  only  the
sugarcane  residue  from the  first-generation  production  of  the  fuel,  it  would  be
possible to increase the volume of ethanol produced in Brazil by up to 50%. To
this end, however, it would be necessary for alcoholic fermentation to occur with
a degree of efficiency of ~90%, similar to what already occurs for 1G ethanol [14,
15].
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However,  to  achieve  the  production  increase  mentioned  above,  the  fermenting
microorganism must convert into ethanol the second-most abundant monosaccha-
ride in lignocellulosic residue hydrolysates: xylose [16, 17]. In the fermentation of
this pentose, one of the main obstacles of 2G ethanol is found, given that wild and
industrial  strains  of  S.  cerevisiae  are  incapable  of  fermenting  it  [1,  15].  As  a
result, second-generation production is still in its infancy, representing less than
1%  of  the  total  volume  of  ethanol  produced  annually  worldwide  [18].  Thus,
especially in the last two decades, research groups worldwide have made efforts
to  overcome  the  xylose-fermentation  obstacle,  either  by  engineering  industrial
strains of S. cerevisiae or by bioprospecting of wild non-Saccharomyces yeasts. In
the present chapter, we address these different approaches to verify if there is a
better choice for biorefineries.

FEEDSTOCK STRUCTURE AND FERMENTATION CHALLENGES

As an abundant source and for not serving as food for animals and humans, the
great  effort  from  scientists  to  replace  the  output  of  oil  with  ethanol  is  not
unexpected [19]. The need for a transition from fossil fuels to renewable energy
sources is  evident on account of the climatic changes caused by modern times,
mainly  due  to  undesirable  effects  on  atmospheric  carbon  balance  and  its
disastrous  effects  on  global  warming.  The  development  of  transportation,  for
example,  has  influenced  the  environment  in  which  emissions  from  internal
combustion engines used in automobiles are the major source of air pollution in
many urban areas [20]. The reduction of CO2 emissions significantly contributes
to minimizing environmental impact, and the use of a sugarcane ethanol system,
for instance (like the Brazilian one), may offset 86% of CO2 emissions compared
to oil use [14].

Lignocellulosic biomass is found in several raw materials, ranging from urban and
industrial waste, wood, and agricultural residues such as corn straw, wheat straw,
rice straw, and sugarcane bagasse [21]. This material is derived from the cell wall
of  plants  and  is  a  rich  source  of  inspiration  for  biotechnology,  biofuels,  and
industrial biomaterials. The plant cell wall is a structure characterized by a mesh
of polysaccharides, structural proteins, and phenolic compounds that protect the
plant cell against external attacks and provide structural and mechanical support
to the plant tissue, making it highly compact and treatment-resistant structure. It
consists  essentially  of  cellulose  microfibrils,  representing  30–60%  of  the  total
composition, as well as hemicellulose and lignin, representing between 20–40%
and 10–20%, respectively. The chemical composition variation is due to various
factors, such as climatic variability [7, 8, 22].
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CHAPTER 10
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Abstract:  Yeasts  are  intimately  involved  in  the  production  of  fermented  alcoholic
beverages  being  the  most  popular  examples  of  beer,  cider  and  wine.  The  present
chapter  reviews  the  impact  of  yeasts  in  the  production  of  these  three  fermented
beverages  and  focuses  on  recent  innovation  trends  regarding  the  use  of  non-
conventional yeasts for the increase of flavour complexity and/or the development of
novel special products that better meet current customer’s demands. The granting of
regional  identity  by  using  locally  sourced  yeast  strains  is  also  revised,  and  the
experience  gathered  in  the  region  of  Andean  Patagonia  (Argentina)  related  to  the
isolation,  screening,  selection,  improvement  (in  some  cases)  and  all  the  way  to  the
industrial  application  is  described.  North-western  Patagonia  natural  forests  harbour
yeasts  species  of  great  scientific  and  fundamental  relevance,  among  which  the
cryotolerant  species  Saccharomyces  uvarum  and  Saccharomyces  eubayanus  are  the
most important for this chapter. The successful cases reviewed here of the study and
application of Patagonian cold-adapted wild Saccharomyces yeasts for beer, cider, and
wine  innovation  demonstrate  that  the  laborious  journey  from  nature  to  industry
application  is  feasible  and  advantageous.
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INTRODUCTION

Yeast, alone or in consortia with other microorganisms, has a profound role in the
industrial  and  traditional  production  of  many  beverages.  These  are  generally
recognized  as  fermented  and  usually  contain  alcohol.  Humans  have  consumed
fermented beverages since the Neolithic period (c.10 000 BC [1];), however, it is
still unclear whether, in ancient times, our ancestors accidentally stumbled across
fermented  beverages  like  wine  or  beer,  or  was  it  a  product  intended  as  such.
Undoubtedly, alcoholic beverages have been part of the diet and culture of many
of  the  civilizations  that  have  preceded  us  and  are  among  the  most  popular
products consumed today. Fermented alcoholic beverages are complex solutions
of thousands of chemical compounds that originate from the metabolism of yeasts
and other microorganisms from a sugar substrate during fermentation, and from
later  stages  that  include  secondary  fermentations  and  /  or  chemical  reactions
during aging.  The most popular non-distilled fermented beverages are obtained
from cereal starches (by enzymatic pre-hydrolysis) in the case of beer (barley and
wheat) and / or from fruits (which do not require pre-hydrolysis) in the case of
wine (grapes) and cider (apples and pears). Yeasts of the genus Saccharomyces
are  the  most  prevalent  microorganisms  in  the  production  of  these  fermented
beverages  [2].  The  genus  is  composed  of  eight  natural  species,  namely
Saccharomyces cerevisiae, S. paradoxus, S. uvarum, S. mikatae, S. kudriavzevii,
S. arboricola,  S. eubayanus  and S. jurei  [3]  (Fig.  1).  S. cerevisiae  is  by far  the
most recognized and ubiquitous species in the production of fermented foods and
beverages. Nevertheless, the cryophilic species S. uvarum and S. kudriavzevii, and
the hybrid species S. bayanus and S. pastorianus, play a fundamental role in the
production of beverages such as beer and wine [2]. Furthermore, S. paradoxus and
the latest additions to the genus S. eubayanus and S. jurei, are also being studied
for their application in the fermentation industry [4 - 6].

Fig. (1).  Phylogenetic relationships of biological recognized species Saccharomyces species (black font),
along with  the  most  industrial  relevant  hybrids  (non-black font),  and their  participation in  the  fermented
beverages reviewed in this chapter.
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During  fermentation,  yeasts  produce  alcohol,  carbon  dioxide  and  a  range  of
secondary metabolites, such as esters, volatile fatty acids, higher alcohols, organic
acids,  volatile  sulphur  compounds  and  volatile  phenols,  that  contribute
significantly to the flavour and aroma of the final product [7, 8]. Certain strains of
these yeasts, like many other microorganisms associated with man-made niches,
have gone through a domestication process referred to as the artificial selection
and  breeding  of  wild  specimens  to  obtain  more  fitted  cultivated  variants  that
better  meet  human  or  industrial  requirements.  Domesticated  strains  show
improved  adaptation  to  sugar-rich,  oxygen-limited  environments  and  high
tolerance to ethanol, as well as other novel phenotypes, which can be specified for
each  fermentation  environment.  For  instance,  some beer  yeasts  can  metabolize
maltotriose  (a  beer-specific  sugar),  while  wine  yeasts  can  withstand  the
predominant  sterilization  agents  in  the  winery  (sulfite)  and  vineyard  (copper
sulphate) (for a review, see Steensels et al.  [9]).  These new domesticated traits
result from the accumulation of defined genetic and genomic changes that only
recently  began  to  be  elucidated  and  that  may  include  inter-species  gene
introgressions (i.e. S. uvarum [10];) as well as inter-species hybridizations (i.e. S.
pastorianus  and  S.  bayanus  [11];).  Several  non-Saccharomyces  yeasts  that  are
typically associated with early stages of spontaneous man-made fermentations are
also relevant in the production of industrial and traditional fermented beverages.
These  include  species  of  the  genera  Brettanomyces,  Torulaspora,
Schizosaccharomyces,  Metschnikowia,  Hanseniaspora,  Pichia,  Lachancea  and
Kluyveromyces, among others [12]. Because of their ability to modify the sensory
quality  of  the  final  products,  they  are  normally  considered  contaminants.
However,  due  to  new  market  trends  in  favor  of  products  with  differential  and
more  complex  organoleptic  characteristics,  they  began to  gain  relevance  in  the
beverage industry, contributing positively to the sensory quality of wine [13] and
for bioflavouring purposes in brewing [14]. Another source of non-conventional
yeasts with productive potential are natural environments and, even though these
non-domesticated (wild) yeasts typically show inadequate fermentative traits for
their  implementation  in  the  industry,  exceptions  exist  mostly  within  the  genus
Saccharomyces. This approach has the advantage of providing additional regional
identity and exclusivity to the beverages produced with local wild yeasts. Thus,
the  study  and  application  of  wild  Saccharomyces  for  alcoholic  beverage
innovation  have  gained  special  attention  in  the  last  few  years.  In  some  cases,
genetic improvement of wild yeasts was achieved using either genetic engineering
or editing, mutagenesis or using non-GMO producing techniques such as directed
experimental  evolution  and/or  hybridization  [4,  15,  16].  The  whole  process  of
isolating a wild yeast and inserting it into the market of fermented beverages is
long and involves different research and development stages; initiating with yeast
search and isolation and ending in scale-up trials and the technology transfer to
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CHAPTER 11

Yeasts and Breadmaking
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Abstract: The earliest known evidence of leavened bread comes from Egypt and China
in  the  second  and  first  millennia  BC,  although  records  of  unleavened  breads  and
potential flour production date back tens of thousands of years. In the 19th century, the
discovery of yeast fermentation led to the development of industrial bakeries in parallel
with traditional sourdough bakeries. While strains of Saccharomyces cerevisiae were
selected  for  and  became  the  primary  yeast  used  in  industrial  breadmaking,  some
artisanal bakeries continued to use natural sourdough. The maintenance of these two
types of bakery practices led to the evolution of two genetically and phenotypically
distinct clades of Saccharomyces bakery yeast. In addition to S. cerevisiae, other yeast
species  are  regularly  found  in  sourdoughs,  in  particular  yeasts  of  the  genus
Kazachstania. In the sourdough ecosystem, these yeasts interact with each other and
with  bacteria  in  a  positive  or  negative  way,  depending  on  the  species  and  strains
involved.  In  both  sourdough  and  yeasted  industrial  dough,  traits  of  interest  include
aroma production, efficient maltose utilization, osmotolerance, desiccation resistance,
and freeze tolerance. These traits have largely been explored in S. cerevisiae, but there
is abundant diversity in these traits even amongst strains of S. cerevisiae, and in the
handful of yeast species that have been surveyed outside of Saccharomyces. The new
interest in sourdough breadmaking and the societal desire to develop more sustainable
and biodiversity-friendly bakeries is now leading bakers and scientists to explore the
genetic and metabolic diversity of other yeast species.
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INTRODUCTION

Bread has long been a staple food, perhaps starting when humans still persisted as
hunter-gatherers. The art of making bread  developed  in  the  Neolithic,  with  the
emergence  of  agriculture  and  the  domestication  of  cereal  grasses.  Since  then,
yeast  has  been  used  unconsciously  and  consciously  to  make  bread  rise.  In  this
chapter, after presenting the milestones in the history of bread, we will present the
knowledge on the evolution, ecology, and metabolism of yeasts associated with
the making of traditional sourdough bread and industrial bread.

HISTORY OF BREADMAKING

The origins of bread remain largely unknown. Some of the earliest records of the
human processing of wild cereal grasses date back to 23,500 to 22,500 years ago
in what is now Israel [1], and evidence of grinding of other starches suggests that
vegetal food processing and possibly flour production was occurring in what is
now known as Europe and Australia 14,000-30,000 years ago [2 -  4].  The first
known breads were of a flatbread-like form made from wild grasses and tubers
14,400 years ago, recently identified in present-day Jordan [5]. Bread-like finds
became more common in Neolithic sites in Europe and southwest Asia as cereals
like wheat and barley were domesticated around 9000 years ago, and dome-like
ovens were identified at sites in Turkey beginning in the late 8th millennium [6].

Ancient writings and artistic representations document the centrality of grain to
many societies.  Indeed,  the control  of  grains becomes synonymous with power
and  control  of  people,  as  depicted  in  this  quotation  from  a  Sumerian  text,
“Whoever has silver, whoever has jewels, whoever has cattle, whoever has sheep
shall  take  a  seat  at  the  gate  of  whoever  has  grain,  and  pass  his  time  there.”
Throughout  the  Bronze  Age,  Mesopotamian  households  were  paid  with  barley
rations, and consumed many types of beers, porridge, cakes, and breads forming
the central part of their daily diet [7]. We can speculate that some of these breads
were  leavened,  as  fermentation  of  beer  using  malted  barley  was  practiced,  and
exchange  between  brewing  and  baking  likely  passed  yeast  back  and  forth.  For
example,  brewing  in  both  Mesopotamia  and  Egypt  relied  on  a  bread-like
substance, which was only partially baked, presumably to preserve yeast viability,
which was used to inoculate beer fermentation with yeast [8].

Baking in Ancient Egypt has received quite a lot of attention due to the prolific
documentation of baking and brewing in art, writings, and actual remains of bread
and storage vessels, especially during the period of 2500-2100 BC [9]. Egyptian
breads were quite varied in size and texture, although all recovered loaves were
made primarily from emmer wheat and had a dense crumb, some were flavored
with coriander and fig [8, 10]. Some scholars point to the origin of what we now
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refer to as “sourdough starter” to this time period in Egypt, in which some dough
was kept and maintained with flour and water to be used in baking the next day
[11].

The first direct evidence of the presence of yeast in bread comes from Egypt and
China  in  the  second  and  first  millennia  BC  [10,  12].  Scanning  electron
microscopy  of  bread  and  brewing  remains  from  central  Egypt  1500-1300  BC
identified budding yeasts [10]. In China, the first records of beer brewing using
barley  date  between  3400-2900  BC  [13],  although  barley  did  not  become  an
important  subsistence  crop  there  until  the  Han  dynasty  (206  BC-AD  220).
Proteomic analysis of food materials resembling sourdough bread from 500–300
BC identified Saccharomycetaceae yeasts and lactic acid bacteria [12].

The rise of bakeries is often attributed to the Roman empire. As the population of
the city of Rome outpaced the ability of the surrounding regions to supply food to
the  populace,  the  Roman  empire  began  importing  grain  and  providing  grain
allotments at free or subsidized prices to its poor citizens [14]. Grain would have
been taken to a mill and then the flour used to bake breads in home or communal
ovens, or in a bakery. Pliny the Elder records that professional bakers appeared in
Rome  beginning  in  168  BCE  [15].  Grains  were  traditionally  ground  using  a
rounded stone pressed manually against a flat stone bed, until milling technology
originated  in  Greece  in  the  5th  century  BCE  and  the  Greeks  and  Romans
advanced mill technology to include animal-driven and water-driven mills in the
centuries following [16].  Starting in the 3rd century AD, grain allotments were
replaced with bread [17], which persisted until the end of the Roman empire in the
6th century AD. Water-mills spread through the Roman and Byzantine empires
across Eurasia in the centuries following.

It was not until the 1700s that yeast began to be produced for the purpose of use in
bread and beer. At this time, yeast was recognized as “the ferment put into drink
to make it work; and into bread, to lighten and swell it,” but it was not recognized
as a living organism [18]. Fermentation in the late eighteenth century and into the
nineteenth century was studied exclusively by chemists, but with improvements in
the  microscope,  yeast  became  recognized  as  a  living  organism  by  several
scientists  beginning  in  1827.  In  1837,  a  German  physiologist  named  Theodor
Schwann  published  his  observations  that  yeast  consume  sugar  and  excrete
ethanol, and reproduce by budding, linking fermentation to yeast. It was at this
time that Schwann consulted with the mycologist Franz Julius Ferdinand Meyen
who coined the term “Saccharomyces,” based on the Greek words for “sugar” and
“mushroom.” Controversy over whether yeast was a living organism persisted for
several  decades,  but  as  this  idea  became  more  accepted,  fermentation  became
increasingly studied by biologists instead of chemists. In 1860, both Louis Pasteur
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CHAPTER 12

Biotechnological Applications of Oleaginous Yeasts
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Abstract: Oleaginous yeasts are potential renewable sources of alternative biofuels due
to high lipid contents and fatty acid profiles similar to those of plant oils. To increase
the biotechnological potential of oleaginous yeasts, strategic cultivation of them using a
wide variety of low-cost materials as substrates has been investigated intensively. Their
metabolisms toward various substrates for the synthesis of lipids through de novo and
ex novo processes have been described. In addition, direct transesterification processes
that  combine cell  disruption,  lipid  extraction,  and biodiesel  production into  a  single
step  are  proposed.  This  chapter  thoroughly  reviews  recent  research  into  the  broad
characteristics of oleaginous yeasts, the utilization of promising low-cost materials as
substrates  for  yeast  cultivation,  and  direct  processing  for  biodiesel  production  from
yeast lipids.

Keywords:  Direct  transesterification,  Lipid  synthesis,  Low-cost  materials,
Oleaginous  yeasts.

INTRODUCTION

Oleaginous microorganisms, including bacteria, yeasts, molds and microalgae, are
able  to  accumulate  lipids  to  over  20%  of  their  biomass  [1-3].  Microalgae  can
produce large amounts of lipids and hydrocarbons, but they require sunlight and
carbon dioxide from fuel gas [2], a large cultivation area, and a long cultivation
period [3].  Most  bacterial  species  are  not  lipid  producers,  and they accumulate
complex  lipoids  such  as  polyhydroxyalkanoates  that  are  difficult  to  extract
because  these  lipoids  are  generated  in  the  outer  membrane  [4,  5].  Filamentous
fungi  can  accumulate  high  intracellular  lipid  contents  composed  of
triacylglycerols and specific polyunsaturated fatty acids [6], but fungi grow much
slower  than  yeasts  and  form  mycelia  that  cause  high  viscosity  of  the  culture
medium  and  decrease  oxygen  dispersion  in the culture [7]. Unlike these micro-
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organisms,  oleaginous  yeasts  (i.e.,  Yarrowia,  Candida,  Cryptococcus,
Rhodotorula,  Rhodosporidium,  Trichosporon,  Lipomyces)  have  numerous
advantages  such  as  fast  growth  rate  and  high  lipid  content  with  high
triacylglycerol  fraction  [8].  They  typically  contain  a  variety  of  lipids  like
triacylglycerol,  diacylglycerol,  monoacylglycerol,  fatty  acid,  steryl  ester,  free
sterol,  glycerophospholipid,  cardiolipin,  sphingolipid,  glycolipid,  hydrocarbon,
long-chain alcohol, wax, polyprenol, and isoprenoid quinone. Besides, four types
of lipids can be found in the cytoplasmic membrane, namely glycerophospholipid,
sphingolipid, steryl ester from ergosterol, and mono and diacylglycerols [9]. The
oleaginous yeasts contain 80–90% triacylglycerol and a minor fraction of steryl
esters, accumulated in special cell compartments known as lipid droplets (LDs) or
lipid bodies (LBs) [10].

Yeast lipid costs are much higher than those of plant and animal oils because of
the cost  of  nutrient  media,  and this  is  one of  the major  obstacles  to large-scale
yeast oil deployment [11, 12]. However, yeasts are able to utilize a wide variety of
low-cost materials such as nutritional residues from agriculture and industry [13,
14]. The lipid production by oleaginous yeasts using wastes from agro-industry or
industry as substrates has been extensively investigated for a variety of candidate
substrates,  including  food  waste,  chicken  tallow,  durian  peel,  sorghum  stalk,
switchgrass, waste office paper, and crude glycerol, in order to reduce costs and
make yeast lipids production economically viable [8, 15 - 20].

Yeast  lipid-based  biodiesel  production  through  transesterification  reactions  has
been  investigated.  The  conversion  of  yeast  lipids  through  transesterification
reactions comprises numerous steps, including the drying of cells, the disruption
of  cells,  lipids  extraction,  separation,  and  transesterification.  In  fact,  several
drawbacks directly affect conversion efficiency, such as long processing duration,
need for large amounts of solvent, and high total costs [11]. To overcome these
drawbacks, direct transesterification has been proposed. This approach excludes
the  cell  drying  step  and  combines  the  lipid  extraction  step  with  the
transesterification step. Therefore, the overall production costs of biodiesel from
yeast  lipids  could  be  reduced,  making  this  process  economically  feasible  [10  -
12]. Recently, many strategies for the direct transesterification of yeast lipids have
been  successfully  demonstrated  [13  -  16].  This  article  first  introduces  the
characteristics  of  a  broad  range  of  oleaginous  yeast  species  and  their  derived
lipids.  Recent  challenges  in  the  utilization  of  low-cost  materials  and  wastes  as
alternative  substrates  by  oleaginous  yeasts  and  their  biochemical  conversion
platform  to  produce  lipids  in  yeast  cells  are  highlighted.  Finally,  this  chapter
provides a current overview of published results on the direct transesterification of
yeast lipids as a viable approach to economically viable biodiesel processing.
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CHARACTERISTICS OF OLEAGINOUS YEASTS

Oleaginous yeasts are normally nonpathogenic unicellular budding organisms that
can accumulate lipids to over 20% of their cell dry weight [17, 18]. Over 70 of the
approximately 1,600 yeast species are well-known to be oleaginous [9],  in five
orders  of  Ascomycota  and  Basidiomycota,  namely  Saccharomycetales,
Sporidiobolales,  Tremellales,  Trichosporonales  and  Cystobasidiales  [18].  The
order Saccharomycetales contains the two well-explored oleaginous yeast genera
Yarrowia  and  Lipomyces  and  the  new  oleaginous  species  Schwanniomyces
etchellsii, originally Debaryomyces etchellsii. The order Sporidiobolales contains
Rhodosporidium  and  Rhodotorula.  The  orders  Tremellales  and  Cystobasidiales
contain  diversified  genera  such  as  Cryptococcus,  Naganishia,  Saitozyma,  and
Vishniacozyma. The order Trichosporonales contains Cutaneotrichosporon genus,
formerly Trichosporon  (Table 1).  Depending on the species and the cultivation
conditions, the lipid content in yeast biomass can be much improved to as high as
80% of the cell dry weight (Table 1). In contrast, non-oleaginous yeasts (such as
the  baker’s  yeast  Saccharomyces  cerevisiae  and  the  food  yeast  Candida  utilis)
usually cannot accumulate lipids to exceed 10% of their biomass [19]. Most well-
known oleaginous yeasts contain fatty acids in the C16-C18 range of carbon atom
counts. For example, Y. lipolytica contains mostly palmitic, stearic, oleic, linoleic,
linoelaidic, and linolenic acids [20]. Recently, Carranba et al. [21] reported that Y.
lipolytica  Po1dL  is  a  good  candidate  for  lipid  production  in  a  glucose-based
medium under  nitrogen-limited conditions.  Its  lipid  content  reached up to  61%
(w/w).  L.  starkeyi  is  a  sustainable  lipid  producer,  which  has  the  potential  to
convert a wide variety of carbon sources into lipids in the form of triacylglycerols
(TAG) for more than 70% of its dry cell  weight  [22].  According  to  Juanssilfero
et  al.  [23],  L.  starkeyi  NBRC10381  achieves  lipid  contents  as  high  as  79.6%
(w/w) in nitrogen-limited mineral media with glucose as the carbon source.

Table 1. Lipid composition of various oleaginous yeasts.

Yeast Strains Lipid Components (%) References

TAG DAG MAG FFA

Yarrowia lipolytica 9.33 0.89 - 1.38 [36]

Cryptococcus vishniaccii 63.4 19.63 1.07 - [37]

Cryptococcus curvatus 91.4 3.3 4.9 0.5 [38]

Rhodosporidium toruloides 92.2 2.7 4.7 0.4 [38]
TAG, DAG, MAG, and FFA are triacylglycerides, diacylglycerides, monoacylglycerides, and free fatty acids,
respectively
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CHAPTER 13

Improvement  of  Organic  Agriculture  with
Growth-Promoting and Biocontrol Yeasts
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Abstract:  Organic  agriculture  has  significantly  expanded over  the  years,  increasing
population.  The  productive  methodology  adopted  in  globalized  agricultural  systems
reinforced the need to  develop technologies  that  reduce the problems caused by the
excessive use of pesticides and synthetic fertilizers. Some progress is being made by
applying yeasts in agriculture due to the advantages associated with their use, such as
promoting plant growth, biological control, inhibition of pathogens, and production of
phytohormones. This chapter discusses studies that demonstrate the potential of yeasts
in agriculture for biocontrol and plant growth. Yeasts are widely disseminated in the
soil, increase and promote biological control, and show positive and promising results
in  the  management  of  various  phytopathogens.  The  interactions  of  these  organisms
influence multiple processes, such as the mineralization of organic matter in the soil,
nutrient cycle, disease and weed control, and ecological balance. Efforts must be made
to  enable  the  production  and  application  of  yeasts  as  control  agents  in  agriculture.
Considering  the  diversity  of  yeast  species  present  in  the  soil,  their  morphological,
physiological, and phenotypic properties, understanding interactions and environmental
effects integrating an ecological scenario is the key to good agricultural practices in a
more sustainable context.

Keywords:  Biological  control,  Growth  promotion,  Organic  agriculture,
Sustainability,  Yeasts.

INTRODUCTION

Intensive  population  growth  and  food  production  methods  in  global  ecological
systems  under  stress  have  aroused  interest  in  developing  productive,  stable,
resilient,  and  environmentally  friendly agricultural systems that produce healthy
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food  and  guarantee  environmental  integrity  for  future  generations  [1].  In
conventional agriculture, weed management is carried out using pesticides, such
as herbicides. In addition, the intensive and prolonged use of chemical pesticides
causes  environmental  impacts,  such  as  water  and  soil  contamination,  and  the
emergence of weed-resistant herbicides, which have increased by approximately
30% in the last  ten years worldwide [2 -  4].  Resistance to pesticides has led to
increased applications, higher crop losses, and farmers' mounting costs [1].

In this scenario, organic agriculture offers approaches that reduce the dependence
on pesticides. Organic agriculture has expanded in many countries over the last
few  years;  between  1999  and  2017,  it  has  increased  six-fold.  In  2017,
approximately 1.4 percent of the world's agricultural land was organic. Fourteen
countries corresponded to more than 10% of these areas, and Australia has been a
substantial contributor to exponential growth over the ten years before 2017 [5].
This  increase  in  organic  agriculture  reflects  the  growing  concern  about
environmental issues in intensive agriculture, mainly related to problems with the
use of pesticides and commercial  fertilizers.  In addition,  there is  an increase in
consumer demand for organic products, which has been supported by research and
funding funds in many countries [6].

There is  an expanded interest  in productive and ecologically sound agriculture.
Global  data  on  organic  production  and  markets  are  highly  relevant  for  organic
agriculture, considering it to be a sustainable form of production and dependent
on policymakers that contribute to expanding these crops [5].

The  development  of  new  technologies  that  sustainably  enable  food  security  is
essential  in  agriculture  and  the  development  of  products  that  can  reduce  the
excessive  use  of  chemicals  in  crops  to  minimize  environmental  impacts.
Significant  advances are being made using microorganisms as an alternative in
growth-promoting  and  biological  control  in  agriculture  because  of  their
advantages over synthetic compounds, such as biodegradability, reduced half-life,
and environmental safety.

The use of plant growth-promoting (PGP) microorganisms offers an alternative to
reduce  chemical  fertilizers,  resulting  in  increased  tolerance  to  abiotic  stresses,
nutrient assimilation, pest control, plant height, root length, dry matter, etc [7, 8].
These benefits result from different mechanisms that help directly, for example,
by  phytohormone  production  that  stimulates  plant  development  and  improves
nutrient absorption by solubilization of compounds or indirectly by preventing the
adverse effects of phytopathogenic microorganisms [9, 10]. PGP microorganisms
have  a  crucial  role  in  management  systems  to  reduce  agrochemical  rates  and
increase  the  focus  on  biological  methods  for  agriculture  [7].
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In addition to direct benefits, the potential of microorganisms for disease control
in agriculture is an alternative tool in organic and conventional agriculture. It is an
essential  element  for  pest  management  [1].  Biological  control  of  crops  with
naturally  occurring  microorganisms  is  an  alternative  to  chemical  control.  It  is
based on a natural interaction between yeast and filamentous fungi. By different
mechanisms, bacteria can protect plant crops against diseases, such as toxin and
volatile compound production and specific enzyme secretion [11 - 13].

Yeast is a single-celled fungus that is abundant in the soil, with rapid growth and
excellent  characteristics such as PGP and biological  control  [14,  15].  Although
research  on  endophytic  yeasts  as  biocontrollers  has  only  gained  prominence  in
recent  years,  these  yeasts  have  great  potential  for  inhibiting  phytopathogens
because these microorganisms can act through several action mechanisms, thus
reducing pathogen resistance in the environment [8, 16].

Yeasts can produce hormones such as indol-3-acetic acid (IAA), indol-3-pyruvic
acid (IPYA), cytokinins, and several biologically active compounds that stimulate
plant  growth  and  development  and  increase  crop  productivity.  Studies  have
identified improvements in plant growth, germination, and length after inoculation
of seeds with yeast strains. When applied to biocontrol, yeasts can improve the
uptake of water and nutrients, such as nitrogen and potassium, and reduce the risk
of  phytopathogenic  infections  because  of  the  production  of  antimicrobial
substances  [17,  18].

Yeast’s role in agricultural ecosystems needs advances, mainly because it is not
entirely understood, and research on these microorganisms as PGP and biocontrol
is scarce [10]. In this context, this chapter aims to highlight works present in the
literature  on  the  potential  use  of  yeasts  in  agriculture  for  biocontrol  and  plant
growth.

YEASTS IN THE NATURAL ENVIRONMENT

Living  organisms  can  be  divided  into  prokaryotes  and  eukaryotes.  In  the
prokaryote group, we have bacteria and archaea. In eukaryotic organisms, we find
cellular microorganisms, such as fungi (yeasts and molds), protozoa, algae, and
higher organisms, such as plants and animals.

The Fungi Kingdom includes single-celled yeasts with approximately 680 known
species distributed in two phyla (Ascomycota and Basidiomycota), multicellular
molds, and macroscopic species such as mushrooms. Yeasts are non-filamentous,
usually spherical or oval with a cell diameter between 1 and 10 µm, a rigid cell
wall  made  up  of  the  polysaccharide's  glycan  and  mannan,  which  can  grow  in
environments  with  low  humidity,  high  osmotic  pressure,  and  a  wide  pH  range
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CHAPTER 14

Yeasts: From the Laboratory to Bioprocesses
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Abstract:   Yeasts  are  important  industrial  platforms  for  the  efficient  production  of
foods, beverages, commodity chemicals, and biofuels. Although these yeasts usually
have beneficial native phenotypes, it is often desirable to engineer these cell factories
to increase yield, titer, and production rates, or even promote the production of new
molecules. In the present chapter, we describe several classical genetic approaches to
improve  industrial  yeast  strains  (mating,  cell  and  protoplast  fusion  techniques,
mutagenesis, genome shuffling, adaptive laboratory evolution, etc.), as well as methods
to identify the genetic basis of phenotypic traits, including phenotypes controlled by
quantitative  trait  loci  (QTL),  through  bulk  segregant  analysis  (BSA)  and  DNA
sequencing.  We  then  review  modern  technologies  for  industrial  yeast  strain
improvement  (genomic  engineering  through  homologous  recombination,  CRISPR-
Cas9,  synthetic  chromosomes,  synthetic  genomes  and  SCRaMbLE)  both  in
conventional  (mostly  Saccharomyces  strains)  as  well  as  non-conventional  yeasts.
Finally,  we give  several  current  examples  (and ideas  for  the  future)  of  yeast  strains
genetically modified in the laboratory to produce a range of commercial products and
biofuels through industrial bioprocesses.

Keywords:  CRISPR-Cas9,  Genetic  engineering,  Genomic  engineering,
Homologous  recombination,  SCRaMbLE,  Synthetic  chromosomes,  Yeast
breeding.

INTRODUCTION

Yeasts  have  been  utilized  wittingly  and  unwittingly  by  humans  as  tiny  bio-
factories over many millennia, possibly starting with our ancestors (Homo erectus
or H. neanderthal  [1, 2]), by transforming sugars into ethyl alcohol and carbon
dioxide for purposes of imbibing, and later on, baking. The processes and rituals
surrounding the making of alcoholic beverages and leavened bread have played an
important  role  in  human  civilization,  both  socially and economically [3 - 5]. In
particular, the quest to create alcoholic beverages has  often  been  an  impetus  for
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scientific  progress,  especially  in  the  areas  of  chemistry,  biochemistry  and
microbiology: the brewing industry has even been cited as the foundation for the
field of biotechnology [6].

But what exactly are these yeasts that have been our longtime companions? The
yeasts responsible for producing much of our leavened bread, as well as almost all
of the alcoholic beverages consumed in the world -including beer, wine, sake and
distilled spirits- are “budding yeasts”: small single-celled fungi that belong to the
genus Saccharomyces  (Latin for “sugar fungus”).  These unassuming organisms
are  the  world  champions  at  performing  the  process  of  alcoholic  fermentation.
During  such  fermentations,  Saccharomyces  yeasts  earn  their  Latin  name  by
consuming the sugars present in the starting material -grapes in the case of wine
and wort in the case of beer- and converting them into ethanol and carbon dioxide
gas. In addition, yeasts will convert some of the more complex molecules already
present  in  grapes  or  beer  wort  into  novel  characteristic  flavor  and  aroma
molecules;  the  whole  endeavor  results  in  delicious  alcoholic  beverages.  In  the
case of leavened bread, the yeast consumes sugars created by the breakdown of
the starch found in flour to produce alcohol and carbon dioxide; the latter makes
bubbles  in  the  rising  dough,  while  the  alcohol  evaporates  during  the  baking
process.

Within  the  Saccharomyces  genus,  there  are  eight  closely  related,  naturally
occurring species so far known, as described in detail in a recent review ([7]; also
see Chapter 4). The life cycle of Saccharomyces yeasts includes both asexual and
sexual phases. Their genomes, like ours, are organized into linear chromosomes
contained  within  a  nucleus.  Yeasts  also  contain  cytoplasmically-located
mitochondria  that  have  their  separate  genomes  [8].  Unlike  us,  however,  the
presence  of  mitochondria  is  not  essential  for  Saccharomyces  yeasts  to  survive,
although functioning mitochondria are important for optimal yeast performance in
many  industrial  processes.  All  Saccharomyces  species  possess  very  similar
genomes, with the same number of chromosomes and with most genes (and gene
order) shared among all species; additionally, the genomes are very similar at the
DNA level. Likewise, all Saccharomyces species share the same basic life cycle
and mating systems, and yeast cells can exist freely in the haploid or diploid state,
where the haploid and diploid genomes are defined as containing one copy, or two
copies, respectively, of each of the 16 different chromosomes. Haploid cells can
exist briefly within the sexual mating cycle, derived by sporulation of the diploid
cell, or they can exist indefinitely as free-living cells if they are unable to mate
successfully,  for  example,  due  to  physical  isolation  or  mutations  in  the  mating
system [8].
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Yeast  cells  undergo  mitosis  (in  other  words,  they  continually  divide  asexually,
also  called  “clonally”)  when  sufficient  nutrients  are  present.  This  occurs  by  a
“budding”  process,  where  a  small  bulge  on  the  side  of  the  mother  cell  grows
larger and larger until  almost the same size as the mother.  At this point,  a new
nucleus with its own set of chromosomes, as well as cytoplasmic organelles and
mitochondria, are transported into the daughter bud, and a new cell wall grows
between the daughter bud and the mother. After this, the bud separates away and
starts its own mitosis process. A single mother cell produces an average of ~20-30
buds in its lifetime [8, 9]. However, when nutrients, especially nitrogen, become
limiting, a diploid cell (but not haploid) can progress through meiosis to produce
haploid  spores,  which  are  specialized  gamete  cells  that  can  survive  harsh
conditions.  In  Saccharomyces  yeasts,  meiosis  results  in  4  haploid  spores:  two
spores each of two opposite mating types, called “a” and “α” (see also Chapter 4).
These two spore mating types can be thought of as “egg” and “sperm”, where “a”
cells can only mate with “α” cells and vice versa. When the two haploid spores
mate  (fuse  together),  they  create  a  new  diploid  cell  that  combines  the  nuclear
genomes  of  each  parent  spore,  receiving  one  set  of  chromosomes  from  each
parent  [8].

Interestingly -and importantly for industrial applications- all eight Saccharomyces
species  are  able  to  mate  with  each  other:  i.e.,  haploid  spores  of  one
Saccharomyces  species  are  able  to  mate  with  haploid  spores  of  the  opposite
mating type of any of the other Saccharomyces species to form an interspecific
hybrid,  similar  to  a  mule  which  is  an  interspecific  hybrid  between donkey and
horse;  such  hybridization  occurs  both  in  the  wild  and  in  human-related
environments (reviewed by [10, 11]; also refer to Chapter 4 of this book). These
interspecific hybrids can proceed through sexual division (meiosis), although this
results in mostly inviable spore progeny and thus, like the mule, they are “sterile”.
However, they are able to indefinitely reproduce in the mitotic asexual (clonal)
manner.  Other  mechanisms,  such  as  multiple  rounds  of  spontaneous  genome
duplication,  or  aberrant  mating between diploids,  can lead to polyploidy (more
than 2 copies of each of the basic haploid set of 16 chromosomes) within a species
and similar aberrant mating of higher ploidy cells between different species can
give rise to interspecific hybrids of varying ploidy levels [12, 13].

Finally, it is important to note that any diploid or polyploid yeast cell can usually
tolerate not only mutations in single genes, but (amazingly) the loss or gain of a
single  chromosome,  or  even  several  chromosomes,  leading  to  a  state  called
“aneuploidy”, where different chromosomes are present at different copy numbers
[14, 15]. Equally important, most aneuploid and higher ploidy strains -as well as
interspecific hybrids- are “sterile”: i.e., they either cannot mate, cannot complete
meiosis, and/or cannot produce viable spores, and thus they cannot be subjected to
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CHAPTER 15

Are Yeasts “Humanity’s Best Friends”?
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Abstract: The beginning of the relationship between humans and yeasts is commonly
assigned to the Neolithic revolution. However, the role of these microorganisms as gut
symbionts  of  humans  and  other  animals  cannot  be  disregarded.  In  this  case,  the
timespan of this relationship should be measured in hundreds (not tens) of thousands of
years.  Evidently,  the  hypothesis  that  the  aforementioned  symbiosis  began  precisely
with the domestication of yeasts during the Neolithic revolution period cannot be ruled
out  as  well.  In  any  case,  the  relationship  between  humans  and  yeasts  has  broadly
developed from the moment humanity started to domesticate them to produce bread
and beverages,  which seems to  coincide with the Neolithic  revolution period.  Since
then,  humanity  has  created  novel  bioprocesses  with  yeasts,  even  though  the  role  of
these microorganisms was only really understood in the 19th century, especially with
the studies of Louis Pasteur. Today, yeasts drive a trillion-dollar global market, which
most likely presents the highest value among all sectors of industrial microbiology. In
this context, this book’s last chapter addresses the importance of yeasts in our society,
with positive impacts on the economy and the health of humans, animals, and plants.
We  also  discuss  the  role  of  these  microorganisms  in  maintaining  the  balance  and
diversity of species in the environment as a whole.  Finally,  we close the chapter by
highlighting the effects of their environmental role on human well-being and outlining
the potential of wild yeasts that can drift from nature to new bioprocesses.

Keywords:  Beer,  Beverage,  Biocontrol,  Biodiesel,  Biotechnology,  Bread,
Cheese, Chocolate, Decomposition, Ethanol, Food industry, Growth-promoting,
Microbial  factory,  Pharmaceuticals,  Probiotic,  Saccharomyces,  Single-cell
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INTRODUCTION

This  is  not  the  first  time  yeast  has  been  claimed  as  a  man’s  best  friend  [1,  2].
Since  the  Neolithic  revolution,  yeasts  have  been  employed  as  fermenting
microorganisms and their relationship with humans facilitated the change from a
gathering-hunting  lifestyle  to  the  establishment  of  permanent  settlements.  New
archaeobotanical  evidence  reveals  that  the  preparation  of  bread-like  products
occurred 4,000 years before the emergence of the Neolithic agricultural way of
life,  probably  14,400  years  ago  in  northeastern  Jordan  [3].  Although  at  that
moment  breadmaking  may  have  occurred  without  fermentation  (the  so-called
flatbread), at least from 10,000 ya, yeasts and humans have become increasingly
close  as  the  millennia  have  passed  due  to  the  diversification  of  various
bioprocesses.

Yeasts have a direct or indirect bond (or a potential bond) with at least 9 of the 21
industrial  sectors  established  by  the  United  Nations  (UN)  classification  —
International Standard Industrial Classification of All Economic Activities (ISIC)
[4].  Yeasts  can  also  be  used  for  heterologous  expression,  making  them  an
excellent  choice  to  act  as  microbial  factories  [5  -  12],  greatly  expanding  their
biotechnological  and  industrial  potentials.  Moreover,  if  one  considers  the
approaches  of  Yeast  Synthetic  Biology,  Synthetic  Genomics,  Saccharomyces
cerevisiae  v.2.0  (Sc2.0),  and  Synthetic  Chromosome  Recombination  and
Modification by LoxP-mediated Evolution (SCRaMbLE), this potential becomes
even more significant [13, 14].

Furthermore, as new biotech prospects have been identified in recent years, the
potential  use  of  yeasts  as  bio-based  (greener)  alternatives  to  the  conventional
techniques in the chemical and petrochemical industries has also been envisioned
[15]. Indeed, these microorganisms have proven to be increasingly versatile; not
withstanding the countless industrial processes in which these microorganisms are
already employed, it seems that they can be applied in an even greater variety of
bioprocesses in the future. This chapter will summarise the main biotechnological
applications  of  yeasts  and  outline  their  ecological  roles,  which  also  positively
impact human welfare.

THE THINGS WE LOVE THE MOST

The most traditional biotechnological products, whose processing involves the use
of  yeasts,  are  also  the  most  profitable  ones.  Besides,  these  products  are  also
related to the joy, happiness, sociability, and pleasure of individuals. Therefore,
they are very likely the bioproducts that humans enjoy the most. Together these
industrial  segments  of  joy  comprise  a  trillionaire  market,  surpassing  US$  1.3
trillion  worth  of  value.
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Alcoholic Beverages

Most alcoholic beverages are produced due to the fermentation capacity of yeast
cells.  In  this  scenario,  the  species  S.  cerevisiae  stands out  as  the  primary yeast
used for the beverages with the highest production volume and the most extensive
market sizes (Table 1).

Table 1. Alcoholic beverages and their markets.

Dominant Yeast Species
in the Processes Beverage Global Productiona Global Market Size References/Sources

S. cerevisiae and
S. pastorianus Beer 194 billion L US$ 623 billion [17, 19]

S. cerevisiae Wine 29.2 billion L US$ 327 billion [17, 18, 20]

S. cerevisiae Whiskey 5.2 billion L US$ 60 billion [21 - 23]

S. cerevisiae Vodka 3 billion L US$ 45 billion [24 - 26]

S. cerevisiae Tequila 0.25 billion L US$ 10 billion [27 - 29]

S. cerevisiae Sake 0.6 billion L US$ 9 billion [30 - 32]

S. cerevisiae Cachaça 1.8 billion L US$ 2 billion [33, 34]
a Approximated values per year.

Beer  is  a  non-distilled  beverage  obtained  from  the  fermentation  of  a  wort
composed of malted cereals, hops, and freshwater. Besides its millenary history,
beer is now the leading alcoholic product consumed in the world. Its production
has increased gradually over the last decades [16], reaching 194 billion liters in
2018. This amount represented a 50% increase in the last two decades and was six
times higher than the wine production in that same year (29.2 billion liters) [17].

Although  wine  has  a  significantly  lower  production  volume  than  beer,  it  is  a
higher  value-added  product,  in  such  a  way  that  the  global  wine  market  size  is
worth half of beer’s (Table 1). As a result, wine accounts for nearly one-quarter of
the  global  alcoholic-beverages  market  [18].  Together,  wine  and  beer  represent
almost 90% of the total alcoholic beverages produced on earth [17].

Considering  the  market  of  some  of  the  most  conventional  alcoholic  beverages
alone,  yeasts  contribute to more than US$ 1 trillion market  revenue worldwide
(see  Table  1).  The  notoriety  of  this  sum  becomes  even  more  evident  when
compared to another segment of the food and beverage industry: dairy products.
This  is  a  very  representative  sector  of  the  employment  of  bacteria  (in  more
significant proportion) and fungi; however, the entire dairy market, having a value
of US$ 489.74 billion [35], does not even correspond to half the market size of the
alcoholic  beverages  listed  in  Table  1.  Such  difference  between  dairy  and
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