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PREFACE 

 

With the rapid development of computer technology, the radial basis function 

(RBF) method has become an important computational tool in addition to the 

finite element and boundary element methods. In practical applications of the 

RBF, constructing efficient and stable algorithms for solving complex scientific 

and engineering problems is a key issue. Efficient solutions of fully dense 

matrices, ill-conditioned matrices, and stable simulation of wave propagation at 

low sampling frequencies are all critical issues. Research till date into RBF 

methods and the corresponding multilevel meshless methods has resulted in the 

publication of a considerable amount of new information, leading to 

improvements in design and fabrication practices. Articles have been published in 

a wide range of journals, attracting the attention of both researchers and 

practitioners with backgrounds in the mechanics of solids, applied physics, 

applied mathematics, mechanical engineering, and materials science. However, 

extensive and detailed treatment of the subject is not available. It now appears 

timely to collect available information and to present a unified treatment of these 

useful results. These valuable results should be made available to professional 

engineers, research scientists, workers and students in applied mechanics and 

material engineering, e.g., physicists, metallurgists, and materials scientists. The 

objective of this book is to fill such a gap so that readers can access sound 

knowledge of the RBF and its algorithm implementation in wave propagation 

problems. This book details the development of various techniques and ideas, 

beginning with a description of the basic concept of the radial function method 

from the mathematical viewpoint. The derivation and construction of RBFs are 

then presented for large-scale wave propagation problems, including singularity 

problems, high frequency problems and large-scale problems, and are shown to 

arise naturally in the response of engineering structures to external loads such as 

external mechanical force.  

Our presentation of RBF for large-scale wave propagation is written for 

researchers, postgraduate students and professional engineers in the areas of solid 

mechanics, physical science and engineering, applied mathematics, mechanical 

engineering, and materials science. Only simple mathematical knowledge and the 

usual calculus are required, although conventional matrix presentation is used 

throughout the book. 

The outstanding features of our book include detailed derivation of formulations 

used in the RBF, simplified explanations of complex problems, combined uses of 

i 



 ii 

RBF and other numerical methods. Methods and analyses are described in a way 

that makes them accessible to research scientists, professional engineers, and 

postgraduate students.  Furthermore, widely ranging numerical examples are 

added to the relevant chapters to demonstrate applications of the formulation. 

Most numerical results presented in this book are important in their own right and 

serve as test problems for validating new formulations. 

This book, consisting of 9 chapters and 2 appendices, covers the fundamentals of 

the RBF and its methodologies, with extensive applications to various engineering 

problems. In Chapter 1, the historical background of the RBF is presented, with 

an overview of the RBF in large-scale and high-frequency wave propagation 

computing. Chapter 2  discusses the singular boundary method (SBM) for water 

wave problems. Chapter 3 discusses the applications of SBM to 3-D low-

frequency and middle-frequency acoustic problems. Chapter 4 discusses the RBF 

based on the modified fundamental solutions for high-frequency acoustic 

problems. Chapter 5 introduces a modified multilevel fast multipole algorithm 

based on the potential model. Chapter 6 constructs a dual-level fast multipole 

boundary element method based on the Burton-Miller formulation. Chapter 7 

describes a time-dependent SBM for solving scalar wave equations. Chapter 8 

proposes a regularized method of moments for time-harmonic electromagnetic 

scattering. Chapter 9 reviews recent advances and emerging applications of the 

RBF for large-scale and high-frequency sound wave propagation. 

  



 iii 

CONSENT FOR PUBLICATION 

Not applicable. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest, financial or otherwise. 

 

Jun-Pu Li 

Mechanics and Safety Engineering 

Zhengzhou University 

Zhengzhou 

China  

& 

 

Qing-Hua Qin 
 

Department of Engineering  

Shenzhen MSU-BIT University  

Shenzhen  

China 

 



  iv   
  
  

 

ACKNOWLEDGEMENTS 

The motivation that led to the launch of this book developed from our extensive 

research in the context of the radial basis function method since 2005. Some of 

the research results presented in this book were obtained by the authors at the 

School of mechanics and safety engineering, Zhengzhou University, the College 

of Engineering and Computer Science of Australian National University, the 

Department of Mechanics of Tianjin University, and the Department of 

Engineering of Shenzhen MSU-BIT University. The work was supported by the 

National Natural Science Foundation of China (Grant No. 11772204), the 

Zhengzhou university scientific research fund (Grant No.32212506), the China 

Postdoctoral Science Foundation (Grant No. 2020M682335), Key R&D and 

Promotion Special Projects (Scientific Problem Tackling) in Henan Province of 

China (Grant No. 212102210375). The support of these universities and grant 

organizations is gratefully acknowledged.  

Additionally, many people have been most generous in their support of this 

writing effort. We would like especially to thank Professor Wen Chen and 

Zhuojia Fu for their contributions to the work discussed in this book, and 

Professor Hui Wang of the Henan University of Technology for his meaningful 

discussions. Special thanks go to Humaira Hashmi of Bentham Science Publishers 

for her commitment to the publication of this book. We are very grateful to the 

reviewers who made suggestions and comments for improving the quality of the 

book. Finally, we wish to acknowledge the individuals and organizations cited in 

the book for permission to use their material. 

Jun-Pu Li 

School of Mechanics and Safety Engineering 

Zhengzhou University 

Zhengzhou 

China  
 

& 
 

Qing-Hua Qin 

Department of Engineering  

Shenzhen MSU-BIT University  

Shenzhen  

China  



                                                  RBF for Large-Scale Wave Propagation, 2021, 1-17                                      1 

Jun-Pu Li and Qing-Hua Qin

All rights reserved-© 2021 Bentham Science Publishers 

CHAPTER 1 
 

Introduction to Radial Basis Function Method 

Abstract: This chapter presents an overview of the radial basis function (RBF) 

method and its application in wave propagation problems. First, the historical 

background development of the radial basis function method is reviewed. Then, 

applications of RBF to problems of large scale high-frequency wave propagation are 

described. Strategies are presented for reducing sampling frequency and 

computational and storage complexity while maintaining high stability, accuracy, and 

efficiency. This is followed by a list of methods using the RBF in simulating wave 

propagation problems, including the boundary element method, method of 

fundamental solutions, singular boundary method, boundary knot method, method of 

moments, and fast multipole method. 

Keywords: Fundamental solution, Radial basis function, Wave propagation. 

 
1.1. HISTORICAL BACKGROUND  

With the rapid development of computer technology, numerical simulation has 

become the third scientific research tool besides theoretical analysis [1-10] and 

experimental research [11-16], in which [1-7] various analytical solutions of 

piezoelectric materials [8], detailed numerical solutions of biological materials, and 

[9,10] described finite element solutions of compsite materials are focused on. The 

radial basis function (RBF) discussed in this book is a basis function based on the 

Euclidean distance [17, 18]. There are two versions for the origin of the radial basis 

function. One version is known as the Kriging method. In 1951, Kriging treated the 

deposition of mineral deposits as a kind of isotropic Gauss function and proposed 

the well-known Kriging method [19] for analysis of mineral deposits. The other 

version considers the radial basis function presented in 1971. Hardy proposed the 

multi-quadratic (MQ) function [20] for surface fitting of aircraft contour.  

A milestone in the development of RBF is the publishing of the article  ‘Scattered 
data interpolation: tests of some methods [21] which was published in Mathematics 

of Computation. In that article, Franke compared different interpolation algorithms 

and showed that the MQ function and thin-plate spline function [22] had the best 

fitting effect. Since then, the RBF has been widely used in the field of data 

processing and interpolation. The other milestone is attributed to articles published 

in Computers and Mathematics with Application [23, 24]. Kansa combined the 

collocation method with the RBF to form a new method for computational fluid 
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dynamics. That was the application of the RBF to the field of numerical solution of 

partial differential equations. Since then, many RBF have been proposed to deal 

with different partial differential equations encountered in scientific and 

engineering computing.   

Although the RBF has the advantage of being meshless and easy to use, the 

resulting fully dense and highly ill-conditioned matrix becomes the biggest barrier 

to the application of the RBF to large scale scientific and engineering computing. 

To bypass this limitation, various techniques have been proposed. These techniques 

can be briefly divided into three categories: 

1) Transfer the global support structure of the method to a local support structure; 

2) Transfer the fully dense matrix to a sparse matrix; 

3) Expand the effective storage digits of the computer. 

Essentially, numerical simulation is a computer-based technology for solving 

partial differential equations (PDE) as depicted in Fig. (1). Generally speaking, the 

first step to deal with a physical problem is to construct the corresponding PDE to 

describe the physical phenomenon, such as the wave equation and the Maxwell’s 
equations. In step 1, some simplified conditions are inevitably added to construct 

the mathematical model. Therefore, the model error is generated. Secondly, the 

PDE is discretized into linear equations by the corresponding numerical method, 

such as the finite element method (FEM) and the boundary element method (BEM). 

In step 2, the mathematical model with infinite degrees of freedom (DOF) is 

discretized into linear equations with finite DOFs. Inevitably, therefore, a 

discretization error is generated. Finally, the linear equations are solved by an 

appropriate numerical solver, such as the Gauss solver and the generalized minimal 

residual algorithm (GMRES) [25]. Step 3 inevitably generates truncation error due 

to the limitation of the computer’s effective storage digits. Model error, 
discretization error, and truncation error constitute the three major error sources in 

numerical simulation. How to efficiently reduce these errors and balance their 

influence on results directly determines the effectiveness and accuracy of numerical 

simulations. 
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Fig. (1). Process of numerical simulation. 

This book takes large scale high-frequency wave propagation as the physical 

background. A collection of the newly emerging numerical techniques for 

simulation of wave propagation are discussed. These works mainly focus on how 

more efficiently to deal with above steps 2 and 3 in numerical simulation, i.e., 

1) How to discretize PDEs into more appropriate linear equations; 

2) How to solve linear equations more efficiently. 

Several novel strategies and ideas for dealing with the three major computational 

bottlenecks encountered in simulation of wave propagation are discussed in this 

book, i.e.,   

1) How to greatly reduce the computational and storage complexity caused by the 

fully dense matrix; 

2) How to efficiently solve linear equations that consist of highly ill-conditioned 

and fully dense matrices; 

3) How to stably simulate wave propagation at low sampling frequency. 

The bottlenecks discussed above also limit the development of computational 

mechanics. Therefore, if a method can efficiently, accurately, and stably simulate 

large scale high-frequency wave propagation, the method will be powerful for 

simulating complex scientific and engineering problems. The wave problem is used 

as the physical background of the book, not only increasing its scientific research 

significance, but also providing examples to deal with practical engineering 

problems by efficient numerical methods. Because these three computational 

bottlenecks also exist widely in various scientific and engineering computing, this 

book may provide a reference for simulating other more complex scientific and 

engineering problems. 
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CHAPTER 2 
 

Singular Boundary Method Analysis of Obliquely 

Incident Water Wave Passing through Submerged 

Breakwater   

Abstract: Further to the introduction of radial basis function (RBF) methods given in 

Chapter 1, this chapter presents a brief description of the application of RBF to two-

dimensional Helmholtz problems. The background of this chapter is that, in ocean 

engineering, a submerged breakwater have the advantages of allowing water 

circulation, permitting fish passage, and providing economic protection. Therefore, 

such breakwaters have been widely applied to reduce the energy of transmitted water 

waves. Under the assumption of linear wave theory, the simulation of a water wave 

passing through a submerged breakwater can be simplified  for solving modified 

Helmholtz equations. In this chapter, the analysis of an oblique incident water wave 

passing through a submerged breakwater is taken as the engineering background for 

investigating the use of the singular boundary method for two-dimensional modified 

Helmholtz problems. The origin intensity factors for the 2-D Laplace equation, 

Helmholtz equation, and modified Helmholtz equation are listed. 

Keywords: Radial basis functions, Singular boundary method, Water wave 

propagation, Fundamental solution. 

2.1. MATHEMATICAL FORMULATION 

 

2.1.1. Govern Equation 

Consider a 2-D obliquely incident water wave passing through a submerged barrier, 

as shown in Fig. (1) [1-5]. A water wave with the incident wave angle   propagates 

toward the submerged structure at a constant water depth h , where L  is the half-

length of the region II , D  denotes the distance between two barriers, d  is the 

height of the barrier, and b  the width of the barrier. 

Jun-Pu Li and Qing-Hua Qin

All rights reserved-© 2021 Bentham Science Publishers 
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Fig. (1). Water wave passing through a submerged barrier [1]. 

Under the assumptions of linear water wave theory, the water waves considered 

here satisfy the following three basic assumptions: 

1) The fluid is ideal incompressible. The gravity cannot be ignored. 

2) The movement is non-rotational. There exists velocity potential. 

3) The waves are linear waves. The depth of the water is much greater than the 

wavelength. 

Assuming an inviscid, incompressible fluid and an irrotational flow, the wave field 

is represented by the velocity potential 1 2 3( , , , )x x x t , which satisfies the Laplace 

equation:  

                                                   2

1 2 3( , , , ) 0x x x t   .                                          (1) 

Based on the simple harmonic assumption, the potential can be expressed as: 

                                       2( )

1 2 3 1 3( , , , ) ( , )
x t i

x x x t x x e
  

  ,                                   (2) 

where sin( )k  , k  is the wavenumber and satisfies the dispersion relation: 
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2 tanh( )gk kh  ,                                                 (3) 

with g  being the acceleration of gravity. Substituting Eq. (2) for Eq. (1), the 

governing equation is simplified to the modified Helmholtz equation:  

                                         2 2

1 3 1 3( , ) ( , ) 0x x x x                                               (4) 

2.1.2. Boundary Conditions 

The boundary conditions of the domain of interest can be written as follows: 

(1) Linearized free water surface boundary condition 

                                  
2

1 3 1 3
1 3

3

( , ) ( , )
0, ( , ) f

x x x x
x x

x g

  
  


                             (5) 

(2) Seabed boundary condition 

                                        1 3
1 3

3

( , )
0, ( , ) s

x x
x x

x


 


.                                            (6) 

(3) Submerged breakwater boundary conditions 

(3a) Rigid boundary condition 

                                      
1

1 3
1 3

1

( , )
0, ( , ) b

x x
x x

x


 


,                                              (7) 

                                      
2

1 3
1 3

1

( , )
0, ( , ) b

x x
x x

x


 


,                                             (8) 

                                       
3

1 3
1 3

3

( , )
0, ( , ) b

x x
x x

x


 


.                                            (9) 
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CHAPTER 3 
 

Singular Boundary Method for Three-Dimensional 

Low and Middle Frequency Acoustic Problems  

Abstract: As an extension of the methods presented in Chapter 2, this chapter takes 

acoustic problems as the physical background to apply the singular boundary method 

to the three-dimensional Helmholtz equation. Based on the Burton-Miller 

formulations, the Burton-Miller singular boundary method is constructed to deal with 

the non-uniqueness difficulties at resonance frequency. Two seta of origin intensity 

factors based on the subtraction and adding-back technique are derived. In addition, 

for efficient evaluation of near-boundary and boundary solutions of the Helmholtz 

equation with wideband wavenumbers, this chapter proposes a regularized singular 

boundary method and derives a set of near intensity factors based on the subtraction 

and adding-back technique. 

Keywords: Singular boundary method, Sound wave propagation, Origin intensity 

factor, Near intensity factor. 

3.1. INTRODUCTION 

The singular boundary method (SBM) is a strong form boundary collocation semi-

analytical radial basis function (RBF) method, as described in [1]. Gu and Chen [2] 

applied the SBM to potential problems in 2013. Fu et al. [3] constructed the SBM 

based on the Burton-Miller formulation for acoustic problems. Unlike in the finite 

element method [4-6] and method of fundamental solution [7, 8], the core idea of 

the SBM is to use the origin intensity factor (OIF) to replace the diagonal terms of 

an interpolation matrix. The key issue is to derive the OIF of different partial 

differential equations [9-11]. By using the appropriate OIF, the SBM only needs 6 

degrees of freedom (DOF) in each direction per wavelength to simulate sound wave 

propagation. Because the OIF has the effect of correcting the boundary discrete 

error [12], the SBM consumes much less CPU time and calculation than the linear 

boundary element method (BEM) to achieve higher accuracy and convergence rate. 

The SBM achieves a good balance between stability, accuracy, and complexity. 

Therefore, the SBM is very suitable to be combined with the fast algorithm for 

large-scale engineering problems.   
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The key issue of the SBM is to derive the appropriate OIF for the studied problems. 

Gu and Chen [2] derived the OIF for 3-D potential problems based on the 

subtraction and adding-back technique (SAB) of the Laplace equation. Later, based 

on the similarity of the fundamental solution of the Laplace equation and Helmholtz 

equation at origin, Fu et al. [3] transformed OIFs of the Laplace equation to the 

OIFs of the Helmholtz equation by adding a constant. Many numerical experiments 

[13] indicated that the OIF derived by Fu et al. could accurately evaluate low and 

middle frequency acoustic problems. However, the accuracy of the OIF they 

derived behaved poorly in high frequency situations. Based on the work in [3], Li 

et al. [14] proposed a set of OIFs using the subtraction and adding-back (SAB) 

technique of the Helmholtz equation. On the other hand, the slope of the 

fundamental solutions of the Helmholtz equation changes dramatically when the 

field point moves closer to the boundary or is on the boundary. Therefore, the 

conventional SBM cannot produce a reasonable solution at regions near the 

boundary. To bypass this limitation, Gu et al. [15] proposed the concept of a ‘near 
intensity factor’ (NSF, here called ‘near intensity factor’) to replace the 
corresponding near singular terms in the interpolation matrix of the SBM. However, 

the NSF for Helmholtz equation is still an open issue to be investigated.  

In this chapter, the SBM based on the Burton-Miller formulation is introduced in 

section 3.2. Two sets of OIF based on the SAB technique of the Laplace equation 

and Helmholtz equation are provided in section 3.3. A regularized SBM [16] is 

proposed to determine the NSF in section 3.4. Finally, two benchmark examples 

are used to test the SBM in simulating acoustic problems. 

3.2. SINGULAR BOUNDARY METHOD BASED ON THE BURTON-

MILLER FORMULATIONS 

The 3-D Helmholtz equation is expressed as 

2 2( ) ( ) 0,x k x x      , (1) 

1( ) ( ),x x x S    , (2) 

2( ) ( ),q x q x x S   , (3) 
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where 
2  is the Laplacian operator, ( )x  is the physical variable, q(x) the normal 

derivative of ( )x , k denotes the wavenumber, S is the boundary of the domain Ω.  

The SBM uses the Burton-Miller formulations [3] to deal with well-known non-

uniqueness difficulties. The interpolation formulation of the SBM based on the 

Burton-Miller formulations is  

1

( , )
( ) ( , ) ,

( )

N
m j

m j m j me
j j

G x y
x G x y x

n y
  



 
   

  
 , (4) 

2

1

( , ) ( , )
( ) ,

( ) ( ) ( )

N
m j m j

m j me e e
j m j m

G x y G x y
q x x

n x n y n x
 



  
   

    
 , (5) 

where 
j  is an unknown coefficient, x the collocation point, y the source point, 

( 1)i k    [17]. The superscript e represents the exterior domain and the 

corresponding fundamental solutions are 

( , )
4

ikre
G x y

r
 , (6) 

3

( , )
( , ) ( 1) ( , ) ( )

( ) 4

ikr
e

e

G x y e
K x y ikr x y n x

n x r


   


, (7) 

3

( , )
( , ) ( 1) ( , ) ( )

( ) 4

ikr
e

e

G x y e
F x y ikr x y n y

n y r


    


, (8) 

2

3 2 2

( , )

(1 ) ( ) ( )( , )

( ) ( ) 4 ( 3 3 ) ( , ) ( ) ( , ) ( )

e e
ikr

e e e e

H x y

ikr n y n xG x y e

n y n x r k r ki r x y n y x y n x



  
 

       
 

. (9) 

It is noted that the fundamental solutions encounter singularities and 

hypersingularities when 
i jx y . The SBM uses the OIF to replace the 
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CHAPTER 4 
 

RBF Based on the Modified Fundamental Solutions 

for High-Frequency Acoustic Problems 

Abstract: The conception of modified fundamental solution of the 3-D Helmholtz 

equation is described in this chapter. Based on the modified fundamental solution, a 

modified singular boundary and a dual-level method of fundamental solutions are 

constructed. The merits of the proposed methods are that they inherit the high 

efficiency and accuracy of the boundary knot method and the method of fundamental 

solutions, whereas the high stability of the singular boundary method is not affected. 

For illustration, several acoustic radiation and scattering examples are investigated. 

Numerical experiments show that the present radial basis function (RBF) method 

based on the modified fundamental solutions only needs to set about 3 degrees of 

freedom in one wavelength per direction to produce highly accurate solutions for 

three-dimensional acoustic problems. At the end of this chapter, the influence of the 

fictitious boundary on results is analyzed in an appendix. 

Keywords: Singular boundary method, Boundary knot method, Method of 

fundamental solutions, Sound wave propagation. 

4.1. INTRODUCTION 

It is well known that the core difficulty in a simulation of sound wave; simulation 

is the high sampling frequency required by the RBF [1]. As boundary collocation 

RBF, the boundary knot method (BKM) [2, 3] and the singular boundary method 

(SBM) [4, 5] share some common properties but have their own merits and demerits 

as well. The merits of the BKM are high accuracy and efficiency. However, marked 

ill-conditioning restricts its application to engineering problems. On the other hand, 

the SBM has high stability but still needs 6 degrees of freedom (DOF) in one 

wavelength per direction to generate accurate solutions for 3-D acoustic problems. 

In this chapter, a modified singular boundary method (MSBM) [6] is considered. 

The MSBM uses a modified fundamental solution of the 3-D Helmholtz equation 

as the basis function. The concept of the modified fundamental solution is based on 

the assumption that the numerical characteristics of the RBF are determined by the 

property of the basis function. Therefore, the basis functions of the SBM and the 

BKM are combined to generate a modified fundamental solution of the 3-D 

Helmholtz equation. Numerical investigations show that the MSBM can produce 

highly  accurate  solutions  while  maintaining  high  stability  and  low   sampling  

Jun-Pu Li and Qing-Hua Qin

All rights reserved-© 2021 Bentham Science Publishers 



52   RBF for Large-Scale Wave Propagation  Li and Qin 

  
 
 
 

frequency. However, the modified fundamental solution used in the MSBM 

abandons the imaginary part. Thus, the MSBM cannot directly simulate exterior 

wave propagation. To overcome this drawback, a dual-level method of fundamental 

solutions (DLMFS) [7, 8] is constructed. The DLMFS shares an idea similar to the 

MSBM, that is, to use the modified fundamental solution to replace the fundamental 

solution of the 3-D Helmholtz equation as the basis function. The DLMFS 

significantly improves the stability and inherits the high efficiency of the method 

of fundamental solution (MFS) [9-12], because the modified fundamental solution 

used in the DLMFS can automatically satisfy the radiation boundary condition at 

infinity. Therefore, the DLMFS can directly deal with exterior problems.  

4.2. MODIFIED SINGULAR BOUNDARY METHOD  

The governing equation of the propagation of the steady sound wave in the isotropic 

medium is reduced to the Helmholtz equation with a constant wavenumber. 

     2 2, , , , 0, , , ex y z k x y z x y z     , (1) 

     , , , , , , ,x y z x y z x y z S   , (2) 

   
 

 
, ,

, , , , , , ,
x y z

q x y z q x y z x y z S
n


  


, (3) 

In the SBM and the BKM, a linear combination of the basis functions 

corresponding to different source points is adopted to approximate the physical 

variable,  

1

( ) ( , ),
N

m j m j m

j

x K x y x 


  , (4) 

where N  is the number of DOF, 
j  the unknown coefficient, and K  the basis 

function. 

In the SBM, 
cos( )

SBM

kr
K

r
 , which is the real part of the fundamental solution of 

the 3-D Helmholtz equation. Considering that SBMK  has a singularity at the origin, 

the SBM uses the origin intensity factor (OIF) of the 3-D Helmholtz equation [13, 
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14] to evaluate singular terms when 0r  . The interpolation formulation of the 

SBM is  

1

( ) ( , ) ( , ),
N

i j SBM i j i SBM i i i

j i

x K x y K x y x S  
 

   . (5) 

In the BKM, 
sin( )

BKM

kr
K

r
 , which are the general solutions of the 3-D Helmholtz 

equation. Because the general solution has no singularity when 0r  , the 

interpolation formulation of the BKM is 

1

( ) ( , ),
N

i j BKM i j i

j

x K x y x S 


  . (6) 

Because the BKM uses the general solution without singularity at origin as the basis 

function, 2 DOF are required in each wavelength per direction to generate highly 

accurate solutions. However, severe ill-conditioning constrains its application to 

complex engineering problems. On the other hand, the SBM has a much lower 

number of conditions and avoids the time-consuming singular integration by using 

the OIF. Unfortunately, 6 DOF are still required in each wavelength per direction, 

creating heavy computing loads for 3D high-frequency acoustic problems. 

It is reasonable to consider the merits of combining the desirable features of the 

BKM and SBM. Therefore, a modified fundamental solution of 3-D Helmholtz 

equation is constructed: 

sin( )
MSBM

kr
K

r


 . (7) 

Considering the trigonometric function, 

2 2sin( ) cos( ) sin( )

tan

a kr b kr a b kr

b

a





    






, (8) 
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CHAPTER 5 
 

Modified Dual-Level Fast Multipole Algorithm For 

Three-Dimensional Potential Problems 

Abstract: A modified dual-level fast multipole algorithm is constructed for analyzing 

three-dimensional (3D) potential problems. The core idea of the method is to use a 

dual-level structure for handling the excessive storage requirement and ill-

conditioning caused by the fully populated interpolation matrix. The algorithm uses 

the fast multipole method to expedite matrix vector multiplication processes. The 

boundary element method (BEM) is used as the basic method in the algorithm. The 

3D potential model is used as the physical background to illustrate this novel 

algorithm. The complexity analysis shows that the method has O(N) operations and 

low memory requirements for a 3D potential model. 

Keywords: Boundary element method, Fast multipole method, Modified dual-level 

algorithm, Three-dimensional potential model. 

5.1. INTRODUCTION 

Highly accurate simulation of large-scale engineering problems is an important task 

in the field of computational science. In the boundary collocation method [1], the 

number of degrees of freedom (DOF) increases very quickly due to the 2( )O N  

computational and storage complexity. Therefore, the major challenge of this large-

scale computation is to efficiently reduce the computational complexity and storage 

complexity. In past decades, many fast algorithms have been proposed to overcome 

this challenge, such as the fast multipole method (FMM) [2] and the fast Fourier 

transform (FFT) algorithm [3]. Liu combined the BEM [4] with the FMM to 

construct a fast multipole boundary element method (FMBEM) [5]. Gu and Qu 

combined the singular boundary method (SBM) [6, 7] with the FMM to propose a 

fast multipole SBM [8, 9]. Li combined the SBM with the FFT to develop a fast 

Fourier transform SBM [3, 10]. All these works are useful in the field of large-scale 

computing.  

This chapter introduces a modified dual-level fast multipole algorithm (MDFMA) 

for potential 3D problems. The core idea of the MDFMA [11-13] is to transform 

the large-scale fully populated matrix into a sparse matrix by ignoring the residuals 

of the far-field contribution. The MDFMA introduces the coarse mesh to provide  
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an initial solution. The final accurate solution is obtained by several recursive 

calculations and correction calculations. For the convenience of physical deduction, 

a 3D potential model is taken as an example to construct the MDFMA in this 

chapter.  

5.2. BASIC FORMULATIONS OF THE BOUNDARY ELEMENT METHOD 

Consider the following 3D Laplace equations: 

2 ( ) 0,x x    . (1) 

1( ) ( ),x x x S    , (2) 

2( ) ( ) ( ),q x x q x x S
n


   


. (3) 

The corresponding boundary integral equation (BIE) is  

 ( ) ( , ) ( ) ( , ) ( ) ( ),
S

x G x y q y F x y y dS y x     , (4) 

where  

1
( , )

4
G x y

r
  (5) 

2

( , ) 1
( , )

( ) 4 ( )

G x y r
F x y

n y r n y

 
  

 
 (6) 

are the fundamental solutions of the 3D Laplace equation. 

When x S , the following integral equation is obtained: 

 ( ) ( ) ( , ) ( ) ( , ) ( ) ( ),
S

C x x G x y q y F x y y dS y x S     , (7) 

where 
1

( )
2

C x   when the boundary S is smooth at the source point x.  
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The following discretized form of the BIE is obtained by using the constant 

elements and collocation methods: 

1 1

N N

ij j ij j

j j

f g q
 

  , (8) 

where  

1
( , ) ( ), ( , ) ( )

2
j j

ij i ij ij i

S S

g G x y dS y f F x y dS y
 

    , (9) 

with 
js  being an element, N the number of boundary elements, and 

ix  the ith 

source point.  

Then Eq. (8) can be reformulated into the form 

                                                        A b   (10) 

where A is the coefficient matrix, λ represents the unknown vector and b is the 

known right-hand side vector.  

5.3. BASIC FORMULATIONS OF THE FAST MULTIPOLE BOUNDARY 

ELEMENT METHOD  

To achieve the desired multipole algorithm, the fundamental solution G is expanded 

by [2, 5, 11] 

, ,

0

1 1
( , ) ( , ) ( , ),

4 4

p n

n m c n m c c c

n m n

G x y S x y R y y x y y y
x y   

     


 , (11) 

where 
cy  represents the center of expansion, p is the number of truncated terms, 

and (.)  denotes the complex conjugate. 
,n mS  and 

,n mR  are called solid harmonic 

functions [14], where 

,

1
( ) (cos )

( )!

m im n

n m nR x P e r
n m




, (12) 



 RBF for Large-Scale Wave Propagation, 2021, 91-108 91 

 

  

CHAPTER 6 
 

Modified Dual-Level Fast Multipole Algorithm 

Based on the Burton-Miller Formulation for Large-

Scale Sound Field Analysis 

Abstract: This chapter extends the modified dual-level fast multipole algorithm 

(MDFMA) to the field of acoustics. The Burton-Miller formulation is applied to 

overcome non-uniqueness at internal resonance. The MDFMA based on the Burton-

Miller formulation is here tested by a series of complex engineering cases. It is 

observed that the MDFMA performs 44% faster than COMSOL in the analysis of 

acoustic scattering characteristics of an A-320 aircraft, and 56% faster than the fast 

multipole boundary element method in the analysis of underwater acoustic scattering 

characteristics of the Kilo-class submarine. 

Keywords: Modified dual-level algorithm, Boundary element method, Fast 

multipole method, Three-dimensional sound field. 

6.1. INTRODUCTION 

Based on the MDFMA [1-4] constructed in Chapter 5, this chapter applies the 

MDFMA to large-scale sound field problems. The Burton-Miller formulation [5] is 

combined with the MDFMA to overcome the non-uniqueness issue when 

evaluating exterior acoustic problems [6]. In this chapter, a variety of complex 

engineering cases are  investigated using the MDFMA, such as the underwater 

acoustic scattering characteristics of a Kilo-class submarine and the acoustic 

scattering characteristics of an A-320 aircraft. In particular, comparisons are drawn 

between the MDFMA and the mature commercial software COMSOL to show the 

application potential of the MDFMA for large-scale sound field analysis. 

6.2. FORMULATIONS OF THE BOUNDARY ELEMENT METHOD 

The propagation of a sound wave in an isotropic medium is governed by the 

Helmholtz equation  

2 2( ) ( ) 0,x k x x      , (1) 

1( ) ( ),x x x S    , (2) 
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2( ) ( ),q x q x x S   , (3) 

The acoustic pressure ϕ(x) is expressed by 

( , )
( ) ( , ) ( ) ( ) ( ) ( ),

( )

I

S

G x y
x G x y q y y dS y x x

n y
  

 
     

 
 , (4) 

where ( )I x  represents the incident wave, x and y are the source point and field 

point, respectively. The fundamental solutions of the 3-D Helmholtz equation are 

2

( , )
4

( , )
( , ) ( 1) ( , ) ( )

( ) 4

ikr

ikr

e
G x y

r

G x y e
F x y ikr x y n y

n y r











    
 

, (5) 

where 1i    , r x y   and n(y) is the outward normal at point y. 

When x→S, the conventional boundary integral equation (CBIE) and hypersingular 

boundary integral equation (HBIE) are written as 

( , )
( ) ( ) ( , ) ( ) ( ) ( ) ( ),

( )

I

S

G x y
C x x G x y q y y dS y x x S

n y
  

 
     

 
 , (6) 

2( , ) ( , )
( ) ( ) ( ) ( ) ( ) ( ), S

( ) ( ) ( )

I

S

G x y G x y
C x q x q y y dS y q x x

n x n y n x


  
     

   
 , (7) 

where 
1

( )
2

C x   when the boundary S is smooth, and 

2

2

3 2 2

( , )
( , ) ( 1) ( , ) ( )

( ) 4

(1 ) ( ) ( )( , )
( , )

( ) ( ) 4 ( 3 3 ) ( , ) ( ) ( , ) ( )

ikr

ikr

G x y e
K x y ikr x y n x

n x r

ikr n y n xG x y e
H x y

n y n x r k r kri x y n y x y n x





 
    




      
         

, (8) 
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The MDFMA combines Eqs. (6) and (7) to overcome the non-uniqueness at internal 

resonance, i.e., the Burton-Miller formulation, 

2( , ) ( , )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( , )
( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

( )

I

S S

I

S S

G x y G x y
y dS y C x x x y dS y

n y n y n x

G x y
G x y q y dS y q y dS y C x q x q x x S

n x

    



  
   

   

 
      

 

 

 

, (9) 

where α=i/k [7] is the coupling constant. 

The discretized form of CHBIE is given by Eq. (10).  

1 1

ˆ
N N

ij j ij j i

j j

f g q b
 

   , (10) 

where ib̂  is the value of the incident wave at the ith node, and 

2( , ) 1 ( , )
( ) ( )

( ) 2 ( ) ( )
j j

ij j j ij j j

S S

G x y G x y
f dS y dS y

n y n y n x
     

 

 
  

    , (11) 

( , ) 1
( , ) ( ) ( )

( ) 2
j j

ij j j j ij j

S S

G x y
g q G x y q dS y q dS y q

n x
 

 

 
   

  
  . (12) 

Eq. (10) is reformulated as 

A b   (13) 

by moving the unknown and known terms to left-hand side and right-hand side, 

respectively. 
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CHAPTER 7 
 

Time-Dependent Singular Boundary Method for 

Scalar Wave Equation  

Abstract: This chapter presents a time-dependent singular boundary method for 

solving two- and three-dimensional scalar wave equations. In contrast with previous 

chapters focused on frequency domain computation, this chapter focuses on the 

solution of the scalar wave equation instead of the Helmholtz equation. The time-

dependent fundamental solution is used here as the basis function. Considering the 

difference between two- and three-dimensional wave equations, the time-dependent 

fundamental solution is integrated along with time for solving two-dimensional scalar 

wave equations. A time-successive evaluation approach without complex 

mathematical transforms is applied for three-dimensional wave equations. 

Keywords: Scalar wave equation, Time-dependent fundamental solution, Time-

dependent singular boundary method, Origin intensity factor. 

7.1. INTRODUCTION 

In this chapter, we consider the simulation of wave propagation in terms of time 

domain computation [1-5]. In contrast with previous chapters focused on frequency 

domain computation, this chapter studies the solution of scalar wave equations [6, 

7] instead of the Helmholtz equation [8-11]. A time-dependent singular boundary 

method (SBM) [12, 13] is constructed based on the time-dependent fundamental 

solution [14-16]. In the simulation of wave equations, the three-dimensional (3-D) 

wave is totally different from the two-dimensional (2-D) wave. In the 2-D wave 

equation, the wave has aftereffect. It can be seen that the fundamental solution of 

2-D wave equation has product factor H(ct-r). It means that the wave will have 

continuous impact on the observation point after the wave passing. Therefore, the 

time-dependent SBM can easily use finite DOF to describe waves. However, the 3-

D wave does not have an after-effect. The product factor of the fundamental 

solution of 3-D scaler wave equation is ( )ct r   instead of ( )H ct r . It means 

that the wave only creates an effect at the observation point when the wave passing 

the point. After the wave passing the observation point, the wave will not have any 

aftereffect on the point. Therefore, it is very difficult to describe the 3-D waves by 

finite DOF. The details about the aftereffect of waves can be seen in [S. Z. Xu, The 

boundary element method in geophysics. Beijing: Science Press, 1995] and [C. A.  
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Brebbia, Progress in Boundary Element Methods: Volume 2. New York: Springer, 

1983]. 

The 2-D wave has an after-effect phenomenon, which means that the wave has a 

continuous effect on the observation point after the wave surface passes through 

the observation point. Therefore, the time-dependent fundamental solution is 

integrated along with time for solving 2-D scalar wave equations [17, 18]. The 3-D 

wave has no after-effect phenomena, which means that the wave has an effect on 

the observation point only when the wave surface passes through the observation 

point. Therefore it is difficult to discretize 3-D wave equations. To overcome this 

problem, a time-successive evaluation approach without complex mathematical 

transforms is used to solve 3-D wave equations. 

7.2. TIME-DEPENDENT SINGULAR BOUNDARY METHOD FOR 2-D 

WAVE EQUATIONS 

The scalar wave equation is written as 

2

2 2
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where   is the computational domain with the boundary  , c  is the wave speed, 

t  denotes time. The fundamental solution of the 2-D scalar wave equation is  

2 2 2
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Eq. (1) can be interpreted as the initial boundary value problem. Based on the 

superposition principle, Eq. (1) can be split into a boundary value problem and an 

initial value problem. After Eqs. (4) and (5) are solved by the time-dependent SBM 

respectively, the solution of Eq. (1) can be obtained simply by the addition of these 

two solutions: 1 2    . 
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The initial value problem Eq. (4) can be solved directly using the 2-D Poisson’s 
formulation  

1 0 02 2

1 1

M M
ct ctC C

G
ds Gds

c n c


 

    , (6) 

where M

ctC  represents the circle domain with radius ct  and center M . M

ctC  is the 

range of influence of computational point M . 

Then consider the boundary value problem Eq. (5). The time-dependent SBM uses 

the fundamental solution integrated with time as the basis function. 
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CHAPTER 8 
 

Regularized Method of Moments for Time-

Harmonic Electromagnetic Scattering 

Abstract: This chapter extends the application of the theory of the radial basis 

function method to computational electromagnetics. Several key mechanical issues 

involved in the process of high-precision calculation of electromagnetic scattering are 

discussed. A regularized method of moments based on the modified fundamental 

solution of the three-dimensional Helmholtz equation is constructed in this chapter. 

The origin intensity factor is used to evaluate the singular term of interpolation matrix. 

Non-uniqueness at internal resonance is avoided by using the modified fundamental 

solution as the basis function. The regularized method of moments reduces the 

consumed CPU time by half compared to the traditional method of moments, while 

stability and accuracy are not affected. Experiments indicate that the regularized 

method of moments can accurately evaluate the radar cross section of perfect 

conducting scatter over all frequency ranges.   

Keywords: Electric field integral equation; Radar cross section; Method of 

moments; Modified fundamental solution. 

8.1. INTRODUCTION 

High-precision calculation of electromagnetic scattering of three-dimensional 

complex targets has important application in industrial fields. The chapter is based 

on the theory of the radial basis function method (RBF) [1, 2]. The main purpose 

of this work is to extend the application of the theory of the RBF to computational 

electromagnetics [3, 4]. Several key mechanical issues involved in the process of 

high-precision calculation of electromagnetic scattering are discussed, including 

how to eliminate non-uniqueness at internal resonance without increasing the 

number of calculations and storage requirements, and how to obtain an accurate 

evaluation of singular terms in matrix. A regularized method of moments (RMOM) 

[5] based on the modified fundamental solution of the three-dimensional (3-D) 

Helmholtz equation is constructed for evaluating the radar cross section (RCS) [6] 

of a perfect conducting scatter. The traditional method of moments (MOM) [7, 8] 

suffers the deficiencies of singularity at origin and non-uniqueness at internal 

resonance [9, 10]. The traditional strategy combines the electric field integral 

equation (EFIE) [11,12] with the magnetic field integral equation (MFIE) [13] to 

remove  non-uniqueness  at  a  given  resonance  frequency. The  RMOM  uses the  
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origin intensity factor (OIF) [14, 15] to replace the singular term in the interpolation 

matrix. The modified fundamental solution of the 3-D Helmholtz equation is used 

as the basis function to remove the non-uniqueness at internal resonance. The 

amount of calculation and storage space is not affected by the modified 

fundamental solutions. Compared to the combined field integral equation (CFIE) 

[16, 17], the consumed CPU time of the RMOM is reduced almost by half. As 

shown in the following examples, the RMOM can accurately calculate the RCS of 

complex targets at all frequency ranges. 

8.2. THE REGULARIZED METHOD OF MOMENTS FOR THREE-

DIMENSIONAL ELECTROMAGNETIC SCATTERING 

The electric field integral equation (EFIE) of a perfect conducting scatter is written 

as 

     SE r i A r r  , (1) 

where   is the Laplace operator and SE  is the scattered electric field.   denotes 

the angular frequency. A bar over a variable indicates that the variable is a vector. 

The magnetic vector potential A  is expressed as  

     ' ' '
4

S

A r J r G r dS



  , (2) 

and the scalar potential   is written as  

     
1

' ' '
4

S

r r G r dS


   , (3) 

where r  denotes a collocation point and 'r  represents a source point. 

2k       is the wavenumber,   is the wavelength. 
74 10     and 

128 . 854187817 10    are the permeability and the permittivity respectively of 

the surrounding free space. 

J  is the induced surface currents: 
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where 
nI  is the unknown coefficient. 

nf  is the RWG vector basis function 

associated with the nth  edge, as depicted in Fig. (1). 

 

(a) 

 

(b) 

Fig. (1). RWG vector basis function. 
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CHAPTER 9 
 

Recent Advances and Emerging Applications of the 

Radial Basis Function Method for Simulation of 

Large-Scale and High-Frequency Sound Wave 

Propagation 

Abstract: With the rapid development of computer technology, numerical simulation 

has become the third scientific research tool besides theoretical analysis and 

experimental research. As the core of numerical simulation, the construction of 

efficient, accurate and stable numerical methods to simulate complex scientific and 

engineering problems have become a key issue in the field of computational 

mechanics. This chapter outlines the application of the radial basis function method 

for the simulation of large-scale and high-frequency sound wave propagation. All the 

techniques and methods discussed in the book are reviewed in this chapter. This 

collection can provide a reference for the simulation of other more complex wave 

propagation.   

Keywords: Radial basis function method, Singular boundary method, 

Computational acoustics, Origin intensity factor, Helmholtz equation. 

9.1. OVERVIEW OF THE SBM IN LOW AND MIDDLE FREQUENCY 

SOUND FIELD CALCULATIONS  

The singular boundary method (SBM) is a strong form boundary collocation semi-

analytical radial basis function method. Presented in 2009 [1], the SBM has become 

a popular computational tool in engineering. Gu and Chen [2] applied the SBM to 

potential problems. Later, Fu et al. [3] constructed the SBM based on the Burton-

Miller formulation for acoustic problems. The core idea of the SBM is to use the 

origin intensity factor (OIF) to replace the diagonal terms of an interpolation matrix. 

The key issue is the determination of the OIF for different PDEs [2-6]. With the use 

of appropriate OIF, the SBM needs only 6 DOFs in each direction per wavelength 

to simulate the propagation of a sound wave. 

The SBM has  higher  stability  and  wider applicability as compared to the MFS 

[7, 8]. In comparison with the BEM [9-11], the SBM is free of integration and mesh. 

As a result, it is much easier to program. Because the OIF has the effect of 

correcting boundary discrete errors, the SBM can consume much less CPU time 
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and amount of calculation than the linear BEM, achieving higher accuracy and a 

superior convergence rate. The SBM achieves a good balance between stability, 

accuracy, and complexity. Therefore, the SBM is very suitable for combining with 

fast algorithms in solving large-scale engineering problems. Another advantage of 

the SBM is that it is very easy to program, as mentioned above. Scientific research 

is a process of constant trial and error. Usually, when new physical problems are 

explored, they cannot be directly simulated by commercial software such as 

COMSOL Multiphysics®. Much valuable time can be saved by using the SBM as 

the basic algorithm to explore new physical problems.  

In the frequency domain, the governing equation of an acoustic problem is a 3-D 

Helmholtz equation. The SBM based on the Burton-Miller formulation proposed 

by Fu et al. [3] is the standard interpolation format of the SBM for 3-D acoustic 

problems. The key issue of the SBM is accurate evaluation of the OIF. The OIF 

assumes that there exists a set of OIF that can perfectly replace the singular terms 

in the matrix. The OIF should be easy to obtain and be free of integration. It can 

make the SBM reach optimal accuracy and convergence rate without destroying 

stability. The first OIF technique was the inverse interpolation technique (IIT) 

proposed by Chen and Wang [1]. The IIT needs to solve linear equations twice by 

introducing a set of sample points to obtain the approximate value of the OIF. The 

IIT technique enables the SBM to obtain a very high accuracy and convergence 

rate. However, the IIT technique lacks theoretical analysis. It is difficult to obtain 

a set of appropriate sample points for a complex boundary due to the random 

deployment of sample points. Therefore, the IIT technique is highly unstable. Later, 

Gu and Chen [2] derived the OIF of Neumann boundary conditions for 3-D 

potential problems based on subtraction and adding-back technique (SAB). With 

this set of OIFs, the SBM can achieve accuracy similar to that obtained with the IIT 

while avoiding the inverse interpolation. The SAB technique accurately evaluates 

the OIF of Neumann boundary conditions. However, evaluation of the OIF of 

Dirichlet boundary conditions still requires an inverse interpolation. Based on the 

work of Gu, Fu et al. [3] converted the OIF of the Laplace equation to the OIF of 

the Helmholtz equation by adding a constant. The mathematical basis of the 

conversion is the similarity of the fundamental solution of the Laplace equation and 

the Helmholtz equation at the origin. Many numerical experiments [12] indicate 

that the OIF thus determined by Fu et al. can accurately evaluate low-frequency 

and intermediate-frequency acoustic problems.  
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Inspired by the works of Fu and Gu, a set of regularized OIF [13] based on the SAB 

technique was derived in Chapter 3. With the construction of general solutions that 

satisfy a certain boundary condition and then substituting them into the boundary 

integral equation or hyper boundary integral equation, unnecessary singular terms 

can be eliminated. The set of regularized OIFs inherits the advantages of the OIF 

formulas and avoids their disadvantages, as listed in Table 1. It is the best form of 

expression of the OIF for acoustic problems.  

Table 1. Advantage and disadvantage of three sets of mathematical formulas. 

Items 

Accuracy Stability 
Applicability and 

Generality 
Reference 

OIF 

IIT OIF High Low Low [1] 

SAB OIF High Medium Medium [3] 

Regularized OIF High High High [13] 

 

From the source of derivation, the OIF can be summarized in the following three 

forms: the mathematical formula [13], the experimental formula [5, 6] and the 

physical formula [14, 15]. In parallel with the aforementioned mathematical 

formula derived based on the SAB technique, Wei et al. [5] and Li et al. [6] 

provided a set of experimental formulas based on a large number of experiments. 

Although these experimental formulas lack theoretical analysis, they are easier to 

obtain and use. Numerical experiments show that the experimental formulas enable 

the SBM to achieve accuracy and convergence rate similar to mathematical 

formulas. As a mathematical supplement to the SBM theory, In Ref [14], Li derived 

the error bound of the SBM and explained the reason for the high accuracy and 

convergence rate of the SBM; namely, the OIF has a corrective effect on boundary 

discrete errors. The OIF is composed of two parts. The first term represents the 

effect of the source point on itself. The second term is considered as the correction 

factor for a boundary discrete error. That is the essential difference between the OIF 

and singular integration. Based on this understanding, Li et al. [15] further derived 

a set of physical formulas of the OIF according to physical derivation. All the 

MATLAB code of those OIF formulas can be downloaded in the singularity 

toolbox at https://doi.org/10.13140/RG.2.2.13247.00162. One interesting 
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APPENDIX A 
 

Code of the Origin Intensity Factor Based on the Matlab 2016b 

function [ff]=G_xiyi(x,y,z,nx,ny,nz,S,kappa) 

%This function is to evaluate the non-singular formulation of G(xi,yi) 

%This program is written by Junpu Li, Email:junpu.li@foxmail.com 

%(x,y,z):coordinate of boundary nodes 

%(nx,ny,nz):outer normal vector at (x,y,z) 

%S:range of influence of boundary nodes 

%kappa:wavenumber 

len=length(x); 

for ii=1:len 

temp_x=x(ii)–x; 

temp_y=y(ii)–y; 

temp_z=z(ii)–z;     

R_X=nx.*temp_x; 

R_Y=ny.*temp_y; 

R_Z=nz.*temp_z;   

P_sjxi=(R_X+R_Y+R_Z);  

clear R_X R_Y R_Z 

R_R=sqrt(temp_x.^2+temp_y.^2+temp_z.^2); 

C_sjxi_nsj=P_sjxi./R_R; 

C_sjxi_nsj(ii)=1; 

Jun-Pu Li and Qing-Hua Qin

All rights reserved-© 2021 Bentham Science Publishers 



152    RBF for Large-Scale Wave Propagation Li and Qin 

  
 
 
 

clear temp_x temp_y temp_z 

G0=sin(kappa.*(x–x(ii)))*nx(ii)+sin(kappa.*(y–y(ii)))*ny(ii)+sin(kappa.*(z–z(ii)))*nz(ii); 

Q=–(–exp(R_R.*kappa.*1i)./R_R.^2+(kappa.*exp(R_R.*kappa.*1i).*1i)./R_R).*C_sjxi_nsj; 

P2=G0.*Q.*S; 

P2(ii)=0; 

G=exp(1i.*kappa.*R_R)./R_R; 

Q0=kappa.*(cos(kappa.*(x–x(ii))).*nx.*nx(ii)+cos(kappa.*(y–y(ii)))… 

.*ny.*ny(ii)+cos(kappa.*(z–z(ii))).*nz.*nz(ii)); 

P1=G.*Q0.*S; 

P1(ii)=0; 

P_P=(P2–P1); 

ff(ii)=sum(P_P)./S(ii)./kappa./4./pi; 

end 

end 

function [ff]=F_xiyi(x,y,z,nx,ny,nz,S,kappa) 

%This function is to evaluate the non-singular formulation of F(xi,yi) 

%This program is written by Junpu Li, Email:junpu.li@foxmail.com 

%(x,y,z):coordinate of boundary nodes 

%(nx,ny,nz):outer normal vector at (x,y,z) 

%S:range of influence of boundary nodes 

%kappa:wavenumber 

len=length(x); 

for ii=1:len 



Appendix A RBF for Large-Scale Wave Propagation  153 

 
 
 
 

temp_x=x(ii)–x; 

temp_y=y(ii)–y;  

temp_z=z(ii)–z;     

R_X=nx.*temp_x; 

R_Y=ny.*temp_y; 

R_Z=nz.*temp_z;   

P_sjxi=(R_X+R_Y+R_Z);  

clear R_X R_Y R_Z    

R_R=sqrt(temp_x.^2+temp_y.^2+temp_z.^2); 

clear temp_x temp_y temp_z 

C_sjxi_nsj=P_sjxi./R_R; 

C_sjxi_nsj(ii)=1; 

G0=sin(kappa.*R_R)./R_R; 

Q=–(–exp(R_R.*kappa.*1i)./R_R.^2+(kappa.*exp(R_R.*kappa.*1i).*1i)./R_R).*C_sjxi_nsj; 

P2=G0.*Q.*S; 

P2(ii)=0; 

C_xisj_nsj=–C_sjxi_nsj; 

G=exp(1i.*kappa.*R_R)./R_R; 

Q0=((kappa.*cos(R_R.*kappa))./R_R–sin(R_R.*kappa)./R_R.^2).*C_xisj_nsj; 

P1=G.*Q0.*S; 

P1(ii)=0; 

P_P=(P1–P2); 

ff(ii)=sum(P_P)./kappa./S(ii)./4./pi; 
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NOMENCLATURE 
 

A  interpolation matrix b  known right-hand vector 

c  wave speed C  sparse matrix 

g  acceleration of gravity k  wavenumber 

n  
unit outward normal on the 

physical boundary 
R reflection coefficient 

S boundary of domain Ω T transmission coefficient 

x collocation point y source point 

Ω Computational domain   unknown vector 

  angular frequency   Surface charge density 

  Dirac delta distribution Nl  number of triangular patches 

( )x  physical variable q(x) normal derivative of ( )x  

( )H x  Heaviside function Tol preset convergence criterion 

jA  area of the jth element c  pseudo-boundary 

2G  
absorbing parameters of the 

rear side of the barrier. 1G  
absorbing parameters of the front 

side of the barrier. 

cy  expansion center 2()  the fine level mesh subscript 

( )nP x  
Legendre polynomials of 

degree n 
m

nP  associated Legendre function 

IE  incident electric field SE  scattered electric field 

2  Laplacian operator J  induced surface currents 

k  
the kth accurate potential 

residual vector 
k  the kth residual potential solution 

I 

 
positive projection operator I 

 negative projection operator 

kV  
the kth approximate potential 

residual vector 
k  the kth accurate potential solution 

nf  RWG vector basis function k  
the kth approximate potential 

solution 

kRerr  
the

 
kth local average relative 

error 

* * *

* * *

 
 
 

 Wigner 3j symbol 

mnM ,
 and mnM ,

~
 multipole moments 

1 2 3( , , , )x x x t  velocity potential 

74 10     Permeability of the surrounding free space 

128 . 854187817 10    Permittivity of the surrounding free space 
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