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PREFACE 

In this book, the author opens up new possibilities for the main quantities in 

quantum physics  –  the statistical operator 𝜚̂ and the density matrix_𝜚𝑛𝑚. The 

meaning of the density matrix is that its diagonal elements 𝜚𝑛𝑛 are equal to the 

probability 𝑤𝑛  that the system in the quantum state n. The   point in this book is 

the Lindblad equation for the statistical operator 𝜚̂, where the main element of 

influence on the system of its environment is the dissipative operator 𝐷̂:  

i ℏ 𝜕𝜚̂ 𝜕𝑡⁄  = [ 𝐻̂ 𝜚̂ ] + i ℏ 𝐷̂ . 

This operator is written in the most General form. In order for the Lindblad 

equation to be solved, the 𝐷̂ operator must be specified. The author wrote down 

the dissipative diffusion and attenuation operators that will allow us to find the 𝐷̂ 

operator. Now, this operator depends on the temperature T and describes the 

effect of the thermostat R on the quantum system S. This new equation is not 

difficult to write for the particle density matrix in coordinate representation as 

compared to the Wigner equation, which coincides with the Fokker – Planck 

equation. This proved the equivalence of quantum physics and classical statistical 

physics. 

The author wrote the Lindblad equation for a harmonic oscillator and inserted a 

dissipative attenuation operator into it. And without any approximation, he 

derived the equation of damped oscillations for the average value of the 𝑥̅(t) 

coordinate with absolute accuracy. 

Bondarev based on the Lindblad equation with another operator 𝐷̂ developed the 

theory of the harmonic oscillator, in which he found the density matrix and 

proved the Heisenberg relation.                     

He further developed the theories of the light diode and ball lightning. In light 

diode theory, he used the diffusion and attenuation operators and derived the 

Fokker – Planck equations for electrons and holes. These equations present the 

terms that are responsible for radiation.   

The theory of ball lightning is based on the assumption that the gas inside the ball 

is completely ionized and electrons, due to their lightness in comparison with 

nuclei, evenly fill this ball. The equation for the statistical operator 𝜚̂  nuclei 

contains operators of diffusion and damping. This equation is a second-degree 

equation with respect to the coordinate and momentum operators. The probability 

of distribution of nuclei over the volume of a ball lightning is found. 



ii  

Bondarev derived von Neumann equation from the Liouville, which is valid for a 

non-equilibrium system S and an equilibrium thermostat R, the equations for the 

density matrix S of a single particle and a system of identical particles. These 

equations have a remarkable property. When the density matrix has a diagonal 

form, they get turned into quantum kinetic equations for probabilities, which are 

obtained in the wave graphical representation.  

The book presents new theories of such experimentally discovered phenomena as 

step kinetics of bimolecular reactions in solids, superconductivity, superfluidity, 

energy spectrum of an arbitrary atom, laser, spaser and graphene. 

Kinetics is called as a stepwise process, in which the reaction suddenly stops at a 

constant temperature even in the presence of a lot of reagents. But as soon as the 

temperature is raised, the reaction starts again. The reason for this reaction is the 

tunnel effect, which is observed only in solids, when there are molecules in the 

bodies that hold the reagents near them. In liquids, these molecules can move 

along with the reagents and enter into a reaction that goes all the way while there 

are reagents. The reaction in liquids always obeys the Arrhenius law. To describe 

stepwise kinetics, the author came up with a correlation theory.     

So, when processing the results of the step kinetics experiment using correlation 

theory, it was found that the Arrhenius law is also fulfilled here. And there was 

also an increase in localization volume with increasing temperature, as predicted 

by the tunnel effect.           

Superconductivity can be described by the law of changing the probability 𝑤𝒌 of 

filling the state of electrons with the wave vector k as a function of temperature. 

This law has long been known. It depends on the energy 𝜀𝒌𝒌′ of the interaction of 

electrons with the wave vectors k and 𝒌′. When 𝜀𝒌𝒌′ = 0, the probability 𝑤𝒌 

obeys the Fermi − Dirac law. Our goal was to find the energy 𝜀𝒌𝒌′ of the 

interaction of electrons. 

We denote the matrix elements of the interaction Hamiltonian of two particles as  

𝐻12,1′2′, where 1 is the spin quantum number of the particles.  If the particles are 

bosons, then the matrix elements must be antisymmetric, i.e. then the matrix 

elements must change the sign when replacing variables 1 and 2, or 1′ and 2′. 

This is possible if the matrix elements represent the sum of two terms of different 

characters. In the wave representation, the energy ε_(kk^') will also represent two 
terms of different signs. But in this case, it is very difficult to solve the equation. 

Therefore, we roughly denote these terms as 
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𝜀𝒌𝒌′ = I 𝛿𝒌 + 𝒌′ − J 𝛿𝒌 − 𝒌′ , 

where I and J are positive constants, 𝛿𝒌  is the Kronecker symbol. Now we can 

substitute this function into the equation and get  

ln [ ( 1 − 𝑤𝒌 ) 𝑤𝒌 ]⁄ =  𝛽 ( 𝜀𝒌 +  𝐼  𝑤− 𝒌 −  𝐽 𝑤𝒌 − 𝜇 ) . 

This equation has a remarkable property. For some areas of 𝒌 will this inequality 

be true   

 𝑤𝒌 ≠  𝑤− 𝒌 . 

The property that is expressed by this inequality is called anisotropy. The 

appearance of this property here is superconductivity.   

Solving this equation, we obtain for T = 0 functions that have five values for one 

argument value. Since this function describes stationary states, the lowest energy 

is the value of the function where the electrons remain indefinite.  This will be a 

superconducting state.        

In theory, the parameter represents f = ( 𝐽 −  𝐼 ) ( 𝐽 +  𝐼 )⁄ . This parameter divides 

superconductivity into two kinds. If 0 ≤ f ≤ 1, then it is a I-type superconductor, 

and if −1 ≤ f < 0, then it is a II-type superconductor. Critical temperature is 

defined as  𝑇𝑐 = ( 𝐼 + 𝐽 ) ( 4 𝑘B)⁄ . All the main effects and properties of 

superconductors are covered by this theory. 

In the theory of superfluidity for liquid helium, Не3 and Не4, all values that 

express the properties of this mixture are described by functions having multiple 

values in a certain temperature range. As a consequence, the heat capacity tends to 

infinity when the temperature approaches the temperature 𝑇𝜆  of the lambda 

transition.                                                       

The theory of the energy spectrum of an arbitrary atom begins with determining 

the energy using statistical operators: 

E = ∫ 𝐻̂(1) 𝜚̂(1) dq + 1 2⁄  ∫ 𝐻̂(2) 𝜚̂(2) d𝑞1 d𝑞2 , 

where 𝐻̂(1) is the Hamiltonian of one electron, 𝐻̂(2) is the Hamiltonian of two 

interacting electrons, 𝜚̂(1) and 𝜚̂(2) are the statistical operators of one and two 

electrons. The matrix 𝐻𝛼1𝛼2, 𝛼1
′ 𝛼2

′   of the Hamiltonian 𝐻̂(2) must be antisymmetric. 

To do this, it is taken equal to 

𝐻𝛼1𝛼2, 𝛼1
′ 𝛼2

′  = ∫ 𝛷𝛼1𝛼2
∗ (𝑞1, 𝑞2) 𝐻̂(2)(𝑞1, 𝑞2) 𝛷𝛼1

′ 𝛼2
′ (𝑞1, 𝑞2) d𝑞1 d𝑞2 , 
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where  

𝛷𝛼1𝛼2
(𝑞1, 𝑞2) = 1 √2⁄  [ 𝜑𝛼1

(𝑞1) 𝜑𝛼2
(𝑞2) − 𝜑𝛼1

(𝑞2) 𝜑𝛼2
(𝑞1) ] 

there is an antisymmetric Slater function. The eigenfunctions of electrons in the 

hydrogen atom are taken as functions 𝜑𝛼(𝑞). After a series of calculations, an 

equation is obtained from which one can obtain the eigenfunction and energy 

𝜀 𝑛 𝑚 𝑙 𝜎 of electrons of an arbitrary atom.  

In the following chapters, new theories of the laser and spaser are constructed, 

which are similar to each other in the content of the main quantum approaches to 

describing the phenomena occurring in them. The basis of these theories is the 

Lindblad equation. The equation for the density matrix will be written in a 

coordinate form with a known Hamiltonian and an unknown dissipative matrix. 

To find this matrix, we need to remember that we know the kinetic equation for 

active atoms, which follows from the equation for the density matrix in the 

representation where it has a diagonal form. So, a  representation needs to be find 

out where the density matrix has a diagonal form. The closest to this 

representation is the representation in which the Hamiltonian of active atoms will 

also have a diagonal form. Thus, the Hamiltonian has two representations. One α-

representation is a coordinate representation. The other is the 𝜅-representation, in 

which the Hamiltonian has a diagonal form. These two Hamiltonians are 

connected by the unitary matrix 𝑈𝛼𝜅. The density matrices 𝜚𝛼𝛼′ and 𝜚̃𝜅𝜅′ will also 

be connected by the same unitary transformation:           

𝜚𝛼𝛼′ = ∑ 𝑈𝛼𝜅 𝜅𝜅′ 𝜚̃𝜅𝜅′𝑈𝛼′𝜅′
∗  . 

We find the dissipative matrix in the 𝜅-representation. 

Now we need to create another equation in the α-representation. This is the most 

important equation in laser theory. This is the equation for the spectral energy 

density of radiation. To solve it, we will use the density matrix 𝜚𝛼𝛼′. As a result, 

we will have the spectral energy density of the radiation from the laser. 

Almost free electrons wander along the surface of graphene. For every carbon 

atom, there is one such electron. To obtain the kinetic equation of these electrons, 

their Hamiltonian must be reduced to a diagonal form. After these 

transformations, we will have a system of two equations that are equivalent to the 

equation obtained in the theory of superconductivity. 
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INTRODUCTION 

 

1. Fundamentals of Quantum Mechanics. Schrödinger Equation  
 

In quantum mechanics, the Schrödinger equation was obtained: 

 

                                             i ℏ 𝜕𝜓 𝜕𝑡⁄  = 𝐻̂𝜓,                                                      (1) 

 

where the unknown  

 

                                                𝜓 = 𝜓(t, q)                                                            (2) 

 

is called the wave function, 𝐻̂ is the Hamilton operator энергии. Here q is a 

quantum variable on which the Hamiltonian acts. The physical meaning of the 𝜓 

function is that the product 

 

                                                      w = 𝜓∗ 𝜓                                                         (3) 

 

is the probability of finding the system in state q. The probability satisfies the 

normalization condition 

 

∫ 𝑤 (𝑡, 𝑞) d𝑞 = 1                                               (4) 

 

The energy operator 𝐻̂ is by definition, such an action on the wave function 𝜓(t, 

q) to obtain the known energy E(𝑡, 𝑞) of the system: 

 

                                                𝐻̂ 𝜓(t, q) = E(𝑡, 𝑞) 𝜓(t, q)  

 

2. Liouville − von Neumann Equation  

 

Soon another function was invented, it is called the density matrix:  

 

                                                    𝜚 = 𝜚( t, q, 𝑞′)                                                   (5) 

 

At first, this function was equal to the product  

 

                                            𝜚( t, q, 𝑞′) = 𝜓∗(t, q) (𝑡, 𝑞′)                                       (6) 
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In this case, the state of the quantum system is called pure. This function satisfies 

the equation that can be easily deduced from the Schrödinger equation: 

 

                                                i ℏ 𝜕𝜚 𝜕𝑡⁄  = [ 𝐻̂ 𝜚 ]                                               (7) 

 

then there was invented the density matrix 

 

                                 𝜚𝑛𝑛′(𝑡) =  ∫ 𝜓𝑛
∗( 𝑡, 𝑞) 𝜚̂ 𝜓𝑛′(t, q) dq                                   (8) 

 

Here 𝜓𝑛(t, q) is a set of wave functions, and 𝜚 is called the statistical operator.  

 

The state described by the density matrix (8) is called mixed. 

 

The physical meaning of the density matrix is that its elements  

 

                                                          𝜚𝑛𝑛 = 𝑤𝑛                                                      (9) 

 

are probabilities to find a quantum system in states n. The probability is such that 

 

                                                        ∑ 𝑤 𝑛 = 1                                                    (10) 

 

The equation for the mixed state density matrix: 

 

                        i ℏ 𝜕𝜚𝑛𝑛′ 𝜕𝑡⁄  = ∑ ( 𝑚  𝐻𝑛𝑚 𝜚𝑚𝑛′ − 𝜚𝑛𝑚 𝐻𝑚𝑛′ )                         (11) 

 

It can be shown that the statistical operator 𝜚̂ satisfies the equation  

 

                                                i ℏ 𝜕𝜚̂ 𝜕𝑡⁄  = [ 𝐻̂ 𝜚̂ ]                                             (12) 

 

The equations (11) and (12) are called Liouville − von Neumann equations. Both 

of these equations follow from the Schrödinger equation.  

 

3. Lindblad Equation 

 

The Schrödinger equation includes only the operator 𝐻̂ of the quantum system 

energy. The equation for the statistical operator was first supplemented by 

Lindblad [1]: 

 

                                      i ℏ 𝜕𝜚̂ 𝜕𝑡⁄  = [ 𝐻̂ 𝜚̂ ] + i ℏ 𝐷̂ ,                                         (13) 
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where the operator 𝐷̂ can be called a dissipative operator. According to Lindblad, 

this operator is 

 

              𝐷̂ = ∑ 𝐶𝑗𝑘 𝑗𝑘 { 2 𝑎̂𝑗 𝜚̂ 𝑎̂𝑘
+ − 𝑎̂𝑘

+𝑎̂𝑗 𝜚̂ − 𝜚̂ 𝑎̂𝑘
+𝑎̂𝑗 },                                    (14)  

 

𝐶𝑗𝑘 are some numbers, 𝑎̂𝑗 is an arbitrary operator. The operator 𝐷̂ can be written 

as follows: 

 

                                  𝐷̂ = ∑ 𝐶𝑗𝑘 𝑗𝑘 { [ 𝑎̂𝑗 𝜚̂ , 𝑎̂𝑘
+] + [𝑎̂𝑗 , 𝜚̂ 𝑎̂𝑘

+] }  

 

Operators 𝑎̂𝑗 are still to be found.  

 

4. Equation for the Density Matrix 

 

The Liouville − von Neumann equation (11) is applied to the composite system R 

+ S, where R is a thermostat and S is an arbitrary system that is much smaller than 

the thermostat. The author of this work has derived from equation (11) the 

equation for the density matrix of the system S [2]: 

 

       i ℏ 𝜕𝜚𝑛𝑛′ 𝜕𝑡⁄ = ∑  ( 𝑚 𝐻𝑛𝑚𝜚𝑚𝑛′ − 𝜚𝑛𝑚𝐻𝑚𝑛′) + i ℏ 𝐷𝑛𝑛′,                        (15) 

 

where 𝐷𝑛𝑛′  is a dissipative matrix that equals to 

 

        𝐷𝑛𝑛′ = ∑ 𝛾𝑛𝑚,𝑚′𝑛′  𝑚 𝑚′ 𝜚𝑚𝑚′   − 1 2⁄ ∑  ( 𝑚 𝛾𝑛𝑚 𝜚𝑚𝑛′  + 𝜚𝑛𝑚 𝛾𝑚𝑛′),                (16) 

 

𝛾𝑛𝑚,𝑚′𝑛′  − a matrix, 

 

                                                𝛾𝑛𝑛′  = ∑  𝛾𝑚𝑛′,𝑛𝑚 𝑚                                           (17) 

 

 5. Quantum Kinetic Equation  

 

At the moment of time when the density matrix 𝜚𝑛𝑚 is diagonal: 

 

                                                     𝜚𝑛𝑚 =  𝑤𝑛 𝛿𝑛𝑚 ,                                            (18)  

 

where 𝛿𝑛𝑚 is the Kronecker symbol. Then from equation (16) follows the kinetic 

equation 
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                               𝜕𝑤𝑛 𝜕𝑡⁄  =  ∑  ( 𝑝𝑛𝑚  𝑚 𝑤𝑚  −  𝑝𝑚𝑛 𝑤𝑛),                             (19) 

 

where 

 

     𝑝𝑛𝑚  = 𝛾𝑛𝑚,𝑚𝑛 = (2 𝜋 ℏ⁄ ) ∑ ∑ |𝑣𝑛𝑁,𝑚𝑀𝑀  |𝑁
2 𝑊𝑀𝛿( 𝜀𝑛 − 𝜀𝑚 + 𝐸𝑁 − 𝐸𝑀 )          (20) 

 

is the probability of transition of the system S from the state m to the state n per 

unit of time, 

 

                                                   𝑊𝑁 = 𝜈 exp ( − 𝛽 𝐸𝑁) 

 

is a probability that the system R is in a state N with energy 𝐸𝑁, ν is the 

normalization factor,  

 

                                                           𝛽 = 1 (𝑘B𝑇)⁄  

 

is the inverse temperature of the thermostat; 𝑣𝑛𝑁,𝑚𝑀 is the matrix element of the 

energy of interaction of the system S with thermostat R. Formula (20) is the 

Fermi Golden rule. Equations (13) and (15) are used in the articles included in 

this book.  

 

6. Connection Dissipative Matrix and Dissipative Operator  

 

Equations (14) and (16) are connected by the ratio 

 

                                   𝛾𝑛𝑚,𝑚′𝑛′ = 2 ∑ 𝐶𝑗𝑘 𝑗𝑘  𝑎𝑛𝑚,𝑗  𝑎𝑚′𝑛′,𝑘
+  ,                             (21) 

 

where 𝑎𝑛𝑚,𝑗 − matrix elements of operators 𝑎̂𝑗.  

 

7. Probability of Transition and Relaxation 

 

Rule (20), together with the Boltzmann principle, allows to record the probability 

of transition in the form of 

 

                                        𝑝𝑛𝑚 = 𝑝𝑛𝑚
(o)

 exp [ − 𝛽 ( 𝜀𝑛 −  𝜀𝑚 ) 2⁄  ], 

 

where 

 

                                                            𝑝𝑛𝑚
(o)

= 𝑝𝑚𝑛
(o)

 . 
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Let's use formula (20): 

 

                                                         𝑝𝑛𝑚 = 𝛾𝑛𝑚,𝑚𝑛 . 

 

We express the matrices 𝛾𝑛𝑚,𝑚′𝑛′ and 𝛾𝑛𝑛′  by the transition probability 𝑝𝑛𝑚. We 

will have 

 

                           𝛾𝑛𝑚,𝑚′𝑛′ = √ 𝑝𝑛𝑚 𝑝𝑛′𝑚′ ,         𝛾𝑛𝑛′  = ∑ √ 𝑝𝑚𝑛′  𝑝𝑚𝑛 𝑚   

 

Substituting these matrices into formula (6.2), we obtain the dissipative matrix in 

the form 

 

                                       𝐷𝑛𝑛′ = ∑  { √ 𝑝𝑛𝑚 𝑝𝑛′𝑚′ 𝑚𝑚′  𝜚𝑚𝑚′ −  

                             − 1 2⁄  ( √ 𝑝𝑚′𝑚 𝑝𝑚′𝑛 𝜚𝑚𝑛′ + 𝜚𝑛𝑚 √ 𝑝𝑚′𝑛′  𝑝𝑚′𝑚  ) }  

 

If we put the density matrix 𝜚𝑛𝑛′ = 𝑤𝑛 𝛿𝑛𝑛′  and 𝑛 = 𝑛′ in this formula, we get 

the dissipative matrix 

 

                                              𝐷𝑛𝑛 = ∑  ( 𝑝𝑛𝑚 𝑚  𝑤𝑚 − 𝑝𝑚𝑛 𝑤𝑛 )  

 

If the matrix  𝑝𝑛𝑚 is such that  

 

                                                              𝜋𝑛𝑚 = 𝛾𝑛 𝛿𝑛𝑚, 

 

then  

 

                                                𝛾𝑛𝑚,𝑚′𝑛′ = √ 𝛾𝑛 𝛾𝑛′  𝛿𝑛𝑚 𝛿𝑛′𝑚′, 

 

Here with  

 

                                                           𝛾𝑛𝑛′  = 𝛾𝑛 𝛿𝑛𝑛′ , 

 

the dissipative matrix will be equal to 

 

                                                      𝐷
𝑛𝑛′
(𝑟)

 = − 𝛤𝑛𝑛′ 𝜚𝑛𝑛′ ,  
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where 

 

                                     𝛤𝑛𝑛′  = 1 2⁄  ( 𝛾𝑛 + 𝛾𝑛′) − √ 𝛾𝑛 𝛾𝑛′ ≥ 0  

 

The value 

 

                                                                𝛤𝑛𝑛 = 0. 
 

The matrix 𝐷
𝑛𝑛′
(𝑟)

 describes the relaxation of the system S, which is the pursuit of 

zero non-diagonal elements of the density matrix. 

 

8. Heisenberg Uncertainty Relation 

 

The seventh chapter discusses two dissipative matrices that are used for the 

quantum oscillator. First, in a dissipative operator, we put the operator 

 

                                           𝑎̂ = ( i 𝑝̂ √𝑚⁄ + √𝜅 𝑥̂ ) √2 ℏ 𝜔 ⁄ , 

 

which is used to describe the harmonic oscillator. Equations for density matrix in 

different representations are written. An equilibrium density matrix is found from 

these equations. The equation for the Wigner function is written. The equilibrium 

solution of these equations is found and with the help of this function, the 

Heisenberg uncertainty relation for the quantum harmonic oscillator is found: 

 

                                𝑥2̅̅ ̅ ∙ 𝑝2̅̅ ̅ = ℏ2 4⁄ [ ( 𝑒  𝛽 ℏ 𝜔 + 1) ( 𝑒  𝛽 ℏ 𝜔 − 1)⁄ ]
2
 

 

In the future articles, the dissipative operator using the operator 

 

                                                    𝑎̂ = 𝑥̂ + i ℏ 𝛽 𝑝̂ (4 𝑚)⁄  , 

 

is applied to describe the motion of the damped oscillator. It has been proved that 

from the Lindblad equation with such a dissipative operator, the Newton equation 

for the mean value of 𝑥̅(𝑡) follows exactly, which describes the damped 

oscillations of the pendulum. 

 

 



xii  
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CHAPTER 1 
 

New Theory of Step Kinetics 

1. STEP KINETICS OF REACTIONS IN SOLIDS CORRELATION 

THEORY 

 

1.1. Introduction 

 

One of the most characteristic features of the kinetics of low-temperature reactions 

occurring in the condensed phase is the kinetic stop of the reaction. The 

phenomenon of kinetic stopping is observed in the recombination of radicals 

(radical R is a particle with an unpaired electron), in the interaction of radicals with 

oxygen, etc. The particles entering these reactions appear due to the irradiation of 

a solid at a low temperature by ionizing radiation. After irradiation of the solid 

body, the reaction is not observed. If the temperature is increased to a certain level 

and kept constant, the reaction begins to proceed and then stops. If the temperature 

is increased once again by some value, the reaction resumes. The kinetics of this 

reaction is called stepwise.  

 

In this paper, the theory of solid-phase reactions is presented, the essence of which 

is that the reactivity of particles is characterized not only by one constant of 

velocity, but during the reaction the correlation function is determined by the 

mutual arrangement of particles changes [1]. Consider two particles A and B, which 

appear in a solid under the action of ionizing radiation, when the temperature of the 

solid body is not very high. These particles might react, but for some reason, they 

do not react. If the temperature is not much increased, then the reaction will 

proceed. But after a while, it will stop again.  This is called step kinetics of a 

bimolecular reaction.  

 

In solids, there are various kinds of heterogeneities.  When new particles appear in 

a solid, they are localized in the vicinity of these inhomogeneities.  Fig. (1) shows 

particles A and B, arising at a constant temperature in the body under irradiation. 

Black dots represent the heterogeneity of the solid body. Particles A and B are 

localized in some volumes in the vicinity of these inhomogeneities. The particles 

are moving all the time inside these volumes of localization, making the "tunnel" 

transitions at the node of the crystal lattice. In Fig. (1), it can be observed that 

particles A and B can not meet and react, since the volumes of their localization are 
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small.  In the next article, it will be shown that, according to the laws of quantum 

mechanics, the volume of localization increases with the increase in temperature. 

 
Fig. (1). The volumes of localization of particles A and B at constant temperature are small.  

Therefore, the particles cannot meet and react. 

 

If the temperature is increased to a certain level, the volume of localization will 

increase, particles A and B will meet and react (see Fig. 2).  

 

 
 
Fig. (2). The volume of localization of particles with increasing temperature expanding and after a 

while particles A and B meet and react. 
   

This paper presents the theory of kinetics of solid-phase reactions, taking into 

account the correlation of the distributions of reacting particles. Kinetic equations 

are derived. Their solution for the homogeneous case is given. The obtained 

solution explains the basic laws of "step" kinetics. 
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1.2. Kinetic Theory of Solid-Phase Reactions 

 

Let the particles A and B stabilize in some matrix, which can react as follows: 

 

                                                   A + B ⟶  AB . 

 

Each of these particles is localized around some center, which will be called the 

stabilization center  and the particles move through diffusion in the microregions 

surrounding the center. The area in which the microdiffusion of the particle occurs 

increases with temperature. At a certain temperature, the size of this area becomes 

so large that the particle can be considered almost "free". In this case, the particle 

movement in the matrix volume is determined by the macrodiffusion process. 

 

                               𝑛A = 𝑛A(𝒓A, t)       and        𝑛B = 𝑛B(𝒓B, t) 

 

denote concentrations of the centers of particle stabilization A and B, respectively.  

 

By definition 

 

                               ∫ 𝑛A d𝑉A = 𝑁A ,     ∫ 𝑛B d𝑉B = 𝑁B                                             (1.1.1) 

 

where 𝑁A and 𝑁B are the numbers of particles A and B stabilized in volume V of 

the matrix. Let the probability be given as: 

 

                                               𝐹AB = 𝐹AB(𝒓A, 𝒓B, t) 

 

where 𝐹AB is formation per unit time of a composite particle AB from two 

arbitrarily selected particles A and B, whose stabilization centers are at points 𝒓A 

and 𝒓B. The function 𝐹AB satisfies the following relations: 

 

                                     ∫ 𝐹AB d𝑉A = ∫ 𝐹AB d𝑉B = k ,                                                  (1.1.2) 

 

where k is the reaction rate constant given as:  

 

                       k = 4 𝜋 𝑟o D p e − 𝐸 (𝑘B 𝑇)⁄  ( 1 + 𝑟o √ 𝜋 𝐷 𝑡  ⁄ )                                 (1.1.3)  

 

where 𝑟o is the distance between the particles at which their active interaction 

begins; D is the microdiffusion coefficient, p is the steric factor, and E is the 

activation energy of the reaction. 
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CHAPTER 2 
 

Density Matrix 

2.1. EQUATION FOR DENSITY MATRIX DERIVATION OF QUANTUM 

MARKOV KINETIC EQUATION FROM THE LIOUVILLE − VON 

NEUMANN EQUATION 

 

In the framework of the second-order kinetic perturbation theory, the quantum 

Markov kinetic equation is derived from the Liouville − von Neumann equation 

[1]. This equation holds when the density matrix is diagonal. An arbitrary 

representation of the resulting equation is called the equation for the density matrix. 

The last equation written in the operator form is called the Lindblad equation [2].  

 

2.1.1. Introduction 

 

From a practical point of view of the problems of statistical physics, the kinetics of 

a stochastic system interacting with its environment is crucial. One of the main 

goals of the experimental or theoretical study of an open system, which was initially 

in some arbitrary nonequilibrium state, is the study of relaxation processes that lead 

this system to an equilibrium state. The basis of kinetic studies of the open system 

is the equation that controls the evolution of its States in time. The derivation of 

this equation, which is called a generalized kinetic equation, is generally a very 

complex problem. 

 

A mathematically rigorous theory can not raise doubts about its validity only if it 

is built on the first principles. In the quantum theory of nonequilibrium processes, 

the first principle is expressed by the Liouville − von Neumann equation for the 

density matrix. Therefore, various methods for obtaining a generalized kinetic 

equation from the Liouville − von Neumann equation are of interest. The simplest 

form of the generalized kinetic equation takes when it describes a random Markov 

process. 

 

The kinetic theory of an open system is usually formulated on the basis of the 

"system − reservoir" model, when the "small" system S interacts with the "large" 

system R, which is considered as an infinitely capacious heat reservoir. It is 

assumed that the composite system S + R is closed and the evolution of its States is 

described in the framework of quantum theory by the Liouville − von Neumann 

equation for the statistical operator 𝜌̂(t) = 𝜌̂𝑆 + 𝑅(t): 
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                                              i ℏ 𝜌̇̂ = [ ℋ̂𝜌̂ ] ,                                                               (2.1.1) 

 

where the complete Hamiltonian 

 

                                    ℋ̂ ≡ ℋ̂𝑆 + 𝑅 = 𝐻̂𝑆  + 𝐻̂𝑅 + 𝑉̂                                                  (2.1.2) 

 

consists of Hamiltonian 𝐻̂𝑆  and 𝐻̂𝑅 of system S and reservoir R, respectively, and 

Hamiltonian of their interaction 𝑉̂. 

 

Statistical operator  

 

𝜚̂𝑆 = 𝜚̂(t) 

 

of system S is determined by the ratio  

 

                                                     𝜚̂(t) = Tr𝑅 𝜌̂(t) .                                                      (2.1.3) 

 

The main task is to obtain an equation for the operator (3). There are two ways to 

solve this problem: 1) the generalized kinetic equation can be derived from the 

Liouville − von Neumann equation and 2) the quantum Markov kinetic equation 

can be obtained phenomenologically taking into account the basic properties of the 

statistical operator, such as Hermitian, positive certainty, and normalization. The 

first way attracts the rigor and sequence of actions that lead to the desired equation. 

But this path is very difficult. Mathematically correct and practically useful results 

can be obtained in this way only in extreme cases. It is usually assumed that the 

interaction of the system with its environment is "weak", and at a certain stage of 

calculations make a thermodynamic limit transition. In addition, you have to make 

others strong and well-educated guesses. As for the second way, it should be noted 

that the phenomenologically obtained quantum Markov kinetic equation makes it 

possible to explain successfully many qualitative and quantitative regularities of 

kinetic phenomena in quantum open systems. It is therefore interesting to compare 

these two approaches and derive the quantum Markov kinetic equation directly 

from the Liouville − von Neumann equation. 

 

Formally, the general solution of equation (2.1.1) can be represented as 

 

              𝜌̂(t) = exp [ − i ℏ⁄  ∫ ℋ̂
 𝑡

 0
(𝑡′) d𝑡′] 𝜌̂(0) exp [ i ℏ⁄  ∫ ℋ̂

 𝑡

 0
(𝑡′) d𝑡′].          (2.1.4) 
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It is usually assumed that at the initial time t = 0, the states of the system and the 

reservoir are statistically independent, and the latter is in a state of statistical 

equilibrium. This assumption corresponds to the equality 

 

                                               𝜌̂(0) = 𝜚̂𝑆(0) 𝜚̂𝑅
(eq)

 ,                                                         (2.1.5)  

 

where 𝜚̂𝑆(0) is an arbitrary statistical operator describing the initial state of the 

system; 

 

                                          𝜚̂𝑅
(eq)

 = 𝜈 exp ( − 𝛽 𝐻̂𝑅)                                                        (2.1.6)  

 

is the statistical operator of the equilibrium state of the reservoir, 𝜈 is the 

normalizing multiplier,  

 

                                                      𝛽 = 1 (𝑘B 𝑇)⁄  

 

is return temperature. Using formulas (2.1.3) − (2.1.6), it is not difficult to obtain 

a relation linking the statistical operators 𝜚̂𝑆(0) and 𝜚̂𝑆(t). Unfortunately, this formal 

solution to the problem is almost useless because of its complexity. 

 

As it is known, the density matrix 𝜚𝑛𝑛′ of the system S must be self-adjoint, 

normalized, and positive definite at any time t. The quantum Markov kinetic 

equation, which guarantees the preservation of these properties of the density 

matrix, in the most general case has the form 

 

i ℏ 𝜚̇𝑛𝑛′ = ∑ ( 𝑚  ℎ𝑛𝑚 𝜚𝑚𝑛′ − 𝜚𝑛𝑚 ℎ𝑚𝑛′  ) + i ℏ [ ∑ 𝛾𝑛𝑚, 𝑚′𝑛′ 𝑚𝑚′  𝜚𝑚𝑚′ − 

1 2⁄ ∑ ( 𝑚  𝛾𝑛𝑚 𝜚𝑚𝑛′ + 𝜚𝑛𝑚 𝛾𝑚𝑛′ ) ] ,                                                                (2.1.7) 

 

 

where ℎ𝑛𝑚 are matrix elements of the effective Hamiltonian of the system, 

variables n, m,... the essence of the quantum numbers that characterize its state, 

 

                                   𝛾𝑛𝑚, 𝑚′𝑛′ = ∑ 𝑎𝑛𝑚,𝑗 𝑗  𝑎𝑛′𝑚′,𝑗
∗  ,                                                  (2.1.8) 

 

𝑎𝑛𝑚,𝑗 are a system of arbitrary linearly independent matrices, 𝛾𝑛𝑚 = ∑ 𝛾𝑙𝑚,𝑛𝑙  𝑙 .  

 

The purpose of this paper is to derive the quantum Markov kinetic equation (7) 

from the Liouville − von Neumann equation and to obtain calculation formulas for 
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CHAPTER 3 
 

New Theory of Superconductivity 

3.1. HISTORY OF SUPERCONDUCTIVITY    

3.1.1. Discovery of Superconductivity 

Kamerlingh Onnes discovered the phenomenon of superconductivity at the Leiden 

Laboratory, Holland, in 1991 [1]. While studying the dependence of Hg resistance 

on temperature, he found out that when the material is cooled down to the 

temperature of about 4K the resistance drops abruptly to zero. This phenomenon 

was called superconductivity. Soon after that, other elements with similar 

properties were discovered. Fig. (3.1.1) demonstrates the scheme of measurement 

of superconductor resistance. 

 

Fig. (3.1.1). The magnetic needle detects a supercurrent-induced magnetic field. 

A superconductor is immersed in liquid helium. Initially, a weak current is supplied 

from a battery, then temperature is reduced. When the temperature falls below a 

certain value, the superconductor circuit is shortened. The current in the 

superconductor circuit can be sustained for a long time. A magnetic needle provided 

as a detector indicates the magnetic field produced by the current in the solenoid. 
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Fig. (3.1.2) shows the dependence of resistivity ρ on temperature T in a 

superconductor. Temperature Tc is called critical temperature. This means that we 

cannot measure the resistance of the superconductor at T < 𝑇c . At the same time, 

we cannot say that the resistivity ρ is equal to zero. The superconductor has a 

property that makes it impossible to measure the resistivity. 

3.1.2. Meissner – Ochsenfeld Effect Silsbee Effect 

It was discovered that superconductivity disappears when a test piece is placed in a 

relatively weak magnetic field. This phenomenon was discovered by Meissner and 

Ochsenfeld [2]. Value Hm of the magnetic field strength in which superconductivity 

is disrupted is called a critical field. The temperature dependence of the critical 

field is described by the following empirical formula: 

𝐻m(𝑇) =  𝐻m(0) [ 1 − (𝑇 𝑇c⁄ )2]  ,               

                                                     (3.1.1) 

where 𝐻m(0) is a critical field produced at absolute zero of temperature energy gap 

T = 0. Dependence (1.1) is shown in Fig. (3.1.3). Plane (H, T) represents a phase 

diagram of the superconductive state. The substance in the superconductive state S 

is shown below the curve (3.1.1) and this substance in the normal state N is above 

the curve. The superconductor that demonstrates such states is called the type-I 

superconductor. Superconductivity is disrupted when the current in the substance 

exceeds a certain critical value (The Silsbee effect). 

 

Fig. (3.1.2). The dependence of the resistivity on temperature. 

�

� �� �
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Fig. (3.1.3). Phase diagram of the type-I superconductive state at coordinates (H, T). 

There are two magnetic fields in the superconductor. One magnetic field is created 

by the supercurrent and another external field is induced from other sources. The 

compass needle shown in Fig. (3.1.3) responds to the supercurrent-induced field. 

Let us denote such strength of field by parameter H(super) and name this field the 

superconductor self-generated magnetic field. We shall denote the strength of other 

magnetic fields by parameter H(exter). This is an external magnetic field. Let the 

strength of the external magnetic field on the surface of the superconductor be equal 

to H(exter) = Ho . The Meissner − Ochsenfeld effect can be expressed by the 

following inequality. Superconductivity is generated in metal when its temperature 

T drops down below the critical temperature Tc: 

T < Tc ,             

(3.1.2) 

where the strength of the external magnetic field at the surface of the 

superconductor is less than that of the critical field:  

Ho < Hm (T) .                                                       

                                              (3.1.3) 

In other cases, the superconductor will show ordinary metal properties. 

There are superconductors of type II, for which the phase diagram has the form 

shown in Fig. (3.1.4). The state of the superconductor, which lies between the 

normal state N and superconducting state S is called mixed. 

�
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CHAPTER 4 
 

New Theory of Superfluidity 

4.1. NEW THEORY OF SUPER-FLUIDITY EQUILIBRIUM 

DENSITY MATRIX METHOD  

 

4.1.1. Liquid Helium 

 

Gaseous helium at atmospheric pressure becomes liquid when its temperature 

reaches a value of 4.44 K. Solid helium can only exist at a pressure of at least 25 

atm. At lower pressures, helium remains liquid down to zero absolute temperature.  

 

There are two isotopes of helium: Не3 and Не4. In the liquid Не4, a phase transition 

occurs at a temperature 𝑇𝜆 = 2,18 K, i.e. two helium phases are distinguished, which 

denote He I and He II. At temperature T < 𝑇𝜆, helium Не4 is in a phase He II. In 

this case, helium behaves so, as if it is a mixture of two liquids, which are called 

normal and superfluid components. Distinctive features of the latter are 1) its zero 

entropy and 2) the lack of friction of this component with the normal component 

and the walls of the vessel. 

 

The phenomenon of superfluidity of helium He II was discovered in 1937 by the 

Soviet physicist, Peter Leonidovich Kapitsa. In 1978, he received the Nobel prize 

for this discovery. 

 

As the temperature decreases, the density 𝜌𝑁 of the normal component decreases, 

and the density 𝜌𝑆 of the superfluid increases. The density of He II is:        

 

𝜌 = 𝜌𝑁 + 𝜌𝑆. 

 

Temperature dependence of the relationship 𝜌𝑁 𝜌⁄  is  set experimentally. The 

dependence presented in this graph is satisfactorily described by the empirical 

formula as, 

 

𝜌𝑁 𝜌⁄  = { (𝑇 𝑇𝜆⁄ )5,6

        1   

     at
     at

      𝑇 < 𝑇𝜆 ,
      𝑇 ≥ 𝑇𝜆 .
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Experimental dependence of C = C(T) helium heat capacity on temperature it 

resembles the letter λ. Therefore, this phase transition is called λ-transition. At the 

point 𝑇 = 𝑇𝜆  the function C = C(T) becomes infinitely large.         

Atoms Не3 are fermions, and atoms  Не4 -- bosons. It is therefore natural to assume 

that the λ-transition in  Не4 is somehow related to the possible Bose condensation 

of helium atoms. 

 

Today, the question of Bose condensation has aroused quite a keen interest in the 

study of the nature of this phenomenon and the thermodynamic properties of 

multifrequency systems. The most general statistical formulation of a 

multifrequency system in quantum mechanics is obtained by applying a density 

matrix. To describe the density matrix of the boson equilibrium system, the 

variational principle [1] is used in this paper.         

 

4.1.2. Uniform Distribution of Particles in Space 

 

For analysis of equilibrium states of quantum gas consisting of angular momentum 

zero-spin particles, we apply a variational density matrix method. We assume that 

N of the above particles finds itself within a certain space area with the volume 

equal to V. If the particles have their mean uniform distribution, a single-particle 

density matrix, which in coordinate representation depends on radius vectors r and 

r´, will obtain the form as follows: 

 

                                    𝜚𝒓𝒓′ =1 𝑉⁄  ∑ 𝑝𝒌 𝒌  e i 𝒌 ( 𝒓−  𝒓′) ,                                                 (4.1.1) 

 

where 𝑝𝒌 is the probability that an arbitrarily accepted particle is in the state defined 

by wave vector k. Particle momentum  

 

p = ℏ k. 

 

Probability 𝑝𝒌 meets its normalizing condition, 

 

                                                   ∑ 𝑝𝒌 𝒌 = 1 .                                                                     (4.1.2)  

 

As formula (4.1.1) indicates, the momentum representation density matrix is 

diagonal, i.e. 

 

𝜚𝒌𝒌′ = 𝑝𝒌 𝛿𝒌𝒌′ , 
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and transition from momentum representation to the nodal one is affected by a 

unitary matrix 

 

                                           𝑢𝒓𝒌 = 1 √𝑉⁄  e i 𝒌 𝒓 ,                                                       (4.1.3)  

 

which is subject to the condition as follows: 

 

∫ 𝑢𝒓𝒌 𝑢𝒓𝒌′
∗  d𝒓 =  𝛿𝒌𝒌′         or      1 𝑉⁄  ∫ e i ( 𝒌− 𝒌′ ) 𝒓 d𝒓 =  𝛿𝒌𝒌′ . 

 

4.1.3. Kinetic Energy of Particle 

 

Particle kinetic energy operator 𝐻̂(1)  takes the form as follows: 

 

                                     𝐻̂(1) =  − ℏ2∇2 (2 𝑚)⁄  ,                                                           (4.1.4) 

 

where m – particle mass. 

 

Applying formula: 

 

𝐻𝒌𝒌′ = ∫ 𝑢𝒓𝒌
∗  𝐻̂(1)𝑢𝒓𝒌′ d𝒓 

 

we can find elements of operator 𝐻̂(1) in momentum representation: 

 

                                                 𝐻𝒌𝒌′ = 𝜀𝒌 𝛿𝒌𝒌′ .                                                               (4.1.5) 

 

where 𝜀𝒌 is the particle kinetic energy with pulse p = ℏ k: 

 

                 𝜀𝒌 = ℏ2𝒌2 (2 𝑚)⁄  .                                                              ( 4.1.6) 

 

4.1.4. Particle Interaction Energy 

 

We assume that 𝑈𝒓𝒓′ = 𝑈𝒓− 𝒓′ is potential two particle interaction energy. In virtue 

of translation invariance, the potential energy depends on vectors difference r1 – r2 

only and it is represented by its symmetrical function: 

 

𝑈𝒓𝒓′ = 𝑈𝒓′𝒓 . 

 

In this case, interaction Hamiltonian matrix elements shall be formulated by the 

following method: 
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CHAPTER 5 
 

New Theory of Arbitrary Atom 

5.1. МETHOD OF DENSITY MATRIX NEW CALCULATION OF 
ENERGY LEVEL OF ELECTRONS IN ATOM  

 

In this chapter, we apply a stationary Shrödinger equation, the solution of which 

allows us to find the energy levels of electrons in an arbitrary atom. This approach 

is based on the density matrix method. The density matrix was used to find the 

average electron energy in the atom. The main idea of this paper is that all two-

electron matrices must be antisymmetric. To ensure that the two-electron 

Hamiltonian is anti-symmetric we use the Slater two-particle wave function. 

 

5.1.1. Introduction 

 

The density matrix is the most general description of the system in quantum 

mechanics. The state of the system, which is described by the density matrix, is 

called mixed. In a particular case, the density matrix can be proportional to the 

product of two wave functions. In this case, the state of the system is called pure. 

 

At first, the concept of density matrix was defined [1, 2]. The method of calculation 

of energies in the spectrum of an arbitrary atom, which is called the Hartree  – 

Fock method, is used. Based on the variational principle, this method applies 

different combinations of single-electron wave functions that take into account their 

anti-symmetry. This makes electrons to be fermions. 

 

Here, the density matrix method is used to derive the average energy of electrons 

in an atom. The Slater wave function is used to obtain an anti-symmetric two-

electron Hamiltonian. The stationary Schrödinger equation for the wave function is 

written. The solution of this equation makes it possible to find the energy levels of 

electrons in an atom. 

 

5.1.2. Statistical Operator 

 

The system of identical particles in quantum mechanics is characterized by a 

hierarchical sequence of statistical operators as given below: 

 

𝜚̂(1), 𝜚̂(2), ϱ̂(3), … 
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We need only the first two operators from this sequence: 𝜚̂(1) and 𝜚̂(2). Let 𝑞1 and 

𝑞2 be quantum coordinates that determine the States of two particles of the system. 

The first of these operators 𝜚̂(1) depends only on one of these numbers: 

 

                                               𝜚̂(1) = 𝜚̂(1)(q) .                                                              (5.1.2.1) 

 

The statistical operator 𝜚̂(2) depends on these two numbers: 

 

                                           𝜚̂(2) = 𝜚̂(2)(𝑞1, 𝑞2) .                                                          (5.1.2.2) 

 

Electrons are identical particles. The consequence of the indistinguishability of two 

electrons is the symmetry of the operator ϱ̂(2), i.e. 

 

                                   𝜚̂(2)(𝑞1, 𝑞2) = 𝜚̂(2)(𝑞2, 𝑞1) .                                                      (5.1.2.3) 

 

By definition, we will use equality 

 

                                     Tr𝑞 𝜚̂(1)(q) = N ,                                                               (5.1.2.4) 

 

where N is the number of particles in the system; 

 

                            Tr 𝑞1𝑞2
 𝜚̂(2)(𝑞1, 𝑞2) = N ( N – 1 ) , ...                                             (5.1.2.5)  

 

5.1.3. Density Matrix 

 

The density matrix of any system in quantum mechanics is of the form 𝜚𝛼𝛼′, where 

α and 𝛼′ are quantum numbers that determine the States of one particle. The density 

matrix corresponds to the statistical operator 𝜚̂(1). This correspondence is 

determined by the following formula: 

 

                           𝜚𝛼𝛼′ = ∫ 𝜑𝛼
∗ (q) 𝜚̂(1)(𝑞) 𝜑𝛼′(q) dq ,                                           (5.1.3.1)  

 

where 𝜑𝛼(q) is some wave function satisfying the ortho-normalization condition: 

 

                                    ∫ 𝜑𝛼
∗ (q) 𝜑𝛼′(q) dq = 𝛿𝛼𝛼′ .                                                 (5.1.3.2)  

 

where 𝛿𝛼𝛼′ – Kronecker symbol. 
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The meaning of the density matrix is that the diagonal elements 𝜚𝛼𝛼′ of this matrix 

are equal to the probability  

 

𝑤𝛼 = 𝜚𝛼𝛼 

 

detecting the system in the state α. Probability 𝑤𝛼, according to (5.1.2.4), satisfies 

the normalization condition as follows: 

 

                                                   ∑ 𝑤𝛼  𝛼 = N ,                                                             (5.1.3.3) 

 

The two-part operator 𝜚̂(2) corresponds to the density matrix 𝜚(2): 

 

                                              𝜚(2) =  𝜚𝛼1𝛼2,𝛼1
′ 𝛼2

′  .                                                       (5.1.3.4) 

 

Density matrix in abbreviated form can be written in any coordinate as follows: 

 

𝜚(1) = 𝜚11′ ,       𝜚(2) = 𝜚12,1′2′ . 

 

Since electrons are fermions, their two-electron density matrix must be anti-

symmetric. This means that the ratios are fair: 

 

                       𝜚12,1′2′ = − 𝜚21,1′2′ = − 𝜚12,2′1′ = 𝜚21,2′1′ .                                    (5.1.3.5) 

 

The anti-symmetry ratio can be approximately satisfied if the two-electron density 

matrix is approximately equal to 

 

                                  𝜚12,1′2′ ≃ 𝜚11′  𝜚22′ −  𝜚12′  𝜚21′ .                                           (5.1.3.6) 

 

Exactly two-electron density matrix will satisfy the ratio (5.1.3.5), if it has the form 

𝜚12,1′2′ = 𝜚11′  𝜚22′ −  𝜚12′  𝜚21′ + 𝜉12,1′2′ . 

 

Here, the correlation function 𝜉12,1′2′ is symmetric: 

 

𝜉12,1′2′ = 𝜉21,1′2′ = 𝜉12,2′1′ = 𝜉21,2′1′ . 

 

One-electron density matrix is related to the two-electron matrix by the ratio 

 

                                      ∑ 𝜚12,1′2 𝛼2
 = ( N − 1 ) 𝜚11′ .                                                (5.1.3.7) 
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CHAPTER 6 
 

New Theory of Laser  

6.1. DENSITY MATRIX METHOD IN TWO-LEVEL LASER THEORY 

 

In his earlier work, the author obtained the quantum kinetic equation for the density 

matrix. The equation contains two summands in the right part. The first one is the 

same as in Liouville − von Neumann equation. The second one describes the 

dissipative members. This quantum equation can be written in any representation. 

We show that in perturbation theory, this equation has the order associated with the 

order parameter. The order parameter expansion leads to two equations, which 

determine the zero and the first approximation of the density matrix. Because of the 

presence of time-dependent perturbations in the Hamiltonian, even the zero 

representation of the density matrix suggests that the states of quantum systems are 

mixed, i.e., the density matrix will not be equal to the product of the wave functions. 

 

In this chapter, we use the method of density matrix in the theory of lasers with two 

energy levels [1]. Written for the atom, the equation of the density matrix of zero 

approximation is very simple and widely known. In the second approximation, the 

quantum kinetic equation for the density matrix becomes the classical kinetic 

equation, if the density matrix has a diagonal form. The resulting Hamiltonian also 

has a diagonal form. In quantum mechanics, this form can be obtained using a 

unitary matrix. The elements of the diagonal Hamiltonian in this representation are 

the eigenvalues of the atom energy. We found the density matrix in this 

representation. We obtained the dissipative matrices, which characterize the 

operations of pumping and damping. In the representation where the Hamiltonian 

is diagonal, we wrote the equations that describe the work of the laser.  

 

6.1.1. Introduction 

 

In 1964, N. G. Basov, A. M. Prokhorov and C. H. Townes won the Nobel Prize. 

They were awarded this prize for their fundamental research in quantum 

electronics. These studies have led to the development of masers and lasers [2, 3].  

 

Let us consider the principle of operation of the quantum generator, laser. The basic 

element of the quantum generator is the active environment, i.e. the substance that 

creates the inverse population of levels. The active medium typically has the shape 

of a long cylinder (see Fig. 1). At the ends of this cylinder, there are two plane-
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parallel mirrors, one at each end, perpendicular to its axis. The purpose of these 

mirrors is to increase the length of the path where increased radiation occurs, by 

means of the multiple passages of the beam through the active medium. The mirrors 

form a so-called resonator. Between them appears a standing electro-magnetic 

wave. One of the mirrors is half-translucent. Through this mirror, the 

electromagnetic radiation comes out of the resonator in the form of a narrow, almost 

non-divergent beam. The process, in which the energy is transferred in some way 

to the active medium and the inversion of the population of levels is created, is 

called pumping (see Fig. 6.1.1). 

 
Fig. (6.1.1). The scheme of the quantum generator: 1 − active substance; 2 − pumping; 3 – mirrors. 

             

The process in which energy is transferred to the active medium  in some way  

creating  a population inversion of the levels is called pumping. Pump energy may 

be in the form of light, electric current, energy, chemical or nuclear reactions, 

thermal or mechanical energy. 

 

Various methods have been proposed to create a population inversion of energy 

levels. The method of two levels proposed by Basov and Prokhorov in 1955 is the 

most convenient and common. The atoms or molecules of the active substance are 

greatly influenced in some way, so that the electrons in them move from the ground 

state 𝜑1(r) with energy 𝜀1, into the excited state 𝜑2(r) with energy 𝜀2                          

(see Fig. 6.1.2).       

 
Fig. (6.1.2). The two-level scheme of the interaction of atom and radiation. 
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Due to the intense pumping, the saturation is reached, in which the number of 

electrons 𝑁2 in the state 𝜑2(r) becomes equal to the number 𝑁1 of electrons in the 

ground state 𝜑1(r). At the same time for a pair of levels 𝜀1 and ε2 , there is 

population inversion (𝑁2 > 𝑁1). Only a small part of the energy given to the active 

medium during the pumping is converted into the energy of the generated radiation. 

Most of this energy is converted into heat. The active medium becomes very hot 

and sometimes it requires intense cooling. 

 

6.1.2. Kinetics of Quantum Transitions 

 

Consider a system of non-interacting atoms in which valence electron can make the 

quantum jump from one stationary state to another. The community of atoms in the 

state 𝜑1 with energy 𝜀1 can pass into the state 𝜑2 with bigger energy 𝜀2 during the 

absorption of photons by atoms. The number d𝑁12
(absor)

 of transitions made by 

electrons from the state 𝜑1 into the state 𝜑2 during the time from t to t + dt of the 

absorption of a photon by the atom, is proportional to the number 𝑁1(t) of atoms in 

the state 𝜑1, time dt and the number of photons W(ω) with frequency ω, flying into 
atoms: 

 

                                    d𝑁12
(absor)

 = 𝐵12𝑊(𝜔) 𝑁1(t) dt,                                  (6.1.2.1) 

  

where 𝐵12 is the coefficient of proportionality, the frequency ω of these photons is 
determined by the formula, 

 

                                               𝜔 = ( 𝜀2 −  𝜀1) ℏ ⁄ ,                                         (6.1.2.2) 

 

Where the spectral energy density W(ω) is equal to the energy of electromagnetic 

radiation, which falls per unit volume dV = 1 and the unit of frequency dω = 1: 

  

                                                 W(ω) dV d𝜔.                                                 (6.1.2.3) 

 

Let at time t this system have the number 𝑁2(t) of atoms in which the electron is in 

the state φ2 with energy  𝜀2. The number d𝑁21
(spon)

 of spontaneous  transitions made 

by electrons from the state 𝜑2 to the state 𝜑1 with smaller energy 𝜀1  with the 

emission of a photon during the time from the moment t to the moment t + dt, is 

proportional to the number 𝑁2(t) of atoms and the time interval dt: 

 

                                          d𝑁21
(spon)

 = 𝐴(spon)𝑁2(t) dt,                                   (6.1.2.4)  
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CHAPTER 7 
 

Dissipative Operator  

7.1. LINDBLAD EQUATION FOR HARMONIC OSCILLATOR 

UNCERTAINTY RELATION DEPENDING ON TEMPERATURE 

Specific nonequilibrium states of the quantum harmonic oscillator described by the 

Lindblad equation have been hereby suggested. This equation makes it possible to 

determine time-varying effects produced by the statistical operator or statistical 

matrix. Thus, respective representation-varied equilibrium statistical matrixes and 

specific mean value equations have been found, and their equilibrium solutions 

have been obtained. 

7.1.1. Lindblad Equation 

Statistical operator 𝜚̂ or density matrix is basically applied as the quantum 

mechanics; any information of the nonequilibrium process proceeding within the 

tested system may be gained from the study [1]. When the process concerned 

proceeds within the system which fails to interact with its environment, statistical 

operator 𝜚̂ will satisfy the Liouville-von Neumann equation as follows: 

i ℏ 𝜚̇̂ = [ 𝐻̂𝜚 ̂]        

                                                                                             (7.1.1.1) 

With provision for the fact that the system interacts with any environment, a new 

equation shall be produced [1]. Lindblad is the first one who offered the equation 

describing the interaction of the system with a thermostat. This work is devoted to 

the Markovian equation [4], which hereby describes nonequilibrium quantum 

harmonic oscillator performance. 

 We will write the kinetic equation for a quantum harmonic oscillator as follows: 

i ℏ 𝜚̇ = [ 𝐻̂ 𝜚 ] +  i ℏ A ( [ 𝑎̂ 𝜚, 𝑎̂+] + [ 𝑎̂, 𝜚 𝑎̂+] ) + i ℏ B ( [ 𝑎̂+𝜚, 𝑎̂ ] + [ 𝑎̂+, 𝜚 𝑎̂ ] ) , 

(7.1.1.2) 
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where 

𝐻̂ = ℏ 𝜔 ( 𝑎̂+𝑎̂ + 1 2 ⁄ ) ,                                           

                                  (7.1.1.3) 

A and B are constants. Operator 𝑎̂ is formulated as follows: 

𝑎̂ = ( i 𝑝̂ √𝑚⁄ + √𝜅 𝑥̂ ) √2 ℏ 𝜔 ⁄ , 

(7.1.1.4) 

where  

𝜔 = √𝜅 𝑚⁄  . 

Equation (7.1.1.2) is very precise to describe the time-varying state of the 

thermostat-interacted quantum harmonic oscillator and its equilibrium state. 

7.1.2. Energy Representation 

Now, we will define the wave functions, describing specific energy state 𝜑𝑛(x) 

which will satisfy the equation as follows: 

𝐻̂𝜑𝑛(x) = 𝐸𝑛 𝜑𝑛(x), 

                                                                                             (7.1.2.1) 

where 

𝐸𝑛 = ℏ 𝜔 ( n + 1 2⁄  ) ,       

                                                                                 (7.1.2.2) 

n = 0, 1, 2, ... 

 As referred to energy representation, the matrix elements of statistical operator 𝜚̂ 

will be formulated by the equation as follows: 

𝜚𝑛𝑛′ = ∫𝜑𝑛
∗ (x) 𝜚̂ 𝜑𝑛′(x) dx .       
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                                                                        (7.1.2.3) 

Wave functions satisfy the following equations: 

𝑎̂ 𝜑𝑛 = √𝑛 𝜑𝑛 − 1 ,               𝑎̂
+𝜑𝑛 = √ 𝑛 + 1 𝜑𝑛+ 1 .         

                                                    (7.1.2.4) 

With provision for the above formulas, the following matrix-formed Equation (1.2) 

is derived as: 

𝜚̇𝑛𝑛′ = − i 𝜔 ( n − 𝑛′ ) 𝜚𝑛𝑛′  +A [ 2 √( 𝑛 + 1)(𝑛′ + 1) ϱn+1,n′+1 − ( n + 𝑛′) 𝜚𝑛𝑛′] 

+  B [ 2 √ 𝑛 𝑛′ 𝜚𝑛 − 1,𝑛′− 1 − ( n + 𝑛′ + 2) 𝜚𝑛𝑛′] .             

                                        (7.1.2.5) 

 Now, we will write the equation for diagonal elements of the density matrix 𝜚𝑛𝑛 = 

𝑤𝑛, where 𝑤𝑛 is the probability referred to oscillator state 𝜑𝑛. The equation 

produced has the form as follows: 

𝑤̇𝑛 = 2 A [ ( n + 1) 𝑤𝑛+1 − n𝑤𝑛 ] + 2 B [n 𝑤𝑛 − 1 − ( n + 1) 𝑤𝑛] .   

                    (7.1.2.6) 

This kinetic equation describes particular harmonic oscillator state transitions. In 

this case, there may be gained coefficients A and B as follows: 

A = 1 2⁄  P exp ( 𝛽 ℏ 𝜔 2 ⁄ ) ,       B = 1 2⁄  P exp ( − 𝛽 ℏ 𝜔 2⁄  ) ,             

                 (7.1.2.7) 

where P is probability of transition per unit time; 𝛽 = 1 (𝑘B𝑇)⁄  is reciprocal 

temperature. 

Equation (7.1.2.6) has specific oscillator state equilibrium distribution, which 

satisfies the following equation:  

A [ ( n +1) 𝑤𝑛+1 − n 𝑤𝑛] + B [ n 𝑤𝑛 − 1 − ( n + 1) 𝑤𝑛] = 0 .  

                           (7.1.2.8) 
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CHAPTER 8 
 

The Beginning of Theoretical Nanophysics  

8.1. EQUATION FOR DENSITY MATRIX SYSTEMS OF IDENTICAL 

PARTICLES 

The equations for the statistical operator and the density matrix are considered here 

for a single particle and a system of identical particles when dissipative forces act 

on them. From the equation for the density matrix, a kinetic equation can be 

obtained when the density matrix is diagonal. These equations are the basis for the 

study of the simplest models of nanophysics [1]. 

 8.1.1. Introduction 

In quantum mechanics, the most general description of the system is the statistical 

operator 𝜚̂. The statistical operator must be normalized at any time 

                                                       Tr 𝜚̂ = 1 ,                                                 (8.1.1.1)  

self-adjoint 

                                                         𝜚̂∗ = 𝜚̂                                                     (8.1.1.2)  

and positively definite. A correct equation describing the evolution of a statistical 

operator must ensure that these properties are preserved over time.  

For the first time the equation for the statistical operator  

                                                        𝜚̂ = 𝜚̂ (t, q),                                                (8.1.1.3)  

where q is the quantum coordinate of the system, which was obtained by Lindblad 

[1]. This equation has the form  

                                                     i ℏ 𝜚̇̂ = [ 𝐻̂ 𝜚̂ ] + i ℏ 𝐷̂,                              (8.1.1.4) 

where 𝐻̂ is the Hamiltonian of the system,  

                               𝐷̂ = ∑  𝐶𝑗𝑘 𝑗𝑘 { [ 𝑎̂𝑗 𝜚̂ , 𝑎̂𝑘
+] + [ 𝑎̂𝑗 , 𝜚̂ 𝑎̂𝑘

+] },                     (8.1.1.5)  
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𝐶𝑗𝑘 are some numbers, and 𝑎̂𝑗 is an arbitrary operator. The operator 𝐷̂ is called the 

dissipative operator. This statement can be written as 

                          𝐷̂ = ∑  𝐶𝑗𝑘 𝑗𝑘  { 2 𝑎̂𝑗 𝜚̂ 𝑎̂𝑘
+ − 𝑎̂𝑘

+ 𝑎̂𝑗 𝜚̂ − 𝜚̂ 𝑎̂𝑘
+ 𝑎̂𝑗 }.                     (8.1.1.6)  

8.1.2. Equation for the Density Matrix of One Particle 

The density matrix is related to the operator 𝜚̂ (t, q) formula 

                                𝜚𝑛𝑛′ (t) = ∫ 𝜑𝑛
∗(t, q) 𝜚̂ (t, q) 𝜑𝑛′(t, q) dq.                          (8.1.2.1)  

This formula specifies the density matrix 𝜚𝑛𝑛′  (t) in the n-representation. Wave 

function 𝜑𝑛(t, q) can be found from the Schrödinger equation 

                                                   i ℏ 𝜑̇𝑛 = 𝐻̂ 𝜑𝑛 .                                              (8.1.2.2) 

The equation for the density matrix was derived from the Liouville - von Neumann 

equation. This equation is analogous to the Lindblad equation and has the form  

i ℏ 𝜚̇𝑛𝑛′ = ∑  ( 𝑚  𝐻𝑛𝑚 𝜚𝑚𝑛′ − 𝜚𝑛𝑚 𝐻𝑚𝑛′  ) + i ℏ { ∑  𝛾𝑛𝑚,𝑚′𝑛′ 𝑚𝑚′  𝜚𝑚𝑚′  − 1 2⁄  

∑  ( 𝑚  𝛾𝑛𝑚 𝜚𝑚𝑛′ + 𝜚𝑛𝑚 𝛾𝑚𝑛′ ) } ,                                                                     (8.1.2.3) 

where 𝐻𝑛𝑚 are the matrix elements of the Hamiltonian 𝐻̂ system, 𝛾𝑛𝑚,𝑚′𝑛′ is some 

matrix, 

                                                𝛾𝑛𝑛′  = ∑  𝛾𝑚𝑛′𝑛𝑚 𝑚 .                                          (8.1.2.4)  

The equation (8.1.2.3) can be written as 

i ℏ 𝜚̇𝑛𝑛′ = ∑  ( 𝑚  𝐻𝑛𝑚 𝜚𝑚𝑛′ − 𝜚𝑛𝑚 𝐻𝑚𝑛′  ) + i ℏ 𝐷𝑛𝑛′, 

(8.1.2.5) 

where 𝐷𝑛𝑛′  is a dissipative matrix, which will now be equal to  

𝐷𝑛𝑛′ = ∑  𝛾𝑛𝑚,𝑚′𝑛′ 𝑚𝑚′  𝜚𝑚𝑚′  − 1 2⁄  ∑  ( 𝑚  𝛾𝑛𝑚 𝜚𝑚𝑛′ + 𝜚𝑛𝑚 𝛾𝑚𝑛′ ). 

(8.1.2.6) 

Compare this formula with the formula (8.1.1.6), we establish that 
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                                 𝛾𝑛𝑚,𝑚′𝑛′ = 2 ∑  𝐶𝑗𝑘 𝑗𝑘 𝑎𝑛𝑚,𝑗 𝑎𝑚′𝑛′,𝑘
+ ,                              (8.1.2.7) 

where 𝑎𝑛𝑚,𝑗 are matrix elements of the operator 𝑎̂𝑗. 

The diagonal element 𝜚𝑛𝑛′  is the probability 𝑤𝑛 that the system is in the state n. 

This value satisfies the normalization condition 

                                                         ∑ 𝜚𝑛𝑛 𝑛  = 1.                                                  (8.1.2.8)  

This formula is similar to formula (8.1.1.1). 

In addition, the density matrix 𝜚𝑛𝑚 satisfies the following condition  

                                                           𝜚𝑛𝑚
∗  = 𝜚𝑚𝑛 .                                              (8.1.2.9)  

The same condition is subject to Hamiltonian: 

                                                         𝐻𝑛𝑚
∗  = 𝐻𝑚𝑛 .                                         (8.1.2.10)  

Consider the system where the density matrix 𝜚𝑛𝑚 at an arbitrary time t is in the 

diagonal state: 

                                                     𝜚𝑛𝑚 = 𝑤𝑛 𝛿𝑛𝑚 ,                                             (8.1.2.11) 

where 𝛿𝑛𝑚 is the Kronecker symbol. Then from equation (3.3), we obtain 

                                               𝑤̇𝑛 = ∑ ( 𝑚 𝑝𝑛𝑚 𝑤𝑚 − 𝑝𝑚𝑛 𝑤𝑛),                      (8.1.2.12) 

where  

𝑝𝑛𝑚 = 𝛾𝑛𝑚,𝑚𝑛 = 2 𝜋 ℏ⁄ ∑ | 𝑁𝑀  𝜐𝑛𝑁,𝑚𝑀 |𝟐 𝑊𝑀 𝛿(𝜀𝑛 − 𝜀𝑚 + 𝐸𝑁  − 𝐸𝑀),                (8.1.2.13) 

there is a probability of transition of the system in a unit of time from the state m to 

the state n, 

𝑊𝑁 = 𝜈 exp ( − 𝛽 𝐸𝑁) 

there is a possibility that the environment is in an equilibrium state with quantum 

numbers N, and 𝐸𝑁 is its energy in this state, ν is the normalization factor, 𝛽 = 

1 (𝑘B 𝑇)⁄  is the inverse temperature; 𝜐𝑛𝑁,𝑚𝑀 are the matrix elements of the system 

interaction with its environment. Formula (2.13) is the Golden rule of Fermi. 
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CHAPTER 9 
 

Perspective of Quantum Physics 

9.1. THE LOOK INTO FUTURE OF QUANTUM PHYSICS 

 

Quantum mechanics was based on the Schrödinger equation. Soon a statistical 

operator and a density matrix were invented, for which the Liouville – von Neumann 

equations were written. But it was impossible to find a statistical operator from this 

equation. About fifty years passed when the equation for the statistical operator, in 

which the dissipative operator was present, was phenomenologically written by 

Lindblad.  Two decades later, the author of this article derived the equation for the 

density matrix. This equation contains a dissipative matrix, knowledge of which 

makes it possible to find the density matrix. Subsequently the author found the 

equation for the density matrix of the particle, which is in the system of identical 

particles [1]. 

 

 9.1.1. Introduction 

 

The statistical operator and density matrix in quantum physics are the most infor-

mative and most accurate tools. They were named after J. von Neumann shortly 

after the quantum theory was constructed [1].  But for a relatively long time, there 

was no equation that allowed us to find these values.  Although many attempts have 

been made to find this equation, this article is devoted to the history and further 

development of quantum physics. 

 

9.1.2. Schrödinger Equation 

 

The basis of quantum mechanics is considered to be the Schrödinger equation. In 

this equation, the unknown is the so-called wave function 

 

                                     𝜓 = 𝜓( q, t ) ,                                                             (9.1.2.1) 

 

where t is time and q is a quantum variable that determine the state of the system.  

 

The meaning of the wave function is the product of 

 

                                   𝜓∗( q, t ) 𝜓( q, t ) = w( q, t )                                                 (9.1.2.2)  
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it is possible to detect the system in the state q at time t. The probability must satisfy 

the normalization condition: 

 

                                        ∫ 𝜓∗( q, t ) 𝜓( q, t ) dq =1 .                                                   (9.1.2.3) 

 

The Schrödinger equation itself can be written as follows  

 

                                           i ℏ 𝜕𝜓 𝜕𝑡⁄  = 𝐻̂ 𝜓 ,                                                             (9.1.2.4) 

 

where 𝐻̂ = 𝐻̂( q, t ) is the energy operator of the system. This operator explains what 

to do with the wave function 𝜓(q, t ) so that it gives us the average energy E(t) of the 

system at time t: 

 

                               E(t) = ∫ 𝜓∗( q, t ) 𝐻̂(q, t ) 𝜓( q, t ) dq .                                          (9.1.2.5) 

 

9.1.3. Statistical Operator and Density Matrix 

 

But soon J. von Neumann came up with the statistical operator 

 

                                                           𝜚̂ = 𝜚̂(q, t) .                                                        (9.1.3.1)  

 

The statistical operator is related to the density matrix 𝜚𝑛𝑛′(t) by the formula 

 

                             𝜚𝑛𝑛′(t) = ∫ 𝜑𝑛
∗ (q, t) 𝜚̂(q, t) 𝜑𝑛′(q, t) dq .                                        (9.1.3.2)  

 

where functions 𝜑𝑛(q, t) can be found from the Schrödinger equation. The formula 

(3.2) specifies the density matrix 𝜚𝑛𝑛′(t) in the n-representation. The diagonal 

element 𝜚𝑛𝑛 of the density matrix is the probability 𝑤𝑛 = 𝑤𝑛(t) that the system is in 

the state n: 

 

                                                   𝜚𝑛𝑛(t) = 𝑤𝑛(t) .                                                           (9.1.3.3) 

 

If the statistical operator is  

 

                                                   𝜚̂(q) = 𝛿( q – 𝑞o) ,                                                      (9.1.3.4) 

 

where 𝛿( q – 𝑞o) is Delta function, 𝑞o – constant, then the state of the system is called 

pure. Formula (9.1.3.2) gives  
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                                       𝜚𝑛𝑛′(t) = 𝜑𝑛
∗ ( 𝑞o, t ) 𝜑𝑛′( 𝑞o, t ) .                                          (9.1.3.5) 

 

Otherwise, the system state is called mixed. 

 

The equation for the statistical operator was derived 

 

                                                     i ℏ 𝜕𝜚̂ 𝜕𝑡⁄  = [ 𝐻̂ 𝜚̂ ] ,                                               (9.1.3.6) 

 

which is called the Liouville – von Neumann equation. This equation was derived 

from the Schrödinger equation. But it turned out that it was impossible to find a 

statistical operator from the Liouville – von Neumann equation. Prove it. 

 

9.1.4. Something is Missing from Liouville – von Neumann Equation 

 

For the density matrix, equation (9.1.3.6) will look like this 

 

                    i ℏ 𝜕𝜚𝑛𝑛′ 𝜕𝑡⁄  = ∑  ( 𝑚   𝐻𝑛𝑚 𝜚𝑚𝑛′ – 𝜚𝑛𝑚 𝐻𝑚𝑛′ ),                                  (9.1.4.1) 

 

where 𝐻𝑛𝑛′ are the matrix elements of the Hamiltonian 𝐻̂ of the system. By analogy 

with the formula (9.1.3.2), we write 

 

                           𝐻𝑛𝑛′(t) = ∫ 𝜑𝑛
∗ (q, t) 𝐻̂(q, t) 𝜑𝑛′(q, t) dq .                                        (9.1.4.2)  

 

If it turns out that the matrix elements 𝐻𝑛𝑛′ are diagonal, i.e. have the form 

 

                                              𝐻𝑛𝑛′(t) = 𝜀𝑛(t) 𝛿𝑛𝑛′,                                                   (9.1.4.3) 

 

where 𝜀𝑛 – energy eigenvalues of the system, 𝛿𝑛𝑛′ – symbols of Kronecker, then the 

equation (4.1) takes the form 

 

                                   i ℏ 𝜕𝜚𝑛𝑛′ 𝜕𝑡⁄  = {𝜀𝑛(t) − 𝜀𝑛′(t) } 𝜚𝑛𝑛′ .                                  (9.1.4.4) 

 

For 𝑛 = 𝑛′ we obtain 

 

                                     𝜕𝜚𝑛𝑛 𝜕𝑡⁄  = 0       or      𝜕𝑤𝑛 𝜕𝑡⁄  = 0 .                                   (9.1.4.5) 

 

According to this equation, the probability of 𝑤𝑛 to find a system in the state n is 

always constant,which was to be proved. 
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