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PREFACE 

The 15th volume of Advances in Organic Synthesis presents recent exciting 

developments in synthetic organic chemistry. The chapters are written by 

authorities in the field. The topics include a review of molecular halogens and N-

halamines in the context of their applications as acid- and metal-free catalysts, 

recent fluorination methods involving phase transfer catalysts, synthesis and 

applications of small fluorescent molecules, achievements in the synthesis of 

aromatic five-membered heterocycles containing one heteroatom, and lastly, a 

discussion about triazole synthesis under green conditions in basic ionic liquids. 

 

This volume should prove to be a valuable resource for organic chemists, 

pharmaceutical scientists and postgraduate students seeking updated and critically 

important information on recent important developments in synthetic organic 

chemistry. I hope that the readers will find these reviews valuable and thought-

provoking so that they may trigger further research in the quest for new 

developments in the field. 

 

I am thankful to the efficient team of Bentham Science Publishers for the timely 

efforts made by the editorial personnel, especially Mr. Mahmood Alam (Editorial 

Director), Mr. Obaid Sadiq (in-charge Books Department) and Ms. Asma Ahmed 

(Manager Publications). 

 

 

Prof. Atta-ur-Rahman, FRS 

Kings College 

University of Cambridge  

Cambridge 

UK 
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CHAPTER 1 
 

 
Metal-Free and Acid-Free Activation of Carbonyl 

Moiety  Using  Molecular Halogens or N-Halamines 

Bojan Božić1*, Klara Čebular2,3,4, Stojan Stavber2,3 
 

1 Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, 

Belgrade, Serbia 

 
2 Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, 

Slovenia 

 
3 Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia 

 
4 Lek Pharmaceuticals d.d, Verovškova 57, SI - 1526 Ljubljana, Slovenia 

 

Abstract: In recent years, the growing environmental awareness has prompted an 

increasing demand for eco-friendlier technologies, acting consequently as a main driving 

force for exploring greener methodologies. One of the most fundamental approaches in 

organic synthesis is the activation of the carbonyl group. This step is essential for the 

performance of a plethora of organic reactions. Herein, we provide a brief overview of 

molecular halogens and N-halamines in the context of their application as acid- and 

metal-free catalysts. Susceptibility of the carbonyl group to the nucleophilic attack allows 

the construction of numerous organic compounds. The existence of oxygen lone pairs 

puts the carbonyl moiety into the context of a Lewis base, prone to activation in the 

presence of a Lewis acid, which has been observed and extensively investigated over the 

last decade. The noncovalent interactions – halogen bonds – provided by halogen atoms 

in haloorganic compounds may be assumed responsible for their catalytic activity. 

Molecular halogens and N-halamines act as convenient, easily-handled, low-priced 

catalysts/mediators and, more importantly, the ones that can presumably act as Lewis 

acids. These characteristics prompted this class of compounds in the research focus 

aiming at substantial advances in organic synthesis. Finally, an optimal reaction method 

(where the carbonyl moiety activation represents an essential step) should meet the 

following criteria: i) an easily-manipulable, low-cost, non-metal, water- and air-tolerant 

catalyst, ii) mild and solvent-free reaction conditions, iii) no need for simultaneous water 

removal, and, iv) stoichiometric amounts of activators or large excesses of reagents. 

 

 

*Corresponding author Bojan Božić: Institute of  Physiology  and  Biochemistry  “ Ivan  Djaja ”, 
Faculty of Biology, University of Belgrade, Belgrade, Serbia; E-mail: bbozic@bio.bg.ac.rs 
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INTRODUCTION 

From the early beginnings, civilizations use technology to improve the quality of 

life by extracting different metals from ores, producing ceramics, transforming fats 

into soap, fermenting beer and wine, extracting natural compounds from herbs for 

fragrance and therapeutics, creating glass, and making alloys. Nowadays, with the 

world`s population outreaching 8 billion, a request for higher quality food, 

agrochemicals, and products, larger quantities of medicines and fuel, more 

manufactured goods, such as garments and machines, and most importantly, 

enhanced access to drinking water and clean air, dramatically escalates. Such needs 

have driven the advancement and growth of research in different scientific 

disciplines, including chemistry, for the last two centuries launching the road of 

invention, development, and discovery. However, scientists have undertaken this 

course without thoroughly understanding the effects of chemicals and different 

technologies on human health and the environment, in general, i.e., the 

consequences of the galloping pace in breakthroughs related to both novel insight 

and accompanying methodologies had been only partially foreseen. In recent 

decades, with the tremendous accumulation of new information/data, the awareness 

about arising environmental issues has led chemists to challenge their work and 

actively mitigate the implications by adopting the principles of green chemistry [1]. 

The 12 principles were established by Paul T. Anastas in 1998 [2], standing as the 

essence of the green chemistry modus operandi [3]: 
 

1. Analytical methodologies for pollution prevention; 

2. Atom efficiency; 

3. Catalytic rather than stoichiometric reagents; 

4. Designing products for degradation; 

5. Energy efficiency by design; 

6. Inherently safer processes. 

7. Innocuous solvents and auxiliaries; 

8. Less hazardous/toxic chemicals; 

9. Preferably renewable materials; 

10. Safer products by design; 

11. Shorter synthesis – avoiding derivatization; 

12. Waste prevention instead of remediation; 

Keywords: Carbonyl group, Catalysis, Green chemistry, Halogen bond, 

Molecular halogens, N-halamines. 
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Over the last decades, the growing acceptance of green chemistry in academic and 

industrial settings has resulted in a movement to develop a better, healthier, and 

more sustainable environment [4]. On 25 September 2015, the UN introduced a set 

of goals to reduce poverty, protect the earth and ensure sustainability for all, as a 

part of a new environmental sustainability strategy. The aims and targets should 

promote progress in areas of vital importance to humanity and the environment over 

the next 15 years [5]. In this context, the research and development of 

environmentally harmless chemical transformations and catalysis will play an 

increasingly important role in sustainable development and, generally, in the 

progress of organic chemistry. 
 

Catalysis 

  Green chemistry assumes the reduction or, ideally, elimination of waste products 

in the chemical industry, with the slogan: “Prevention is better than cure.” This 
objective calls for a paradigm shift in the organic synthesis performance from the 

higher-yield-based to waste minimization [3]. Over the last two decades, advances 

in green chemistry prompted catalysis protocols extensively applied in the 

pharmaceutical and fine chemical industries to minimize the enormous quantities 

of waste produced due to the inorganic stoichiometric reagents usage. Catalysts are 

used in 80 percent of all chemical manufacturing processes, producing global 

annual sales of about $1500 billion, contributing directly or indirectly to about 35 

percent of the world's GDP [6]. The term catalyst refers to the substance increasing 

the velocity of a reaction, i.e., decreasing the reaction's activation energy without 

undergoing alteration during the process. At least, in theory, the catalyst can be 

used in small amounts and recycled continuously so that no waste material is 

produced in net effect. 
 

Catalysis increases reaction kinetics. Although thermodynamics serves as a guide 

to the most stable products, kinetics evaluates the relative levels of many 

competitive pathways available for reactants. By reducing the activation energy, 

catalysts enable additional mechanistic routes with lower energy activation barriers, 

compared to those of non-catalyzed reactions, rendering quickly and selectively 

metastable products during catalytic processes. With new pathways available, 

catalyzed reactions follow at much faster rates and lower temperatures. A catalyst, 

however, can only shorten the period of reaching thermodynamic equilibrium, but 

cannot alter the position of the balance, i.e., catalyze a thermodynamically 

unfavourable reaction [7]. 



 

CHAPTER 2 
 

Anti-algal Study on Polymeric Coating Containing 

Metal@Metal Oxide Core-shell Nanoparticles 

Developed through Organic Synthesis for Marine 

Paint Applications 

Jaya Verma1,2,*, A. S. Khanna3, A. Bhattacharya2 
 

1CART, Indian Institute of Technology Delhi, New Delhi-110016, India 
2Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh-201303, India 
3Surface Engineering & Coating Consultant, Mumbai-400078, India 

 

Abstract: In this chapter, we studied anti-algal coating development with silica-titania 

core-shell nanoparticles using a novel organic synthesis approach; peptization. 

Development of nano core-shell through this peptization methodology improved the two 

different material properties in a single nanoparticle excellently i.e. core silica improved 

the mechanical strength, and shell titania enhanced the anti-algal property of the coating. 

These coatings were formulated in two model binders: solvent-based binder polyurethane 

and water-based emulsion poly-acrylic at various concentrations of nanoparticles against 

hazardous algae present in seawater. Obtained results confirmed these developed coatings 

are super protective coatings using silica-titania core-shell nanoparticles, which are 

highly anti-algal as well as mechanically-strengthened that can be useful as marine 

antifouling coatings for water boats or ships and when it would be applied to the 

underwater hull of ships, discourages or prevents the growth of organisms that attach to 

the hull. It would also improve the flow of water passing the hull of a fishing vessel or 

high-performance racing yacht because of the smoothness of the coatings. Additionally, 

the irradiation effect of low energy ions was also investigated on these coating surfaces 

and found excellent results towards application in marine paint. 

 

*Corresponding author Jaya Verma: CART, Indian Institute of Technology Delhi, New Delhi-110016, 

India; Tel: +91-8744985777; Email: jayaverma@iitd.ac.in 
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Mechanical strength, Nano-coating, Peptization process,     Poly-acrylic, 

Polyurethane, Silica-titania core-shell nanoparticle. 
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INTRODUCTION 

 

At present, Marine biofouling’, the undesired growth of marine organisms, such as 

microorganisms, barnacles, and seaweeds on submerged surfaces, is a global 

problem for maritime industries, with both economic and environmental penalties 

[1-3] The primary strategy for combating marine fouling is to use biocide- 

containing paints, but environmental concerns and legislation are driving science 

and technology towards non-biocidal solutions based solely on physicochemical 

and materials properties of coatings [4-7]. Advances in nanotechnology and 

polymer science, and the development of novel surface designs ‘bio-inspired’ by 
nature [8-10], are expected to have a significant impact on the development of a 

new generation of environmentally friendly marine coatings [11,12]. 

 

Recent approaches are based on the development of polymeric anti-algal surface 

by silica-titania core-shell nanoparticles through organic synthesis. Previously, 

various researchers worked on the anti-microbial effect of nanoparticles using 

TiO2, ZnO etc. nanoparticles, but no one worked with silica-titania core-shell 

nanoparticles in anti-algal study for marine anti-fouling paint application. In this 

core-shell structure, two different material properties improved in a single 

composite. Core silica improved the anti-scratch property of coating, which is 

already reported in our previously published research article [13] and the presence 

of titania as shell material improved the anti-algal properties of the coating. As we 

already know, titania-polymer nano-composites are intrinsically environmentally 

friendly and exert a non-contact biocidal action. Therefore, no release of 

potentially toxic nanoparticles (with unpredictable effects on human health) to 

the media is required to achieve disinfection capabilities [14, 15]. So, this type of 

coating can be useful as anti-fouling coating for the marine industry. When this 

nanocomposite based coating would be applied to the underwater hull of ships, it 

would improve the smoothness of the coating and the flow of water passing the hull 

of a fishing vessel that supports a high-performance racing yacht by prohibiting the 

growth of organisms attach to the hull. So in this anti-algal study, testing was 

performed against green and mixed algae because these types of harmful algae  

are mostly found in seawater. 
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Synthesis and Characterization Approach for SiO2@TiO2 Core-shell 

Nanoparticles 

 

Peptization is the organic synthesis approach used for converting a fresh precipitate 

into a colloidal particle by shaking it in the dispersion medium in the presence of a 

small amount of electrolyte. Generally, an electrolyte is added whose one ion is 

common with one ion of the precipitate. The particles of precipitate absorb common 

ion of electrolyte. Then, they get dispersed due to electrostatic repulsion. This 

method not only avoids complicated processes such as the layer-by-layer technique 

and polymer/surfactant grafting methods. It also reduces costs due to its short 

reaction time and the use of inexpensive reactants. In this research work, we 

followed the peptization process for metal oxide core-shell nanoparticle synthesis. 

In the organic synthesis (Peptization process) of core-shell nanoparticle, core 

silica was prepared using tetraethyl orthosilicate (TEOS) in the presence of H2O, 

C2H5OH and NH4OH. Shell structure was developed on core silica using titanium 

tetra-isopropoxide with 1 ml of 70% nitric acid and stirred for 4 h at 70⁰ C. After 

this, the whole material was centrifuged at 8000 rpm for 10-15 min and dried at 

70⁰  C for overnight. Core-shell nanoparticles were synthesized through the sol-

gel process for comparative study on the anti-algal property as well as individual 

silica and titania nanoparticles also. Detailed synthesis methodology is already 

reported in our previously published research articles for the same nanoparticles 

[13]. 
 

Surface modification of synthesized nanoparticles was carried out using methyl 

trimethoxy-silane in the presence of ammonium hydroxide for better dispersion in 

the coating formulations. Further water-based binder poly-acrylic (PA) and solvent- 

based polyurethane (PU) coatings were developed on mild steel and bricks 

containing silica, titania, and silica-titania core-shell nanoparticles (from 1wt % to 

6wt % in total coating formulations) individually prepared via both the processes, 

i.e., sol-gel and peptization, for anti-algal testing as well as mechanical property 

testing. 
 

The characterization of all the nanoparticles, such as dynamic light scattering 

(DLS), UV-Vis spectroscopy, XRD analysis, TEM, XPS, and Fourier transform 

infrared spectroscopy was successfully performed. In this study, DLS was used to 

measure the particle size of the as-prepared nanomaterials. The particle size of 

nano-silica was measured as 85 nm. Nano-TiO2 was measured as 107 nm, and the 

size of the silica-titania core-shell nanoparticles was 240 nm, prepared via a sol-gel 

process. TiO2 nanoparticles and SiO2–TiO2 nano core-shell particles were also 

prepared by the peptization process with a particle size of 75 nm and 144 nm 

separately. All these characterizations of the same nanoparticles are briefly
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CHAPTER 3 
 

Functionalized Catalyst for Efficient Nucleophilic 

and Electrophilic Fluorination 

Sandip S. Shinde1* 
 

1 Department of Chemical and Industrial Engineering, Institute of Chemical Technology Mumbai, 

Marathwada Campus, Jalna 431203, Maharashtra, India 

 

Abstract: Fluorination reactions are an important class of organic synthesis. Fluorine 

is a highly electronegative atom; thus, it has dual characteristics, such as being basic 

and nucleophilic in nature which produces various products. In this chapter, we have 

discussed the recent development of fluorination methods by using various phase 

transfer catalysts. The catalyst plays a significant role in aliphatic nucleophilic 

fluorination. The various tasks of specific tailor-made ionic liquids are developed and 

used for fluorination reactions. Ionic liquid catalyst is immobilized, covalently 

bonded on solid or liquid support to improve the catalytic efficiency in the reactions. 

 

1. INTRODUCTION 
 

Ionic liquid (ILs) is the term that generally refers to salts of the organic or inorganic 

molecule, which exists in the liquid state at room temperature [1]. The ionic liquids 

are one of the environmental benign "green solvents" due to their series of 

characteristic features that include easy preparation, good thermal conductivity, 

chemical stability, recoverability, non-toxicity, etc. Most of the organic solvents 

are insoluble in ILs, thus they can be recoverable and recycled after the reaction 

process. ILs usually have a high boiling point, non-volatile, insoluble, and high- 

density features which have made them a favourable reaction media and catalyst in 

various organic transformations [2]. They can be used as a heterogeneous or 

homogenous catalyst as per the requirement of reaction conditions [3]. The 

applications of ILs are not limited to the chemistry field but also used in biomedical 

-  
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applications [4]. Currently, numerous ILs are developed based on the heterocyclic 

organic skeleton to form cation and anion salts. However, the imidazole and 

pyridine-based modified ILs are widely being studied for various applications, 

including surfactants, polymer, therapeutics, insecticides, and lubricants [5]. 
 

Substitution reactions are important class of organic reactions, in which a 

functional group is replaced by a new nucleophile or electrophile. In bioactive 

molecules, the polymer is synthesized by following substitution reactions. The 

halogenation compounds are usually achieved by applying the substitution 

reaction to the aliphatic or aromatic system. Among the various halogens such as 

F, Cl, Br, I, etc., the fluorine has attracted attention due to significant physic-

chemical properties, like increased receptor-binding, metabolic stability, and 

lipophilicity properties that are found in bioactive compounds [6]. Fluorine is one 

of the important elements in our daily life, which is widely present in toothpaste, 

mineral water, eatable salts, and kitchen utensils. The fluorination reaction is an 

attractive research area for organic synthesis researchers. The fluorine is not only 

limited to use in chemical biology or food chemistry research but also applied in 

clinical science research to detect the progress of cancer diseases. In the 

radiopharmaceutical field, fluorine with radiolabelling is high in demand due to its 

longer half-life (110 min). In recent years, fluorinated organic molecules have 

reached a commercial status in crop protection and pharmaceutical drug industries 

[7]. More than 600 agrochemicals have been developed and marketed; among 

them, low fluorinated compounds account for most of the commercially available 

crop protection agents [8]. which include important insecticides, fungicides, 

herbicides, and the agrochemical blockbusters [9]. In the pharmaceutical field, 

many fluorinated compounds with the greatest activity and properties have been 

very successfully introduced to the market, as anti-depressants, anti-

inflammatory, anti-malarial, anti-psychotic, antiviral agents, steroids and 

anaesthetics, etc. [10]. Considering this above- mentioned importance of fluorine, 

research has developed several reactions for the synthesis of fluorine-containing 

molecules [11]. Introducing fluorine to the organic molecule is a tedious task due to 

low availability of fluorine source, which is mostly available in salt, making it 

difficult for it to react with organic substrates. Fluorination is performed by 

substitution reactions using phase transfer catalyst due to the insolubility of 

fluoride metal salts in an organic solvent. Great progress is made in fluorine 

diazotization reaction, nucleophilic fluorination, electrophilic fluorination, and 

electrochemical fluorination [12]. ILs are used as solvent and phase transfer 

catalysts in various reactions, even though in transition metal catalyst reactions. 

This not only enhances the reaction rate of metal salts but also facilitates product 

separation after completion of the reaction process [13]. However, the 

applications of ionic liquid as a catalyst in fluorination reactions are an emerging 
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and interesting topic for organic chemists. In this book chapter, we have covered 

the two decades of research developments involving fluorination reactions in the 

presence of various catalysts; also, the role of reaction media or catalyst in various 

substitution reactions has been reviewed [14]. 
 

1.1. Imidazolium Ionic Liquid Catalyst 

 

 
Fig. (1). Imidazolium ILs studied in nucleophilic substitution reactions. 

 

Kim and his group developed some new ionic liquids for nucleophilic substitution 
reactions, exhibiting good yield, as shown in Scheme 1. Fluorination of substrate 1 

containing mesylate (leaving group) with the help of KF as a fluorinating agent in 
CH3CN at 100 oC took more reaction time, but the same reaction in the presence 

of [bmim] [BF4] Cat.-1 involving BF4 counter anion was completed in 2h, and the 

product 2-(3-fluoropropoxynaphthalene) formed with less amount of by-products 
such as alcohol 1b; the by-product can be eliminated if the reaction is performed 
using a low amount of water. 

 

 
Scheme 1. Classic ILs as a catalyst in fluorination reaction. 

 

 

 

 

 

 

  

 

 

 

Ionic liquids are uncommon to use in halogenation reactions. Kim et al. found that 

nucleophilic fluorination reaction with some haloalkanes and mesylalkanes gave 

corresponding desired fluorinated products by using KF in the presence of IL 

catalysts [15]. The imidazolium-based ILs with various counter anions, as shown 

in Fig. (1), have been studied as a catalyst for nucleophilic substitution. The 

fluorination in ILs provides much better yield than classic organic solvent-mediated 

reactions. 
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Abstract: Fluorescent molecules play an important role in synthetic chemistry due to 
their vast applications from their applicability in sensors in the medicinal field. These 
molecules cover a range of systems from monomeric to polymeric but more attention 
has been given to the development of small molecules that are of high relevance. One 
can ask about the factors which direct small molecules as a core centre of research in 
sensor chemistry. Strong emission, better molar absorptivity, molar extinction 
coefficient and small molecular weight are some of the important points that govern the 
high applicability of fluorescent molecules in sensor chemistry. But first, it is important 
to know what these properties are, and how these properties play a crucial role to 
govern fluorescent molecules as a tool to utilize in various fields of sensor chemistry. 
Fluorescent molecules have been extensively used in the field of physiology of 
receptors, as sensors for metal ions (generally transition metals) and ROS (reactive 
oxygen species), bio-imaging and pharmacology, etc. 

 

Keywords: Auxochrome, BODIPY, Biological Importance/Function, Chromo-
phore, Energy Transfer Mechanism, Fluorescein, Fluorescent Probe, 
Fluorescence, Quantum Yield, Reactive Oxygen species (ROS), Sensors. 

INTRODUCTION 

Fluorescent molecules are very important in synthetic chemistry due to their vast 
applications as a sensor in in-situ as well as in-vitro. These molecules range from 
monomeric to polymeric in nature, and are well-known, but researchers are 
working to discover small molecules that are of higher relevance. One can ask 
about the factors which cover or direct small molecules as a core centre of 
research  in  sensor  chemistry.  Strong  emission,  better molar absorptivity, molar 
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Extinction coefficient, and small molecular weight are some points that govern 
the high utility of fluorescent molecules in sensor chemistry [1, 2]. But first, it is 
important to know what these properties are, and how these properties play a 
crucial role to govern fluorescent molecules as a tool to utilize in various fields of 
sensor devices. Fluorescent molecules [3 - 5] have been extensively used in the 
field of physiology of receptors, as sensors for metal ions (generally transition 
metals) and ROS (reactive oxygen species), bio-imaging and pharmacology, etc. 

It has been reported in South America that a terrestrial animal named polka-dot 
tree frog (Hypsiboas punctatus) [6] shows fluorescent properties on illumination 
with UV-Vis light and radiate bright green light. This bright green color emission 
was due to the molecule which absorbs red color light at a longer wavelength and 
emits its complementary color. This process is called fluorescence. There are 
basically two phenomena that work in the field of photochemistry (1) 
Fluorescence (2) Phosphorescence, but fluorescent molecules are based on the 
phenomenon of fluorescence. Various fluorescent molecules have been reported 
so far, which show this phenomenon and have many biological applications as 
reported with Fluorescein, Rhodamine, BODIPY, Pyrene-type molecules, and 
their derivatives. The question is why these molecules are fluorescent in nature 
and what properties they exhibit. 

Definition 

Firstly, we need to know the above two phenomena which are well described and 
schematically illustrated in the Jablonski diagram (Fig. 1) given by Professor 
Alexander Jablonski in the year 1985 [7]. It is based on the emission of light 
which is termed Luminescence. When the light of a certain wavelength irradiates 
on a molecule, the electron in the molecule gets excited and move from singlet 
ground state to excited state and comes back from the singlet excited state (S1) to 

ground state, emission of light and energy takes place; this whole phenomenon is 
called fluorescence. In this diagram, the excited states are drawn vertically with 
increasing energy named singlet excited states, and triplet excited state which is 
lower in energy than their corresponding singlets. When two electrons with the 
spin, align in the opposite direction to each other, so the electrons have spin 
multiplicity equal to 1 hence called singlet state and denoted as S with the ground 
state (S0), first excited state (S1), and so on. Triplet state, on the other hand, when 

electrons which are unpaired and have parallel spin formulating the spin 
multiplicity equal to 3, hence called triplet state and denoted as T. As triplet 
ground state does not exist, so the triplet state starts with first triplet excited state 
(T1) which is lower in energy as compared to first singlet excited state. The 

diagram shows two types of processes 1.) Radiative process and, 2.) Non- 
radiative process [8]. 
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Radiative processes are those in which the release of energy takes place in the 
form of light during the time of emission, while non-radiative processes are those 
in which there is no emission of energy or light takes place. Non-radiative 
processes are classified as internal conversion (IC), intersystem crossing (ISC), 
and vibrational relaxation. Similarly, radiative processes are classified in two 
ways as Phosphorescence and Fluorescence [9]. Phosphorescence basically a 
phenomenon in which the emission of a photon of light (hνp) takes place during 

the electron drops from triplet excited state (T1) to ground state (S0) after some 

time. Materials that show this phenomenon are kid's toys that glow-in-the-dark, 
clock dial, paints, and stickers. Even if we remove the source of radiation, 
phosphorescence will still occur because this triplet state is longer-lived than the 
singlet state. In the process of fluorescence, there is an emission of energy in the 
form of a photon (hνf) when an electron drops from the S1 state to S0. It generally 

occurs within 10-9 seconds. Generally, the organic compounds which are aromatic 
in nature show fluorescence (Table 1). 

 
 

 
 

 

Generally, the compounds which show fluorescence are eosin, fluorescein, 
chlorophyll, and anthracene. The electron releasing group generally increases 
fluorescence, whereas the electron-withdrawing group reduces fluorescence. The 
fluorescein emission spectra of compounds are usually the mirror image of its 
absorption spectra. 

 
Table 1. Differences in fluorescence, phosphorescence, internal conversion, and intersystem crossing. 

 

 
- Fluorescence Phosphorescence 

Internal 

Conversion 

Intersystem 

Crossing 

Type of 

Radiation 
Radiative Radiative Non-Radiative Non-Radiative 

 
Emission 

 
From S1 to So 

 
From T1 to So 

From Sn to Sn-1 

where n is any 

electronic state 

From Sn to Tn 

where n is any 

electronic state 

Time 

Scale 
10-9 – 10-7 sec 10-1 – 102 sec 10-4 – 10-11 sec 10-8 – 10-3 sec 
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Abstract: Furan, pyrrole and thiophene derivatives are aromatic five-membered 

heterocyclic compounds with one heteroatom. These compounds are widely distributed 

in a wide range of natural and non-natural compounds. Many of these derivatives have a 

diverse range of bioactivities such as antimicrobial, anticancer, antiparasitic, anti-

infammatory, antihypertensive antiviral, antitumor, activities, and several derivatives 

have been marketed as drugs for treatment of various diseases. Besides, the use of 

furan, pyrrole and thiophene derivatives also has been found in other fields such as 

organic materials, agrochemicals, flavors, dyes. They can serve as intermediate or 

building blocks for the preparation of natural product compounds or drugs. 

With such a diverse range of applications, the preparation of furan, pyrrole and 

thiophene derivatives has drawn intensive attention of chemists. Several established 

synthetic approaches for example the Paal-Knorr, Feist–Benary, Gewald, Knorr and 

Fiesselmann, Huisgen, and Hantzsch syntheses have been modified and improved. 

Moreover, an enormous number of new methods for the preparation of these 

heterocycles have been developed. This chapter will give an overview of published 

studies on the construction of pyrrole, furan, and thiophene skeletons which date back 

to 2012. 
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1. INTRODUCTION  

Furan, pyrrole and thiophene derivatives are aromatic five-membered ring 

heterocycles with one heteroatom. These compounds are widely distributed in a 

wide range of natural and non-natural compounds. Many of these heterocycles 

have a broad range of bioactivities such as antimicrobial, anticancer, antiparasitic, 

anti-inflammatory, antihypertensive, antiviral, antitumor, activities, and some 

compounds have been marketed as drugs for treatment of various diseases. 

Besides, the use of furan, pyrrole and thiophene derivatives also has been found in 

other fields such as organic materials, agrochemicals, flavors, dyes. They can 

serve as intermediate or building blocks for the preparation of natural product 

substances or drugs. 

1.1. Anti-inflammatory Activity 

 Mometasone furoate 1 has been used in the treatment of inflammatory skin 

disorders (Fig. 1) [1]. Tolmetin (2) and Zomepirac (3), are pyrrole-containing 

drugs used in the treatment of rheumatoid arthritis and pain in the market. Various 

5-aroyl-1,2-dihydro-3H-pyrrol [1,2-a] pyrrole-1-carboxylic acid derivatives were 

prepared by Muchowski et al. and evaluated for anti-inflammatory activity. The 

derivatives containing 4-vinylbenzoyl (4) and 4-methoxybenzoyl (5) moieties 

were the most active components (Fig. 1) [2]. Various thiophene compounds 

including Tinoridine 6, Tiaprofenic acid 7, Tenoxicam 8 and Suproprofen 9 have 

been marketed as anti-inflammatory agents. Fayed et al. synthesized a new class 

of fused thiophene compounds and examined their anti-inflammatory activity 

using Indomethacin as the reference. Five of them, compounds 10, 11, 12, 13 and 

14 exhibited significant anti-inflammatory activity (Fig. 1) [3]. Five novel 

benzothino-pyrimidine compounds 15-19 prepared by Duaij et al. displayed 

stronger anti-inflammatory activity than Indomethacin over bioassay testing 

method in rats (Fig. 1) [4]. 
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Fig. (1). Antiinflammatory activity of furan, pyrrole and thiophene derivatives. 

1.2. Antimicrobial Activity 

Ceftiofur 20, Fumoxicillin 21, Nitrofurantoin 22, Nifuroxazide 23, Nifurtoinol 24, 

Roseophilin 25,   and Cefuroxime 26 are furan-containing antibiotic drugs and 

widely used in medical practice (Fig. 2A) [5-10]. Furazolidone 27 has been used 

as an antibacterial agent in the treatment of diarrhea and enteritis caused by 

bacteria or protozoan infections (Fig. 2A) [11]. Nifurquinazol 28 (NF-1088) has 

been used as a nitrofuran antibacterial agent (Fig. 2A) [12].  A series of 

symmetric 2,5-diaryl-NH-pyrroles (31) constructed by Jana et al. showed strong 

186    Advances in Organic Synthesis, Vol. 15 Dau X. Duc 



CHAPTER 6
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Abstract:  Ascribing  to  the  superiority  of  possessing  noteworthy  physicochemical
properties, ionic liquids engirdle a scientific interest in research area of chemistry as
green solvent over past few decades. Being constituted entirely of ionic species, these
solvents remain often as fluid at room temperature. The strength of the cation, anion or
the combination of both governs the acidity or basicity of reactive ionic liquids. Due to
some special properties like flexibility, non-volatility, non-corrosive, tunable property,
high thermal stability and recyclability; ionic liquids offer a great potential to replace
conventional solvents in chemical synthesis. Further, the use of acidic or basic ionic
liquids reduces the necessity of  using external  acid or  base along with the solvents.
Therefore,  implementation  of  these  ionic  liquids  in  chemical  laboratory  is  widely
accepted  as  one  of  the  green  techniques  as  it  lessens  the  adverse  environmental
impacts.

1,2,3-triazoles  are  highly  desired  synthetic  molecules  in  the  field  of  chemical  and
pharmaceutical  industries  as  triazole  containing  moieties  possess  potent  biological
activities  such  as  anti-viral,  anti-epileptic,  anti-allergic,  anti-microbial,  anti-cancer,
antituberculosis and anti-HIV properties. Its application is also extended to other areas
such as organic synthesis, polymer science, material science and chemical biology. As
the incorporation of basic condition favors the synthesis of these privileged classes of
compounds from their starting reagents,  use of basic ionic liquids as reaction media
provides an alternative and greener approach for their facile construction. This chapter
will  discuss  triazole  synthesis  under  green  conditions  by  following  three  different
routes in basic ionic liquid:

• Direct azide-alkyne cycloaddition reactions affording 1,2,3-triazoles.

• Cascade synthesis of triazoles from azides and carbonyl compounds.

• One pot three component reactions leading to 1,2,3-triazoles.
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INTRODUCTION

Ionic Liquids: Combination of Molten State of Ions

Molecular  solvents  turned  out  to  be  the  medium  to  accomplish  most  of  the
chemical reactions. Most of our efforts in dealing with chemistry have been drawn
upon  the  reactions  of  molecules  in  solution  phase  in  molecular  solvents  for
decades.  Of  late,  due  to  the  aspiration  for  “green”  solvents  for  reducing
environmental hazards; “ionic liquid” has turned up as a new sort of sustainable
solvent  providing  a  few  unique  properties  like  high  chemical  and  thermal
stability,  non-flammability,  tremendous  solvating  power  [1,  2]  etc.  Being
composed wholly of  ionic species,  these solvents  have many captivating assets
such  as  they  can  be  designed  as  per  as  to  meet  the  specific  necessity  for  a
particular  kind of  reaction as  they are  composed of  at  least  two fragments  i.e.;
organic cation part and organic/inorganic anion part, which can be varied. Using a
distinct  end  from  the  two  (cation  and  anion)  in  notice,  these  solvents  can  be
designed to hold a set of specific properties i.e.; they are task specific [3]. Due to
the huge deviation in size of cation and anion, they are not capable of forming
lattice (Fig. 1); rather they are dispersed resulting them to usually be fluid at room
temperature.

Fig. (1). Representation of the difference between a lattice and an ionic Liquid.

Ionic Liquids (ILs) can be synthesized by metathesis, direct-combination or acid-
base  neutralization  reactions  [4].  The  thermodynamic  and  kinetics  of  reactions
carried out in these designer solvents are poles apart compared to those traditional
molecular  solvents  which make them of  vital  interest  to  all  researchers  as  they
have the prospective of functioning as catalyst too [5]. Moreover, ionic liquids do
not  emit  any  volatile  organic  compounds  (VOCs)  as  these  solvents  have  no
quantifiable vapor pressure due to which they are a matter of interest for diverse
synthesis that can be termed as “green”.
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History of Ionic Liquid

In 1888, ethanolammonium nitrate emerged out to be the first  ever ionic liquid
reported by Gabriel and Weiner [6]. With the discovery of first room-temperature
ionic liquid ethylammonium nitrate [7] by Paul Walden in 1914, the era of ionic
liquid started its mark (Fig. 2).

Fig. (2). Ionic liquids prepared by Gabriel & Warner and Paul Walden respectively.

This ionic liquid was the first to meet all the specifications to satisfy the present
definition  of  ionic  liquid  bearing  a  melting  point  of  12  ºC.  It  was  obtained  by
treating C2H5NH2 with concentrated HNO3. Though Walden discovered the first
room temperature ionic liquid (RTIL) giving an account of the physical properties
of it, owing to its explosive nature, literally the interest about ionic liquid had set
about  from  the  synthesis  of  binary  ionic  liquid  dialkylimidazolium
chloroaluminate by Hussey et al. in 1982 [8]. Osteryoung et al. in 1970 studied
about AlCl3 and alkyl pyridinium halide system i.e. the first generation of ionic
liquids [9] and Hussey published the debut prime review about ionic liquid [10].
Ever  since  late  1990s  the  study  of  ionic  liquid  and  its  uses  have  been  grown
astonishingly in various research fields covering organic synthesis [11], analytics
[12],  electrochemistry  [13]  and  material  science  [14]  as  a  medium  for  novel
synthesis  (Fig.  3).

Fig. (3). Applications of ionic liquids in different fields.
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