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PREFACE

Computational  chemistry  is  a  very  diverse  field  that  uses  computer  simulation to  assist  in
solving  chemical  problems.  By  using  methods  of  theoretical  chemistry,  incorporated  into
computer programs, we can calculate the structures and properties of molecules. In general,
computational  results  normally  complement  the  information  obtained  by  chemical
experiments,  It  is  widely  used  in  the  design  of  new  drugs  and  materials.  The  focus  of
Frontiers  in  Computational  Chemistry  is  to  present  different  techniques  used  in  drug
discovery  and  the  drug  development  process.  Topics  falling  under  this  umbrella  include
computer  aided  molecular  design,  drug  discovery  and  development,  lead  generation,  lead
optimization, database management, and the development of new computational methods or
efficient  algorithms  for  the  simulation  of  chemical  phenomena  including  analyses  of
biological  activity.  In  this  volume,  we  have  collected  six  different  perspectives  in  the
application  of  computational  methods  towards  drug  design.

Chapter 1: Computer-aided molecular design in computational chemistry

This  chapter  combines  thermodynamics,  and  numerical  optimization  to  design  good  or
optimal molecular structures with many of them are completely novel. Advances in chemical
modeling in the last few decades have greatly benefited CAMD relating chemical structures
to properties at several levels of accuracy (molecular mechanics, semi-empirical, ab initio).
Though  CAMD  often  uses  semi-empirical  modeling  techniques  for  their  simplicity  and
efficiency,  new  approaches  incorporating  more  accurate  methods  are  emerging.  In  this
chapter, the significant advancement, applications of CAMD in the single component product
designs,  challenges  in  progression,  and  the  future  perspective  in  designing  the  chemical
compounds by using “computer-aided molecular design” (CAMD) tools is provided.

Chapter  2:  Role  of  Ensemble  Conformational  Sampling  Using  Molecular  Docking  &
Dynamics in Drug Discovery

Molecular  recognition  involved  in  protein  interaction  with  each  other  or  various  small
molecules with a high specificity and affinity to form a specific complex, constitutes the basis
of  all  processes  in  living  organisms.  These  interactions  can  be  studied  through  multiple
computational  approaches  including  docking,  MD  simulation  etc.  In  this  chapter,  the
theoretical background of molecular docking, classical MD simulations, MD-based enhanced
sampling  methods  and  hybrid  docking-MD  based  methods  are  highlighted,  demonstrating
how protein flexibility has been introduced to optimize and enhance accurate protein-ligand
binding predictions. Overall, the evolution of various computational strategies is discussed,
from  molecular  docking  to  molecular  dynamics  simulations,  to  improve  the  overall  drug
discovery and development process.

Chapter 3: Molecular Dynamics Applied to Discover Antiviral Agents

Molecular  Dynamics  (MD)  remains  a  valuable  tool  in  optimizing  the  ligand-protein
complexes  and  understand  the  ligand  binding  modes  and  drug  resistance  mechanisms  in
viruses. It is useful for filling in the details about the microscopic events that take place in
mere millionths of a second, which experimental methods cannot. Molecular dynamics (MD)
simulations utilizes simple approximations based on Newtonian physics to simulate atomic
motions. This chapter deals with the concept and applications of MD simulations, as well as
their applications in the discovery of drugs against Coronaviruses (SARS-, MERS-CoV, and
SARSCoV-2);  Influenza (INFV); Chikungunya (CHIKV); Zika (ZIKV); Dengue (DENV);
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Ebola  (EBOV);  and  human  immunodeficiency  virus  (HIV).  This  will  contribute  a  great
source of  helpful  information that  could be utilized for  designing new compounds against
neglected diseases.

Chapter  4:  Pharmacophore  modeling  approach in  drug discovery  against  the  tropical
infectious disease malaria

Despite  remarkable  improvement  in  overall  global  health,  Malaria  remain  a  major  health
problem  in  the  developing  world.  The  crucial  role  of  chemotherapy  in  curtailing  the
deleterious  health  and  economic  impacts  of  malaria  has  invigorated  the  search  for  new
antimalarial  drugs.  Among computational  approaches  pharmacophore  modelling  is  widely
employed in identifying the new molecules that trigger the desired biological activity. Due to
their  simplistic  and abstract  nature,  pharmacophores  are  both  perfectly  suited  for  efficient
computer  processing  and easy  to  comprehend by  life  and  physical  scientists.  This  chapter
aims  to  provide  the  pharmacophore  concept,  pharmacophore  modelling  methods  and  its
applications  in  modern  computer-aided  drug  design.

Chapter 5: Advances in computational network pharmacology for Traditional Chinese
Medicine (TCM) research

Traditional  Chinese  Medicine  (TCM)  is  well-known  for  its  use  of  medicinal  herb
combinations  to  treat  the  functional  disorders  which  naturally  followed  the  principal  of
network  pharmacology.  In  this  chapter,  systematically  the  methodologies  of  network
pharmacology  in  TCM  studies  are  discussed  followed  by  its  application  on  TCM  against
COVID-19.  The  forefront  study  examples  are  also  included  to  collate  and  analyze  the
advantages  and  limitations  of  different  computational  techniques.

Chapter 6: Progress in Electronic-Structure Based Computational Methods: From Small
Molecules to Large Molecular Systems of Biological Significance

In recent years, understanding of biological systems using electronic structure theory based
computational  methods  with  applications  to  biology  and  medicine  has  gained  increased
interest. Recent computational approaches that account for the effects of electron correlation
to a high degree and computational methods that seek to describe large molecular systems
with reduced computational cost seek further attention. In this chapter special attention to the
computational methods capable of describing phenomena relevant to biological activity and
drug  discovery  and  development,  as  well  as  the  design  of  new  materials  relevant  to
understanding  complex  biological  systems  are  highlighted.

Zaheer Ul-Haq
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International Center for Chemical and Biological Sciences
University of Karachi

Karachi
Pakistan
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CHAPTER 1

Computer-Aided  Molecular  Design  in
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Abstract:  In  molecular  design  techniques,  thermodynamic  properties  are  predicted
through computational tools. Besides, the simple prediction methods explain the space
of  molecular  design  while  quantum mechanics  can  accurately  predict  the  properties
without any kind of experimental data; however, it is a bit challenging. Therefore, in
this  chapter,  the  significant  advancement,  demurrers  in  progression,  and  the  future
perspective in designing the chemical compounds via using “computer-aided molecular
design” (CAMD) tools  will  be  elucidated.  Since the interest  in  designing novel  and
advanced compounds is increasing with time, traditional methods are not efficient now.
This  is  the  key  factor  in  the  advancement  of  CAMD  tools.  The  work  advancement
different classes of methods that predict the properties will be explained in the chapter.
Applications of CAMD in the single component product designs, mixture designs, and
also in integrated product designs will be evaluated. All the difficulties while operating
the designs and also in obtaining the results and future perspectives will be reviewed.
COSMO-CAMD  successfully  designs  novel  promising  solvents  in  the  liquid-liquid
extraction  of  phenol  from  water;  therefore,  it  will  be  explained  thoroughly.  Some
would debate that theoretical tools in computational chemistry can now come up with
eager understandings of any chemical process. Yet, the goblet of effective and reliable
prediction  of  compound  reactivity  has  remained  fugitive.  Favorably,  recent
developments  in  the  electronic  structure  theory,  which  is  based  on  both  concepts,
element,  and  rank-scanty,  along  with  the  appearance  of  the  highly  sophisticated
computer  architecture,  prominently  increased the time and length scales  that  can be
simulated using molecular dynamics. This opens the door for the newly proposed ab
initio  nanoreactor  method.  Therefore,  ab  initio  methods  will  be  studied  completely
because we argue that due to this development in molecular designs, the holy grail of
computational discovery for complex chemical reactivity is entirely within our reach.
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INTRODUCTION

Chemistry  is  all  about  the  molecules  and  also  their  conversions.  So  two  basic
questions that arise in chemistry are:

(i) Which type of molecule should be designed for the required applications?

and

(ii) How can the molecules be designed selectively and efficiently?

It was very challenging due to errors in the synthetic strategies. In the last era, the
computer has revolutionized this field by the development of theoretical models
that ranges from the electronic structure of the molecule to molecular dynamics as
well [1].

Computer-aided molecular design (CAMD) is the process of generating molecules
with  desired  properties  that  compare  with  the  definite  targeting  characteristics.
The  relationship  discipline  of  the  CAMD  in  the  development  of  quantitative
structure-activity  was  explained  for  the  first  time  by  Hansch  and  Fujita  in  the
1960s [2].  CAMD is  defined as  the given arrangements  of  building blocks and
predetermined  arrangements  of  targeted  possessions,  which  conclude  the
molecule  or  atomic  structure  that  coordinates  these  characteristics  [3].

The  capability  to  design  molecules  with  required  chemical  and  biochemical
processes  is  quickly  turning  into  reality.  This  ability  reveals  the  theoretical
introduction  in  chemistry  for  the  invention  of  new  methods,  as  well  as  new
computing  power  control  in  order  to  apply  for  the  detailed  molecular  model
analyses [4]. By the group contribution, computer-aided molecular design is the
inverse  property  prediction  which  has  given  a  lot  of  attractive  properties.  For
example, it is proposed to discover a mix of basic gatherings and consequently a
sub-atomic  structure,  fulfilling  the  property  determinations.  According  to  the
appropriate  property  measures,  the  potentially  feasible  molecules  may  also  be
ranked [5].

To  design  good  or  optimal  molecular  structures,  the  CAMD  combining  with
numerical  optimization,  thermodynamics,  and  molecular  modeling  techniques
performs  well.  By  the  group,  contribution  approaches  in  the  computer-aided
molecular design the compounds or a mixture of compounds are presented in such
a way that the collection of functional groups have a set of the specified range of
properties. For the computation of property value, the CAMD can be applied to
various types of problems, and in most cases, it produces more than one solution,
including  the  choice  of  refrigerants,  development  of  drugs,  and  innovation  of
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separation processes, as well as finding the design of solvents for the polymers
and paint industries.

The  CAMD  is  limited  for  both,  mixtures  and  pure  compounds  due  to  less
availability  of  computing  functions,  accuracy,  and  reliability  of  the  models
employed to predict the targeted properties [6]. For the efficiency, simplicity, and
accuracy of optimal molecular structures of CAMD, the semi-empirical modeling
and  modern  combinatorial  optimization  are  used  for  CAMD,  which  ultimately
enables the optimization over staggeringly large design spaces which would be
inaccessible otherwise [7].

By using the state equation (EoS) and semi-empirical group contribution methods,
the CAMD techniques have been used by many authors for the optimization of
Organic Rankine Cycle (ORC), which led to the possibility of combining with the
operational parameters such as temperature and pressure as well as are used for
working fluid design with ORC system design systematically [8].

METHODS

Markovian Chemicals “in silico” Design (MARCH INSIDE)

At the beginning of the 20th century, Markov’s chains were used in different fields
such as  astronomy,  physics,  biology,  and chemistry.  The use of  the Markovian
process increased tremendously in the fields of epidemiology, and medicine, and
artificial intelligence due to methods that are based on the mathematical approach.
For analyzing biological sequence data and for the detection of new genes from
open reading frames, Markov models are considered useful tools. These models
are also used in protein domains and multiple sequence alignment of proteins. It
has been used as particle cascades to solve the problems related to many electrons
in quantum mechanics by the Monte Carlo method [9].

The molecular structure is represented by many modest descriptors that help the
chemist  to  codify  structural  information  in  pharmacological  terms  [10].  The
stochastic  nature  and  simplicity  of  the  Markov  chain  attracted  attention  of
researchers  for  their  use  as  meaningful  descriptors.  Before  2002,  the  usage  of
stochastic matrix formalism as a basis of molecular descriptors was not common
[11]. For the first time, Markov chain formalism was used by Gonzalez to classify
molecular structures towards virtual screening and discovery of fluckicidal drug.
It was then extended to the study of protein structure-property relationships.
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Abstract: Protein interactions with various other macromolecules is a key biological
phenomenon  for  the  molecular  recognition  process  leading  to  various  physiological
functions.  Throughout  decades,  researchers  have  proposed  various  methods  for  the
investigation of such binding mechanism, starting from static, rigid docking to flexible
docking  approaches.  Rational  drug  designing  approaches  were  improvised  by
introducing semi- to full-flexibility in the protein-ligand molecular recognition process,
conformational  dynamics,  and  binding  kinetics  and  thermodynamics  of  conserved
waters in the binding site. A better understanding of ligand-binding is quintessential to
gain more quantitative and accurate information about molecular recognition for drug
and therapeutic interventions. To address these issues, Ensemble docking approaches
were  introduced,  which  include  protein  flexibility  through  a  different  set  of  protein
conformations either experimentally or with computational simulations i.e., molecular
dynamics simulations. MD simulations enable ensemble construction which generates
an array of binding site conformations for multiple docking trials of the same protein,
though  sometimes  poorly  sampled.  To  overcome the  same,  enhanced  sampling  was
introduced. In this chapter, the theoretical background of molecular docking, classical
MD  simulations,  MD-based  enhanced  sampling  methods  and  hybrid  docking-MD
based  methods  are  highlighted,  demonstrating  how  protein  flexibility  has  been
introduced  to  optimize  and  enhance  accurate  protein-ligand  binding  predictions.
Overall, the evolution of various computational strategies is discussed, from molecular
docking to molecular dynamics simulations, to improve the overall drug discovery and
development process.

Keywords: CADD, Enhanced Sampling, Ensemble Docking, Flexible Docking,
Hybrid  Docking-MD,  Molecular  Docking,  Molecular  Dynamics  Simulations,
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INTRODUCTION

Drug and Drug Designing

The  word  “Drug”  has  an  origin  from  the  word  “Drogue”,  a  French  word  that
means  Dry  Herb/Plant  extracts.  It  strongly  recommends  that  in  the  early  days
most primitive drugs were extracted from various plant sources [1]. The drug may
be  a  natural  or  synthetic  substance  that  shows  a  physiological  effect  when
introduced  to  the  human  body  and  is  used  for  the  prevention,  treatment  and
diagnosis of a specific disease and result in the relief of discomfort. In the context
of pharmacology, a drug molecule is a chemical entity that is different from an
essential  dietary  ingredient  and develops  a  biological  effect  on  a  living system
after administration [2]. Broadly, any substance administered orally, or injected
subcutaneously,  intramuscularly  or  intravenously,  or  applied  topically  or  to  a
body cavity to treat or prevent a disease or condition is termed as “Drug”. A drug,
once  it  binds  to  the  particular  target  site  may  either  stimulate  or  inhibit  the
function of a biological molecule or macromolecule that outcomes as therapeutic
benefits. Drug designing is a magnificent inventive process in the development of
novel  therapeutics  in  medicinal  chemistry  or  biological  history  to  produce  an
important and noteworthy beneficial or therapeutic reaction. Generally, it is also
termed rational drug design.

Computer-Aided Drug Discovery (CADD)

The novel drug discovery process for identifying novel drug/drug-like entities is a
costly,  multifaceted,  and  resource-consuming  process  which  includes  a  wide
range  of  modern  tools/techniques  and  various  scientific  disciplines.  A  fair
estimate indicates the entire process to take approximately 1.0 billion USD and
10-15 years [3] to complete a traditional drug discovery and development phase,
from concept to approval of a novel drug into the market. This resource-intensive
process majorly contributes towards the lead synthesis and the testing of the lead
compounds/analogues [4]. However, in the early days, with not much information
available at the protein structure level, R&D and innovations were pivoted more
towards  medicinal  and  combinatorial  chemistry  as  well  as  high-throughput
screening [5]. Now with the advent of high-performance computing, improvised
algorithms  and  availability  of  3D  protein  structure,  computer-aided  drug
discovery (CADD) techniques are in the renaissance period. To circumvent the
challenges  faced  by  traditional  drug  discovery  approaches,  academia,
pharmaceutical  companies,  and  other  research  organization  have  employed
CADD  techniques.

CADD has now become an essential tool for minimizing failures right from the
preliminary screening to the final phase of drug discovery and development.
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The  CADD  approaches  are  further  classified  into  structure-based  drug  design
(SBDD)  and  ligand-based  drug  design  (LBDD).  The  structure-based  approach
relies on the availability of the 3D structure of the target protein for the screening
and  identification  of  promising  ligand  molecules  by  calculating  the  interaction
energies  between  the  target  and  compound  [6].  In  contrast,  the  latter  approach
utilizes  the  information/knowledge  of  actives  and  in  actives  molecules  with
diverse chemical structures as well as the development of predictive models such
as QSAR (Quantitative Structure-Activity Relation) [7]. These models are further
utilized  for  screening  and  identification  of  additional  newer  chemical  entities
through  a  large  chemical  database  search,  a  process  called  virtual  screening.

In the early days of CADD, static docking was much more popular, but with the
increasing  biological  complexity  and  flexibility  of  target  molecules,  a  more
dynamic approach was needed. To circumvent the problems with static docking,
flexible docking methods were employed at ligand and target molecule levels [8].
Researchers also have used Molecular Dynamics (MD) simulations for docking
ligands on target  molecules which treats the entire protein-ligand complexes in
dynamics  considering  the  effect  of  solvents  molecules  [9,  10].  The  severe
limitation of not considering protein flexibility can be overcome by the use of an
ensemble  of  multiple  protein  structures  in  the  regular  docking  process.  This
approach  is  known  as  ensemble  docking  where  different  conformations  of  the
same target protein, either in complex with some substrate or small molecule or
free  from any ligand,  are  taken to  generate  an ensemble  of  structures  (array of
conformations). A typical ensemble docking computation takes protein structural
variations into account [11, 12]. More details about flexible & ensemble docking
as well as MD simulations are discussed further in the chapter.

Given  the  ever-increasing  novel  drug-target  molecules  and  their  biological
complexity, we will in this chapter discuss the theoretical concepts of molecular
docking and its various approach, focussing on sampling methods as well as static
and flexible docking methods. We move on to the MD simulations method and
conformational space search problem. We focus on those variable & variable-free
MD methods employed for enhanced sampling, such as metadynamics, umbrella
sampling,  steered  and  replica-exchange  MD  simulations.  This  perspective  will
also  touch  on  the  emerging  ensemble-based  docking  approach  and  discuss  its
application  to  address  protein  flexibility.  We  close  by  outlining  how  hybrid
docking-MD approaches are now employed which may help in unraveling more
molecules  against  drug  targets.  Overall,  we  present  a  state-of-the-art  review
highlighting key applications of the above techniques to CADD from recent years.
We envisage a future wherein MD and ensemble approaches are routinely used
for in silico screening of large small-molecule libraries, thereby accelerating the
identification and characterization of a drug candidate.
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Abstract:   In  recent  years,  the  world  has  faced  several  outbreaks  caused  by  viral
diseases, resulting in deaths and comorbidities, harming the health of the population.
Due to the “constant” discovery of new antivirals, vaccines, hygiene habits, and basic
sanitation, society had the false impression of being free from these diseases. However,
since  the  1980s,  various  outbreaks  have  occurred,  such  as  HIV  (Human
immunodeficiency  virus)  and  recently,  ZIKV  (Zika  virus),  CHIKV  (Chikungunya
virus),  and  EBOV  (Ebola  virus)  have  increased  the  concern  about  such  pathogens,
resulting  in  advances  in  drug  discovery.  In  addition,  the  SARS-CoV-2  outbreak
responsible for 27,417,497 cases, and 894,241 deaths (to date, September 9th,  2020),
showed how scientists should advance to end this disease so damaging to the global
health  and  economy.  In  this  context,  researches  focused  on  drug  development  have
been improved in recent years. Thus, it is essential to use computational approaches to
accelerate drug discovery in laboratories. Based on this, structure-based drug design
(SBDD)  techniques  constitute  the  most  used  computer-aided  approaches  for
discovering and developing new drugs. Among these techniques, molecular dynamics
(MD) simulations have been essential steps and their use in virtual screening studies is
considered  indispensable.  The  MD  considers  the  macromolecule  flexibility  using
Newtonian  principles  applied  to  proteins,  enzymes,  membranes,  nucleic  acids,  and
other systems. Thus, it is possible to analyze protein-ligand interactions, and also the
affinity energy that a determined ligand exhibits towards its target. Such information is
indispensable  for  designing  and  optimizing  new active  agents.  This  chapter  will  be
addressed to concepts and applications of MD simulations, as well as their applications
in  the  discovery  of  drugs  against  Coronaviruses  (SARS-,  MERS-CoV,  and  SARS-
CoV-2); Influenza (INFV); Chikungunya (CHIKV); Zika (ZIKV); Dengue (DENV);
Ebola (EBOV); and human immunodeficiency virus (HIV), constituting a great source
of  helpful  information  that  could  be  utilized  for  designing  new  compounds  against
these diseases.
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INTRODUCTION

Human  beings  are  constantly  threatened  by  various  diseases,  increasing  the
necessity  of  discovering new drugs that  could be effective to  treat  them [1,  2].
Drug  discovery  and  development  process  is  a  costly,  time-consuming,  and
challenging task. Given that, such challenges are overcome by multidisciplinary
methods and computer-aided drug design (CADD) methodologies [2, 3]. Within
CADD  methods,  structure-based  drug  design  (SBDD)  and  ligand-based  drug
design (LBDD) are used when the target is known or not, respectively [4, 5]. In
fact, SBDD is the preferred approach by researchers mainly due to the availability
of  free  license  software  and  the  large  availability  of  crystallized  structures  of
different targets that facilitates the in silico screening of new drugs [5 - 7].

In  the  context  of  SBDD  methods,  hit  identification  and  lead  optimization  are
mainly  performed  using  molecular  docking  software  [8].  However,  its  major
limitation is  not  considering the ligand and target  flexibility.  The utilization of
molecular  dynamics’  (MD)  simulations  is  essential  in  any  drug  discovery
program,  generating  information  on  thermodynamics,  binding  kinetics,  and
disassociation  of  ligands  [8,  9].  In  MD  simulations,  atoms  and  molecules  can
interact  in  a  given  time,  generating  a  path  resolved  by  Newton's  equations  of
motion,  in  which  energies  are  calculated  by  force  field  (FF)  or  molecular
mechanics (MM) methods [9, 10]. The algorithm used is capable of determining
positions and velocities of each atom, calculation, and force applied to the atom
employing interatomic potentials and progression of the speed of atoms in a given
time [4]. The protein-ligand interaction information generated in MD simulations
is critical in discovering new active molecules [4, 11].

Viral diseases are responsible for severe damage to human health, leading to high
mortality  rates  worldwide  [12].  Despite  several  advances  in  drug  discovery
techniques, there are several diseases that still do not have an effective treatment,
for example, against Zika virus (ZIKV), Chikungunya virus (CHIKV), and Severe
Acute  Respiratory  Syndrome  Coronavirus  2  (SARS-CoV-2),  which  are
responsible for several outbreaks around the world, requiring new alternatives to
fight against them [6, 7]. CADD and even drug repurposing methods have been
increasingly highlighted, driven by several significant findings, for example, the
discovery  of  HIV protease  inhibitors,  such  as  amprenavir  [7,  13  -  15].  Thusly,
molecular  docking  and  MD  simulations  are  often  used  for  discovering  new
antiviral  agents  [7,  16].
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Finally, this chapter will address a brief introduction to MD fundamentals, as well
as its applications and relevant studies involving the discovery of new antiviral
compounds,  focusing  on  Influenza  virus  (INFV),  Coronaviruses  (CoV),  ZIKV,
Dengue virus (DENV), CHIKV, Ebola virus (EBOV), and HIV.

VIRAL DISEASES AND THEIR THREAT TO SOCIETY

In modern society, different viral diseases are considered to be one of humanity's
biggest  woes,  responsible  for  thousands  of  deaths  around  the  world.  However,
during  the  20th  Century,  such  diseases  were  not  a  concern  for  the  general
population,  mainly  due  to  the  evolution  of  hygiene  habits,  the  discovery  of
antibiotics,  vaccines,  and  basic  sanitation  improvements.  There  was  a  false
impression that society was free of such diseases, leading to the carelessness and
growing increase in outbreaks of viral diseases from the 1980s to the present day
[7, 17].

The  World  Health  Organization  (WHO)  classifies  an  emerging  virus  that  first
affects a specific population or that previously affected the population, but it is
quickly spreading again at an accelerated rate [18]. Despite notable advances in
antiviral  therapies,  such  pathogens  remain  a  challenge  in  both  control  and
eradication [18, 19]. These infectious diseases are responsible for approximately
20% of global mortality,  so that one-third of deaths are due to viral pathogens,
mainly related to poor sanitation or even factors related to nutritional status and
poor  access  to  health  services  [20,  21].  In  addition,  viral  factors  related  to
mutations,  human  factors  such  as  population  growth  and  urbanization,  and
ecological  factors  contribute  to  the  emergence  of  such  diseases  [22,  23].

In the last decades, the world population has been threatened by seven major viral
epidemics (Fig. 1), leading to severe health and economic damages, among which
none  comparable  to  those  generated  by  the  pandemic  caused  by  the  new
Coronavirus (COVID-19) [7, 24, 25]. These viruses have high transmissibility, by
oronasal  secretions  or  respiratory  aerosols  (droplets)  released  by  infected
individuals,  or  even could be transmitted by vectors  (arboviruses  or  arthropod-
borne viruses), taking the concern of health agencies and increasing the interest of
researchers  from  all  over  the  world  in  discovered  new  therapeutic  alternatives
against them [26, 27].

Although viral diseases have threatened humanity for many years, some of these
diseases have no approved and effective treatments [28]. Also, the repurposing of
antiviral  drugs,  despite being a promising strategy that  generates results  in less
time  and  at  a  lower  financial  cost,  In  which  the  emergence  of  virus  resistance
mechanisms to available drugs is  a  significant  challenge to be overcome in the
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CHAPTER 4
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Abstract:  Malaria  remains  to  be a  life-threatening disease in  the  developing world.
Recent reports show that  the worldwide progress in reducing malaria has slowed. It
accounts  for  causing  more  than  2.2  million  cases  and  405,000  deaths  in  2018.
Therefore, the situation demands the need for the development of new techniques or
drugs against malaria. Several antimalarials have shown improvement in the treatment
of  malaria,  but  the  emergence  of  drug  resistance  has  intensified  the  need  for  the
development  of  novel  drugs.  Drug  discovery  is  an  expensive,  laborious,  and  time-
taking  process.  Alternative  to  traditional  drug  design,  computer-aided  drug  design
plays a significant role. In this respect, a class of computational techniques known as
pharmacophore  modeling  is  considered  beneficial  for  discovering  novel  lead
compounds. Pharmacophore modeling with the virtual screening method has become a
popular  method  for  the  screening  of  hit  molecules.  Pharmacophore  modeling
techniques are often implemented with molecular docking to improve the outcome of
the  virtual  screening.  The  current  study  focuses  on  the  pharmacophore  modeling
methods used to discover various novel antimalarials. According to the literature, this
method  is  valuable  in  processes  like  virtual  screening,  design  of  effective  hit
molecules, and optimization of lead towards clinical trials. The reader will gain insight
into  the  successful  applications  of  the  pharmacophore-based  virtual  screening  to
discover  antimalarials.
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Pathway  Enzymes,  Isoprenoid  Biosynthesis  Enzyme,  Multicomplex-based
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INTRODUCTION

Despite the remarkable improvement in implementing strategies to combat drug
resistance,  the  tropical  infectious  disease  malaria  remained  one  of  the  prime
causes of mortality [1, 2]. Malaria is an infectious disease caused by a protozoan
parasite.  Of  the  five  species  of  Plasmodium  parasite,  Plasmodium  falciparum
remains the deadliest one. As per the recent data from World Health Organization
(WHO), it was estimated that around 228 million cases and 405,000 deaths were
reported  worldwide.  Most  of  the  cases  (>90%)  arise  from  African  regions,
followed by South-East Asian regions (>3%) and Eastern Mediterranean regions
(>2%) [3]. Malaria has affected public health and economies; however, countries
with  high  poverty  rates  were  adversely  affected  [3].  Therefore,  owing  to  the
worrying  increase  in  the  statistics  of  the  malaria  reports,  WHO has  considered
malaria as the top priority tropical disease which requires controlled strategies [3,
4].  There  are  a  number  of  antimalarial  reported  so  far,  but  most  of  them  have
shown  resistance  [5  -  9];  for  instance,  artemisinin  combination  therapy  (ACT)
recommended  by  WHO  has  shown  a  reduction  in  the  activity  against  the  P.
falciparum [10]. Thus, there is an urgent need to search for effective drugs to treat
malaria.

The  discovery  of  drugs  is  counted  as  one  of  the  costly  [11]  and  laborious
processes  [12].  It  takes  years  for  a  successful  drug  candidate  to  hit  the  market
[12].  However,  in  the  past,  the  drug  discovery  process  allied  with  the
identification of drugs was a trial-and-error process [13]. Most of the molecules
fail in clinical trials owing to the lack of safety and potency for being an effective
drug  molecule  [13,  14].  Therefore,  to  overcome  the  drawbacks  of  hit-and-trial
methods,  rational  strategies  were  designed  to  advance  drug  potency  and  safety
[15, 16]. Hence, computers occupied a ubiquitous position in the timeline of the
drug development process [15, 17]. The strategy in which computers are designed
to conduct the drug development process is termed computer-aided drug design
(CADD)  [18].  Over  the  last  few years,  CADD has  remained  beneficial  for  the
pharmaceutical  giants  [19,  20].  The  substantial  development  in  the  types  of
computational techniques has led to the speed up of the drug discovery process
while reducing the overall cost and time allied with the drug designing [19 - 21].

While aiming for the discovery of a novel drug candidate, the initial step is the
selection  of  target,  tailed  by  hit  identification,  hit-to-lead  modification,  then
optimization of the lead and finally, the clinical trials of the shortlisted candidates
[22].  Among  the  mentioned  steps,  most  of  the  success  depends  on  the
identification of the hit molecules, which is mainly performed by employing high-
throughput screening (HTS) [23]. It aims for the testing of several molecules with
an appropriate activity assay [23]. However, in CADD, alternate to HTS is virtual
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screening  (VS)  which  has  attained  popularity  based  on  the  efficiency  in  the
filtering of the potential hit candidates from the enormous dataset of the chemical
compounds [24 - 26]. Taking this advantage into consideration, extensive efforts
have been dedicated to compress the initial phase of the drug discovery process,
i.e., hit-to-lead development and optimization [27]. There are many computational
techniques based on the CADD methods that focus on the retrieval of drug like
candidates  [15].  To start,  quantitative structure activity relationship (QSAR) or
quantitative structure property relationship (QSPR) methods are counted among
the popular methods for the construction of the predictive models to identify the
novel inhibitors [28 - 31]. These techniques accurately search the physicochemic-
al  properties  of  the  set  of  compounds  associated  with  the  inhibitory  activity  or
toxicity based on certain molecular descriptors (physical or chemical properties of
the compounds) [29]. Apart from QSAR/QSPR, molecular docking technique has
also been extensively used for the identification of the molecules that bind within
the protein cavity [32]. Docking studies gain more interest when the information
about  the  structure  of  the  protein  is  not  available,  as  it  helps  in  the  structural
analysis  of  the  protein-ligand  interactions  [32,  33].  With  time,  docking  has
become  a  popular  method  in  performing  the  VS  of  the  hits  where  compounds
were  screened  based  on  the  interaction  patterns  or  the  proteins  (target)  were
identified by employing inverse docking technique [34, 35]. There is another very
popular  method  of  CADD,  i.e.,  pharmacophore  modeling,  and  in  the  present
review, the discussion is made with respect to its related methods to perform the
VS [36 - 38]. The rationale behind the current review is to provide the advantages
of pharmacophore modeling in the identification of the drugs against the tropical
infectious disease P. falciparum  (malaria), and is focused on the medicinal and
computational  chemists  working  in  the  field  of  antimalarial  development.  This
chapter  is  focused  on  the  analysis  of  the  pharmacophore  modeling  approaches
applied  in  the  last  six  years  (2015  to  2020)  on  the  druggable  enzymes  of
Plasmodium falciparum. Moreover, it highlights the necessity for the validation of
the computational outcomes via experimental activities.

PHARMACOPHORE MODELING

Initially,  pharmacophore  was  represented  as  the  chemical  groups  present  in  a
molecule  that  are  accountable  for  displaying  the  biological  activity  of  the
molecules.  The actual  concept of the pharmacophore was developed in the late
1800s by Paul  Ehrlich [39] and the terminology was coined by Schueler  in the
1960s  [40].  Schueler  defined  pharmacophore  as  molecular  framework  of  the
crucial  features  present  in  an  inhibitor/molecule  [40].  However,  in  1997,  the
International  Union  of  Pure  and  Applied  Chemistry  (IUPAC)  defined
pharmacophore  as  [41]:
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(TCM) Research
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Abstract:  Traditional  Chinese Medicine (TCM) is  a  complementary and alternative
medicine  but  possesses  remarkable  clinical  efficacy  in  China  and  surrounding
countries. Hence, systematic analysis and elucidation of the complex chemical basis
and action mechanisms of TCM will be highly beneficial. Nowadays, the widespread
application of network pharmacology has unveiled the mystery of TCM to some extent
by constructing the relationship of “herb-compound-target-disease”. Moreover, it can
promote the development of drug discovery, medical guidance, and the dissection of
the syndrome in TCM. With the integration of computational techniques into network
pharmacology,  the  efficiency of  data  mining and the  accuracy of  active  compounds
identification and target  fishing have been improved, and the “herb-compound-targ-
t-disease”  network  has  been  more  systematically  and  comprehensively  explained  to
reflect the holistic mechanisms of TCM. Therefore, a comprehensive overview of each
aspect of the use of computational techniques in TCM network pharmacology is urgent.
This chapter systematically dissects the core contents involved in TCM computational
network pharmacology and highlights its application on TCM against COVID-19, and
severs  the  cutting-edge  study  examples  to  compare  and  analyze  the  advantages  and
limitations of different computational techniques.
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INTRODUCTION

Traditional  Chinese  medicine  (TCM),  as  complementary  and  alternative
medicine, has been developed and practiced in China and surrounding countries
[1]. After thousands of years of training and testing, as well as improvement and
perfection,  a  unique  and  complete  theoretical  system of  TCM has  finally  been
formed  [2].  Distinct  from  western  medicine,  TCM,  characterized  by  holistic,
personalized,  rich  experience-based  and  multicomponent  therapy,  provides  a
bright  prospect  for  the  systematic  control  of  complex  diseases.  With  the
development of human society and the change of surroundings, human diseases
have  gradually  transformed  from  infectious  diseases  to  chronic  non-
communicable  diseases  (e.g.,  cardiovascular  diseases,  diabetes  mellitus,  and
tumors, etc.). TCM is prominent in the treatment of these chronic diseases caused
by intrinsic and extrinsic factors simultaneously [3]. In clinical practice, TCM is
mostly  used  in  the  form  of  formulae,  which  often  follows  the  principle  of
“sovereign-minister-assistant-envoy (Jun-Chen-Zuo-Shi in Chinese)” to achieve
the  comprehensive  and  synergistic  therapeutic  effect  by  the  combination  of
various natural products (e.g., plants, animals and minerals, etc.). For this reason,
TCM  formulae  contain  hundreds  of  chemical  ingredients,  which  makes  it
challenging  to  understand  the  mechanisms  of  action  and  bioactive  ingredients.
Due to the complexity of TCM and the limitations of experimental applications,
only a few TCMs’ specific mechanisms of action have been fully elucidated, such
as  the  molecular  mechanisms  of  Realgar-Indigo  naturalis  formula  on
promyelocytic leukemia [4]. Undoubtedly, it is difficult for traditional reductionist
methods  to  reveal  the  complicated  interplays  between  the  multiple  compounds
and  multiple  targets  of  TCM,  which  is  becoming  the  major  obstacle  to  the
modernization  of  TCM  [5].

With  the  gradual  rise  of  interdisciplinary  disciplines  such  as  system  biology,
bioinformatics, artificial intelligence, and big data science, the research of TCM
has  been  transformed  from  a  single  and  isolated  mode  to  a  multi-angle  and
systematic research mode [6]. One of the breakthrough advances is to dissect the
mechanisms of action from the perspective of the biomolecular network. Utilizing
the “network” to regain the “whole” generates an unprecedented opportunity for
the systematic research of TCM. Accordingly, network pharmacology is evolving
as  a  systematic  paradigm  as  well  as  a  new  frontier  to  guide  the  research  and
development of TCM. The concept of network pharmacology was first proposed
by  Andrew  L.  Hopkins  in  2007  [7].  It  combines  network  biology  with
polypharmacology  based  on  the  poor  efficacy  of  highly  selective  single-target
drugs. Through network pharmacology, we can directly identify drugs and disease
targets from a large amount of data and understand the mechanisms and pathways
between them. Network pharmacology studies emphasize the paradigm shift from
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“one  target,  one  drug”  to  “network  target,  multi-component  therapeutics,”
highlighting  holistic  thinking  also  shared  by  TCM  [2,  3].  In  the  last  decade,
network pharmacology studies have bloomed to decipher the potential bioactive
compounds  and  underlying  mechanisms  of  TCM  [8].  The  conventional  TCM
network pharmacology generally starts by following a database-based strategy to
identify  the  active  compounds  present  in  TCM  formulae  and  their  plausible
corresponding  targets  and  finally  investigate  the  signaling  pathways  and  sub-
networks  regulated  by  the  formulae  and  evaluate  their  effects  on  disease-
associated  gene  sets  or  networks  [9,  10].  However,  due  to  the  definitive
limitations  of  database-based  strategy,  the  poor  involvement  of  computational
techniques and the lack of experimental verification, TCM network pharmacology
research has  stagnated and encountered bottlenecks,  as  well  as  much repetitive
work of limited value, has emerged [11, 12].

Nowadays,  the  rapid  development  of  computational  methodologies  and  high-
performance  computational  resources  is  being  witnessed.  Computer  algorithms
play a vital role in meeting the data-driven research in the various aspects of TCM
network  pharmacology.  Specifically,  machine-learning  (ML)  algorithms  for
predicting ADMET (absorption, distribution, metabolism, excretion, and toxicity)
parameters and targets facilitate filtering active TCM compounds and identifying
putative  targets  [13,  14];  network  propagation-like  algorithms  can  recognize
proteins  influenced  by  TCMs  [15];  and  algorithms  for  finding  hub  nodes  in
networks boost the identification of core compounds and targets of TCMs [1, 16,
17].

This chapter is structured into two main sections. In the first section, the cutting-
edge computational network pharmacology studies on active compounds mining,
compound-target  interactions  prediction,  gene  ontology  (GO)  enrichment  and
pathway  analysis  methods,  and  network  topology  analysis  were  reviewed  and
summarized. Further, the application of network pharmacology in the mechanistic
investigation of TCM against COVID-19 was highlighted in the second section.

COMPUTATIONAL NETWORK PHARMACOLOGY ON TCM

Active Compounds Mining

The unclear bioactive compounds of TCM are one of the key issues restricting the
research  and  development  of  TCM,  so  a  comprehensive  method  for  the
identification of  bioactive  compounds is  urgently  required.  However,  it  is  very
time-consuming and labor-intensive to obtain the chemical composition of TCM
based  on  traditional  chemical  methods  (chemical  separation,  analysis,  and
identification). Owing to many natural product databases are published as open-
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Abstract: A review of  ab initio computational chemistry methods that can be used for
accurate  studies  of  molecules  and  molecular  design  and  simulation  of  chemical
phenomena  with  applications  that  are  relevant  in  exploring  biological  activity  is
presented. The review includes a discussion of recent computational approaches that
account  for  the  effects  of  electron  correlation  to  a  high  degree  and  computational
methods that seek to describe large molecular systems with reduced computational cost
yet  achieving  good  quality  results.  Comparison  with  available  experimental  data
demonstrates the effectiveness of these computational methods in estimating accuracy,
reliability, and scalability of the computational approaches discussed in this review. In
recent years, the understanding of biological systems using electronic structure theory-
based computational  methods with  applications  to  biology and medicine has  gained
increased interest. We draw special attention to the computational methods capable of
describing  phenomena  relevant  to  biological  activity  and  drug  discovery  and
development, as well as the design of new materials relevant to understanding complex
biological systems. As an application of these electronic structure methods, we include
the case study of perboranation in aza-derivatives of aromatic five and six-membered
rings.
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INTRODUCTION

Accurate  and  reliable  theoretical  description  of  complex  chemical  systems  of
biological importance is of great significance and has been a subject of numerous
efforts  by  method  developers.  In  particular,  these  efforts  have  manifested  in  a
production of a number of Quantum Chemical Computational Packages that have
been widely used by scientific researchers focusing on a variety of problems of
chemical  and biological  significance,  from evaluating the biological  activity  of
molecular species to attempts in predicting potent and effective drugs to address
various  health  issues.  Recent  breakthroughs  [1,  2],  in  our  understanding  of  the
structure, functionality, and chemical reactivity of complex bio-chemical systems
like  DNA,  RNA,  proteins,  carbohydrates,  lipids,  see,  e.g  [3].  or  extensive
molecular  structures  like  fullerenes,  nanotubes  and  graphene-sheets  [4  -  9]
necessitate  the  development  of  high-quality  quantum chemical  models  that  are
capable  of  providing  the  underlying  description  of  complex  systems  at  the
microscopical (quantum) level of theory. While the ability to determine structural
parameters of equilibrium geometries is important, the most challenging task is
the  elucidation of  functionality  of  the  complex biomolecules,  like  DNA repair,
metabolism,  the  mechanism  of  image  formation  upon  photon  absorption  via
isomerization reaction from cis-to-trans structure involving the light-detecting -
protein rhodopsin [10], the FeO2 bonding mechanism in oxy-myoglobin [11], the
process  of  synthesis  of  biomolecule  NO in  humans  using  nitric  oxide  synthase
isoforms  [12],  nitrogen  fixation,  i.e.,  synthesis  of  NH3  from  N2  [13],  the
mechanism for  intein  C-terminal  cleavage  [14],  and  many other  phenomena  of
biological  interest.  Notably,  the  theoretical  modeling  of  a  wide  variety  of
enzymatic reactions has been a subject of  intense  research  over  many  years
 [15  -  18].  Among  many  breakthrough  studies,  for  example,  one  can  mention
recent  findings  by  Schulz  et  al.  [18]  in  the  computational  investigation  of  the
diiron  core  intermediate  structures  that  are  involved  in  the  catalytic  cycle  of
methane  oxygenase,  the  enzyme  that  facilitates  the  conversion  of  methane  to



Progress in Electronic-Structure Frontiers in Computational Chemistry, Vol. 6   237

methanol.  These  researchers  were  able  to  identify  the  most  likely  geometry  of
MMOHQ intermediate to be an open-core configuration with mono-oxo-bridged
iron ions.

Another  important  avenue  in  biochemical  research  using  quantum  chemical
computational methods concerns the molecular processes and molecular species
that control concentrations of toxic chemicals,  like elucidating the effect of the
hydronium  ion  concentration  (acidity  level  of  the  solution)  on  the  stability  of
highly  toxic  compound  dimethylmercury  (DMeHg)  [19].  The  ab  initio
computational  results  [19]  indicate  that  DMeHg  is  unstable  under  acidic
conditions (low pH levels), decomposing readily into methane (CH4) and CH3-H-
-OH2

+  ion.  The recent  experimental  investigations  confirm [20]  that  DMeHg is
indeed unstable under acidic conditions (low pH levels),  producing methane as
one of the decomposition products as predicted. This result is also consistent with
the earlier experimental observation [21] that alkaline conditions are necessary for
the  formation  of  DMeHg.  Thus,  the  predictive  power  of  quantum  chemical
computations  elucidating  the  decomposition  pathways  of  bio-toxic  compound
DMeHg is very encouraging. Another example that illustrates the effectiveness of
ab  initio  methods  can  be  seen  in  the  analysis  of  toxicity  originating  from
thiophene-containing drugs [22], as well as toxicity studies of toxic nitroaromatic
compounds by examining reduction potential and hydrophobicity [23].

Since  the  early  days  of  quantum  mechanics,  starting  in  about  1926  [24,  25],
numerous  theoretical  models  to  approximate  accurate  properties  of  molecular
systems and extended-solid materials have been developed [26 - 30]. Ideally, the
most  desirable  quantum-theoretical  models  to  be  used  to  describe  essential
features of various physical, chemical, and bio-chemical phenomena correctly are
being  developed  with  two  main  considerations  in  mind,  namely,  to  provide  as
high accuracy as possible with the lowest computational cost possible [26 - 30].
Needless to say this is a highly challenging task [31, 32]. Most of the advances in
theoretical  quantum  method  development  have  been  dedicated  to  finding
approximate  solutions  to  the  (non-relativistic)  Schrodinger  equation  [24].
However, the relativistic quantum effects are very important in cases when, for
example,  high  (near-spectroscopic)  accuracy  is  desired  [33  -  36]  or  when
molecular  systems involve heavy nuclei  [29,  30].  In  the  quest  of  achieving the
optimum  balance  between  high  accuracy  and  the  lowest  computational  cost
possible,  the efforts in quantum chemistry method development ordinarily start
with the mean-field level of theory, e.g., Hartree-Fock [28 - 30], and then include
electron-electron correlation in a systematic way following various frameworks.
While the wave-function-based approaches [26] via the use of molecular orbitals
generated  from  the  Hartree-Fock  procedure  offers  a  systematic  (hierarchical)
improvement  by  including  electron-electron  correlation  via  Configuration
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