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PREFACE

In the first volume of this book, I presented basic ideas of the open quantum physics, and an
application of this theory based on the description of a remarkable phenomenon/device, for
the energy production on account of the environmental heat. Evidently, the first basic idea is
the quantum mechanics itself, and the second is the electromagnetic theory. As it is customary
in literature, the basic theories of these fields have been presented on two separate bases, of
quantum mechanics, and of the Maxwell theory, which do not form a self-consistent
foundation for the interaction of a particle with the electromagnetic field, and, generally, for
the relativistic dynamics of a quantum particle. However, on the occasion of these
investigations, I found that, in fact, quantum mechanics includes the relativistic dynamics of a
quantum particle, when a bound spectrum is considered for such a particle in an inertial frame
of reference. More than that, for our application, consisting of a system of quantum injection
dots in a semiconductor structure interacting with an electromagnetic field in a Fabry-Perot
cavity, other basic aspects had also been missed in the first volume: the effects of the crystal
lattice on the quantum dot dynamics, and a microscopic description of the specific
semiconductor structures.

A second volume seemed to be necessary for the integrity of this book. In this volume, we
provide a self-consistent foundation for the description of the electron-field interaction, for
the basic elements involved in our application, and for the dissipative couplings of the active
elements, the quantum injection dot electrons and the coherent electromagnetic field, with the
conduction electrons and the vibrations of the crystal lattice. These phenomena are specific to
open quantum physics, a theoretical field lately describing the dissipative dynamics as a
dynamic semigroup. However, in this study, we use a method of Ford, Lewis, and O’Connell,
providing an analytic, microscopic description of the systems of interest. We consider the
structural characteristics, as the electron wave functions, the dipole moments, the electron-
field coupling coefficients, and the energy and polarization decay coefficients for the active
electron couplings to the crystal lattice vibrations, and to the conduction electrons and holes.
We calculate the operational characteristics of the devices, as the intensity of the
electromagnetic field which propagates through a superradiant or an injection structure, and
the injection currents in such a structure. These quantities depend on a large number of
physical constants, and material properties, such as the effective masses of the electrons and
holes, the mobilities of these particles in the semiconductor crystal, the atomic masses, the
elasticity coefficients, the impurity concentrations, and the geometric parameters. For a better
understanding of the physical models, 1 give a large number of explicit numerical
calculations, with results which can be compared to well-known experimental data.

Eliade Stefanescu

Center of Advanced Studies in Physics of the Romanian Academy,
Bucharest,

Romania
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CHAPTER 1

Introduction

Abstract: While in the first volume of this book we presented a set of methods for the
description of the open systems, and applications to a superradiant semiconductor
structure, in this volume we concentrate on the microscopic theory and a detailed
investigation of the heat conversion into usable energy. Our study is essentially based
on master equations with explicit microscopic coefficients, for the active electrons,
superradiant field, and crystal lattice vibrations. The quantum dynamics of electrons
and electromagnetic field is obtained in the framework of a unified relativistic quantum
theory, from the description of a quantum particle as a vibration propagating in space,
and a relativistic principle asserting a limitation of the wave function spectrum for a
finite velocity ¢, which does not depend on the frame of reference. The electron
dynamics is described in the periodic potential of a crystal lattice and an internal field
induced by impurity doping, thermal vibrations, or the application of external fields.
The dissipative processes are described as resonant phenomena, with energy
conservation, of correlated transitions of particles in the systems of interest with other
particles of the crystal. We investigate the operation characteristics for the two versions
of the device, the longitudinal quantum heat converter, and the transversal one, and the
corresponding structures for the conversion of electromagnetic energy into electric
energy.

Keywords: Affinity, Bipolar transistor, Bose-Einstein statistics, Coherent field,
Conduction band, Correlated transitions, Creation-annihilation operators, Decay,
Dissipation, Electron, Fermi-Dirac statistics, Fermionic operators, Forbidden
band, Hamiltonian, Internal field, Lindbladian, Optical phonon, Photon,
Semiconductor junction, Semiconductor structure, Superradiant transistor,
Valence band.

In the first volume of this book [1], we presented important physical and
mathematical ideas of open quantum physics [2 - 9], issued for an adequate
description of the realistic physical systems involved in the new technological
developments, as the semiconductor optoelectronic nanostructures [10 - 13].
These ideas mainly refer to the atom-field interaction [14 - 16] and the couplings
of the systems of interest to the dissipative neighboring systems [17 - 19], mainly
contained in their physical support. The dynamics of a system of interestin a

Eliade Stefanescu
All rights reserved-© 2017 Bentham Science Publishers
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dissipative environment is a multidisciplinary problem, including basic elements
of classical and modern fields, which are still under investigation [20 - 25], such
as quantum mechanics [26 - 32], electromagnetism [33 - 35], quantum optics [36 -
39], non-equilibrium thermodynamics [40 - 42], statistical mechanics [43 - 47],
and stochastic physics [48 - 50].

The starting point of our research was Lindblad’s axiomatic theory of the
dissipative coupling [51], and the method of Sandulescu and Scutaru for reducing
Lindblad’s description of the dissipative dynamics by semigroups, to the well-
known phenomenological processes of quantum friction and diffusion [52]. This
is a description of the quantum dynamics, obtained from Lindblad’s master
equation of a system with the density matrix p(?) and the Hamiltonian H,

o) =~ [Hp(0)] + o S AVap( VI + Wap(®). V1) . (LD

which includes a dissipation term with the openness operators

Vo = Z Anm A, (1.2)

These operators are linear combinations of the system operators A4, with
unspecified complex coefficients a,,. This form of the dissipation term, valid for
the most cases of practical interest of the weak dissipative coupling, guarantees
the positivity of the density matrix during the whole evolution of the system. Our
first objective was to investigate the physical effects of the dissipation terms on
two basic quantum phenomena: (1) quantum tunneling, and (2) the atom-field
interaction. In this way, we found two interesting effects: (1) tunneling
enhancement, due to the additional transitions stimulated by environment [53 -
60], and (2) coupling through environment of the atomic operators, leading to a
possible absorption of the environmental energy by a coherent electromagnetic
field propagating through this environment [61].

Although Lindblad’s master equation (1.1) is in agreement with the quantum
principles, and provides interesting informations about the dissipative dynamics,
this equation is still unsatisfactory, including a number of unspecified parameters
a,,. The difficulties encountered in the application of this equation to a harmonic
oscillator by considering the openness with the two operators x and p of this
system have been subjects of contradictory discussions [62 - 68]. In principle,
from physical point of view, the openness of a harmonic oscillator with x and p is
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not understandable, since, as one can see from subsection 2.1.8 in [1], x and p of a
harmonic oscillator represent the same operator at two different moments of time,
for a phase difference 7/2 in the Heisenberg representation. This phase difference
is not significant in this problem where the dissipative processes, as damping and
diffusion, are described as slow processes in comparison with the Hamiltonian
oscillations of this system. For an openness with x and p, from equation (1.1) for a
harmonic oscillator with the Hamiltonian H, the mass M, and a resonance

frequency w,, at a temperature 7, one can obtain the quantum master equation
[69]:

000 = —318,000] = {3 l0p0(0) + 08 - a0(0) + 1010

- coth 2 (Menfasfa 0]+ 1=l n ) |- 13

We obtain equations for the diagonal elements,

d . ' hwo hwo
&pnn(t) —/\{(n +1) Kcoth o + 1) Prt1,n+1(t) <coth o 1) Pnn(t)]

fle fLW(]
+n {(coth o7 1) Pr—1n-1(t) — (coth o7 + 1) Pnn(t)] } , (1.4)

which are physically comprehensible, being in agreement with the Pauli master
equation (subsection 3.2.1 in [1]) and detailed balance relations:

Pr+1,n+1(0) _ prin(0) — o hwo/T (1.5)
p,m(oo) Pnfl,nfl(oo)

However, equations for the non-diagonal elements are

d . le(]
&p,,,m(t) = —i(m — n)wopmn(t) — )\{ {(m +n+ 1) coth 57 1} Prmn(t)

h
— (m + 1)(7’L + 1) |:C0th % + ]-:| pm+1,n+1(t)

th
— A/ mn |:C0th ﬁ - ]-:| pml,nl(t)} . (1°6)

Besides the Hamiltonian and the decay terms, two coupling terms of the
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CHAPTER 2

Unitary Relativistic Quantum Dynamics
Electromagnetic Field

and

Abstract: In this chapter, we consider a quantum particle wave function with a bound
spectrum of velocity ¢, and obtain the relativistic momentum based on the group
velocity of this wave function. With a space-time isometry condition, the Lorentz
transformation and the relativistic dynamics were obtained. Considering a field
interacting with a quantum particle as a four-vector conjugated to the space-time vector
in the time-dependent phase, we obtain the Lorenz force and the Maxwell equations. It
is interesting that only the Ampere-Maxwell equation of a magnetic circuit is specific
to the electromagnetic field, while the other equations are general for a field interacting
with a charged quantum particle. Considering the time-dependent phase of a quantum
particle interacting with an electromagnetic field with a space-time homogeneity
condition, we obtain Lorentz transformations for this field. For a quantum particle at a
non-relativistic velocity, we obtain a wave function with a very rapidly-varying factor,
of a frequency proportional to the rest energy of this particle. From the Schrodinger
equation of a particle with a relativistic Hamiltonian, we obtain a split of the wave
function into four components, describing a proper rotation of this particle with an
angular momentum called spin (Dirac’s relativistic electron theory). Moreover, we also
calculate electron potential in the magnetic field, and two-electron interaction potential.

Keywords: Action, Ampeére-Maxwell equation, Angular momentum, Bohr

magneton, Dirac matrices, Electric field, Electric potential, Faradey-Maxwell
equation, Four-vector, Gauss equation, Giro-magnetic ratio, Group velocity,
Hamiltonian, Kinetic energy, Lagrangian, Liénard-Wiechert potentials, Lorentz
transformation, Magnetic field, Magnetic moment, Momentum, Pauli matrices,
Potential energy, Rest energy, Rest mass, Spin, Vector potential, Wave function,

Wave-packet.

2.1. Wave Functions and Relativistic Mechanics

2.1.1. Hamiltonian Equations as Group Velocities

Our world is composed of microscopic particles such as electrons, nucleons and
photons [82]. It is remarkable that such a particle is described by a wave function

Eliade Stefanescu
All rights reserved-© 2017 Bentham Science Publishers
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with a wave vector & proportional to the particle momentum 7 = hk , where T
is the Planck’s constant [83]. In subsection 2.1.1 of the first volume [1], we

described a quantum particle by two wave functions in the two conjugated spaces
{r} and {7},

1 e (T
Yo(F t) = e / oo(F. )er TPV g3 .1
T
= 1 - . —U(T —
do(prt) = W/%(T’t)e F PF=T@)=U Mt} g3 (2.2)

with wave packet velocities satisfying the classical dynamics:

d 0 0
— 7= _-T(p) = ==Hy(T. 2.3
7= oD = gD (2:3a)
d D — 9 ) — ,2 =
al = *a*FU(V) = 8FH0(7»17) ; (2.3b)
where
Hy(F,p)=T{p)+UF)=FE 2.4)

is the Hamiltonian of a non-relativistic particle, with a constant £ of the particle
dynamics, called energy. It is interesting that the particle wave functions (2.1)-
(2.2) differ from the Schrodinger wave functions

1 i .
pen W/ Go()er Ay 25)
7

1 e
Sl = G / b e H T BB 2.6)

by a phase factor ¢ 2U/" which does not alter the densities |¢o(7.?)|* and
|p0(P,t)|>. We notice that the phase time variation of these wave functions is of a
Lagrangian form
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1 1 -
—2 Lt = —[T() ~ U]t - (2.7

It is interesting that the Hamilton equations (2.3) define the Hamiltonian function
(2.4) as a time constant,

d_ ... OHydP OHydj
D= w Ty a =" (2-8)

called energy:
Ho(F,p) =T(p) +U(F) = E . (2.9)

We notice that the energy is a conservative function by definition, which means
that it cannot be created or destroyed by any process. Any problem of energy
creation or destruction is a illogical. The total energy E is composed of the kinetic
energy 7T'(p) and the potential energy U (7).

For a constant potential U(7), the kinetic energy 7'(p) is also constant, and from
the first Hamilton equation (2.3a), we obtain a constant group velocity

A D
= (?ﬁT(ﬁ) = const. , (2.10)

in agreement with the first law of the classical mechanics, while, from the second
Hamilton equation (2.3b), we obtain a constant momentum 7

r=0. @2.11)

This means that this momentum, as the conjugated variable of the coordinate 7 in
the particle wave-packets (2.1) and (2.2), depends on the particle velocity:

7= ). (2.12)

From (2.3b), we obtain a time variation of the momentum equal to the opposite of
the potential gradient called force,
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CHAPTER 3

Quantum Systems of Electrons in a Semiconductor
Crystal

Abstract: In this chapter, we describe steady states and dynamical characteristics of
the electrons in the periodic potential of a crystal, and the application of three
semiconductor elements: the rectifying junction, the bipolar transistor, and the
superradiant junction. While for an arbitrary potential the electron momentum does not
commute with the Hamiltonian, in the periodic potential of a crystal lattice we find a
quasi-momentum, which commutes with this Hamiltonian. We obtain the quasi-
momentum eigenvalues as eigenvectors of the reciprocal lattice. In this way, we find
quasi-momentum eigenstates, called Bloch states, the energy as a function of this
quasi-momentum, and equilibrium eigenstates in the quasi-momentum space. From the
energy variation with the quasi-momentum in the equilibrium states, we find the tensor
of the effective mass of the electron in a crystal lattice. We find that for an internal
potential of interaction oriented with the gradient perpendicular to the equilibrium
quasi-momentum, the electron dynamics in the semiconductor structure is simply
described by the Schrodinger equation of this potential, while the periodic potential of
the crystal lattice does not play any role. For N electrons in a quantization volume V,
we derive the density of Bloch states as a function of the crystal lattice characteristics.
We find the velocity and the acceleration of an electron under the action of an internal
potential. Considering a Fermi-Dirac distribution of the Bloch states, we obtain the
current density under the action of such a potential. With the statistical distributions
and the current densities for electrons and holes, we obtain the electrical characteristics
for a semiconductor junction and a bipolar transistor. We consider a superradiant
junction, where the electron injection is performed by quantum transitions from an n-
region to the p-region in quantum dot arrays. We calculate the wave functions, the
electric field, and the potential variation between the two conduction regions, and the
dipole moments for two polarizations of the superradiant field: in the direction of the
injected current, and in a perpendicular direction to the current.

Keywords: Acceptor, Bipolar transistor, Bloch wave function, Conduction band,
Crystal lattice, Direct and indirect gap, Donor, Effective mass, Fermi level,
Forbidden band, Heterostructure, Internal field, Perturbation theory, Potential
barrier, Quantum well, Quasi-momentum, Reciprocal lattice, Semiconductor
junction, Superradiance, Valence band, Wave vector.

Eliade Stefanescu
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3.1. Semiconductor Structures

3.1.1. Electron States in a Semiconductor Crystal

Semiconductors are very important materials, due to their remarkable electrical
and optical properties, the possibilities for varying these characteristics on large
scales, and the very interesting micro-systems which can be implemented in their
atomic structure [94 - 100]. Generally, a semiconductor material, as silicon with
valence 4, has a diamond crystalline structure (Fig. 3.1).

V1 Vo

______________________________

Vs Vz

Fig. (3.1). Diamond crystal, as a cubic lattice with centered faces, and 4 inner atoms.

In this figure, a diamond structure is represented as a cubic cell of atoms
occupying the 8 vertexes V,, V,, V,, V., Vs, Vi, V5, V; the centers C,, C,, C;, C,, Cs,
C; of the 6 faces, and 4 inner atoms /,, /,, [,, I,, oriented in the directions of two
diagonals of the two opposite faces V,V, and V,V,. We notice that every inner
atom (brown) has 4 covalent bonds (red), to the closer vertex atom (blue), and to
the atoms in the centers of three faces (green) intersecting at this vertex. Every
atom in the center of a face (green) also has 4 covalent bonds, two with closer
inner atoms (brown) of this cube, and two with the inner atoms of the adjacent
cube. Every vertex atom (blue) has a covalent bond with inner atoms in four from
the eight cubes with this vertex. Thus, we find that in this structure every atom has
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four covalent bonds. We also notice that this cube contains 6- 5 atoms at the
centers of 6 faces, and 8-% atoms at the 8 vertexes, making a total of 8 atoms.
This is a dense structure, which suggests small potential variations in this
structure. It is interesting that this structure is also specific to a GaAs—Al,Gai_,As
compound, with 4 heavier 4s atoms per cell in the inner positions /,-/,, and 4
lighter Ga or Al atoms per cell in the outer positions V-V and C,-C,.

For a rather large crystal, for the atomic potential one may consider the translation
symmetry, while the energy levels of the electrons in this potential form a lower
valence band and a higher conduction band, separated by a forbidden band (Fig.
3.2). The forbidden band width E, = U, — U, depends on the chemical
composition: for instance, E, = 1.426 eV for Gads, ans E,; =1.92 eV for
Alg37Gage3 As. Another characteristic of the band structure is the electron
affinity £, which is the difference between the potential U, of the semiconductor

surface, and the bottom of the conduction band, E, = U,— U.. For Gads,
E, =4.69 eV.

Uo_if"" fffffffffffffffffffffffffffffffffffffffffffffffffff —
Uc% CB
] FB
. VB
o‘

Fig. (3.2). Semiconductor energy band structure: a valence band VB with the higher margin U,, a conduction
band CB with the lower limit U, and a forbidden band FB between U, and U,, while F is the Fermi level
determined by the occupation of these bands, and U, is the surface potential.

For the dimension L of a semiconductor sample, an uncertainty 4p of the

momentum arises according to the uncertainty relation, Ap-L > 2 | which means
a width of an energy level

Ap? h2c?
= > s
2M — 8L2Mc?

AE 3.1
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CHAPTER 4

Superradiant Structure and Heat Conversion into
Usable Energy

Abstract: In this chapter, we derive the operational characteristics of quantum heat
converter and a quantum injection device, as functions of the semiconductor structures.
We describe the couplings of the active electrons with the superradiant field, the crystal
vibrations, and the quasi-free electrons and holes in the conduction regions. The
dissipative couplings of the electromagnetic field with the optical vibrations and the
quasi-free conduction electrons and holes are taken into consideration according to the
results obtained in the first volume. The superradiant power of a quantum heat
converter under the action of a current injected in the device, and the electric current
generated by a quantum injection device under the action of an incident
electromagnetic field are entirely obtained as functions of the physical characteristics
and universal constants. We perform numerical calculations for semiconductor
structures providing electromagnetic and electric powers of practical interest. Both
possible semiconductor configurations, the longitudinal configuration, with the field
propagating in the direction of the injected current, and the transversal one, with the
field propagating perpendicularly to the injected current, are taken into account.

Keywords: Cavity eigenmode, Commutation relation, Correlated transitions,
Coupling coefficient, Creation-annihilation operators, Deep-level path, Elasticity
coefficient, Fabry-Perot cavity, Harmonic oscillator, Hermitian matrix, Impurity
cluster, Maxwell-Bloch equations, Optical vibration, Polarization, Population,
Quantum injection dot, Sound velocity, Superradiant field, Superradiant junction,
Vibrational field.

4.1. Couplings of Superradiant Transitions

4.1.1. Continuum Model of Crystal Vibrations

An essential dissipation process of the quantum transitions involves an energy
transfer to the crystal lattice vibrations. These vibrations are excited by
temperature, and depend on the ion masses and the elastic forces between these
ions connected by valence electrons. In a continuum model of the crystal
vibrations [103], we describe the displacement field

Eliade Stefanescu
All rights reserved-© 2017 Bentham Science Publishers
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qR)= 7

, @.1)

of a differential element of volume d’# with the equilibrium position #, and the
expansion of this volume, which, for a small deformation can be considered in a
first-order approximation,

&7 =da'dy'ds’ = (do + dg,)(dy + dgy)(dz + dg.)
8(]31 aq,z

(e 4 22 g, ,
=(dx oz, x;)( oz, dz;)(dz + oz, dz;)
0q, dx; aqy dz; Jq, dx; 4.2)

~dadyd=(1+ 52 S T+ =T
_ 3 (1 94z 8qy 8qz>

Oz

This means that any differential element of length
dl = \/da? + dy? + dz=2, 4.3)

takes the following form by deformation,

I :\/dm/Q 4 dy/2 + dz?
=/(dz +dgy)? + (dy + dgy)? + (dz + dg.)?
:\/de + 2dg;dx; + dg;dg;

4.4)
dq; dq; O0q;
2
\/dl +2a dz d]+8]8x dz;dxy,
0q; Oq oqi, Oqy,
— 2 J . .
\/dl <8xj &El)d id; ox &Eld jdzi

=12 + 2g;;da;da

dx; dx
=dl <1+qm 4 le> :
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depending on a deformation tensor

- _1(0q  Oq;  Ogi Oqi
ij = 2 <8SU] + 835‘1 + 835‘1 8SU]' ’ (4.5)
which, for small deformations, takes a simpler form
o 1 dq; aCIj 4.6
sz_2<8xj+8l’i) ) (46)

It is interesting that in a system of principal axes, when the deformation tensor is
diagonal, the expansion of the differential element of the volume (4.2) is a
function of the diagonal elements of the deformation tensor (4.6),

37 = dSF(l + Gz + Qyy + QZZ) . (4'7)
At the same time, the elongation of a differential element of length,

dl’ —di dwz; dw; (4.8)

a - Wgar

takes the simpler form

dl’ — dl dz\? dy\ 2 dz\?
di = Qzx <a> + Qyy <a) + Q22 <a> ) (4-9)

which leads to a simple interpretation of the diagonal elements of the deformation
tensor in a system of principal axes, as elongations,

da’ —dw (4.10)
Qe — T
i
_ dy' —dy (4.11)
Qyy — dy
G = dz' —dz 4.12)

dz



Open Quantum Physics and Environmental Heat Conversion, 2017, Vol. 2, 223-234 223

Appendix A

Structure of a Superradiant Junction

The operation of a superradiant junction essentially depends on its structure. We
choose a high conductivity n-region, Np = 3X10'® « N, = 4.17x10¢m™3
(3.148), while the potential (3.465) is

4.17x10%17
3x1016

Ue = TIn2¢ = 0.026In ( ) = 0.068eV. (A1)
Np

For a positive potential of the higher level well, U; > 0, from ((782)) we obtain a
quantum dot density

M,T U My c?T __ 0.065x0.511x10°0.026
N, = Wln (1 +e T ) < —2.2 In2 = o — In2 A2
= 49x1073nm=2 '
= 49x10%m2,

Having in view the effective resonance frequency (4.137), we take two quantum
dot energy levels

Ey = U, — 7 = 0.068 — 222 = 0.055eV (A.3)
E,=U +(1+%>T. A4
0 v 2 Mp ( )

In this way, the effective resonance frequency (4.137) achieves the maximum
value for a non-absorptive propagation through the conduction regions with a
junction transition energy U, — U,

_ My
hwozEl—Eo+<1+M—>T=Uc—U,,. (A.5)

p

We consider an internal barrier

Uy = 0.200eV (A.6)

Uopo = Uy — Uy = —1.720eV, (A.7)
of Al,Ga,_,As, with the energy gap U; = 1.920eV, and separation barriers

Ug = 0.05eV, (A.8)
which means a total height of the higher level potential barrier

Us = U, + Uz = 0.068 + 0.05 = 0.118eV. (A.9)

Eliade Stefanescu
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We obtain the effective heights of the two barriers,
Uy — E; = 0.200 — 0.055 = 0.145eV (A.10)
U; —E; =0.118 — 0.055 = 0.063¢V. (A.11)

We choose a width x, —x; = 10nm of this well. From the transcendental
equation (4.156) we obtain the ground state energy E; — U; as the limit of a
convergent oscillatory sequence

h2c? 1972evV2nm?

E —U,), = =
(Ex 1)o 2Mpc2(xo—x1)2  2x0.065%0.511x106eV102nm2

= 0.0058421eV

2
Uo—E Us—E
(Es—Upy = (B — U)o (arctan [22E 4 aretan [ )
2
= 0.0058421eV (arctan 0% 4 arctan [—%3 )
\j 0.0058421 \’ 0.0058421

= 0.040961eV 2
(B =0, = (B = U, (arctan [0+ arctan [0 ) (A.12)
2

= 0.0058421eV (arctan 0% _ 1 arctan |—2%3 )
\ 0020961 \ 0020961

= 0.022776eV

(Ey—Uypsz = 0.028868eV

(Ey— Uy = 0.026426eV

(Ey —Uyps = 0.027342eV

(Ey —Upe = 0.026990eV

\

E,—U =  0.027eV.

With (A.3), we obtain the potential of the higher level well,

U, =E, —(E; —U;) =0.055-0.027 = 0.028eV, (A.13)
with the barriers
Uy —U; =0.200 — 0.028 = 0.172eV (A.14)
U; —U; =0.118 — 0.028 = 0.090eV (A.15)
and the quantum dot density creating this well,
N, = Z;;;Tln (1 + e_%)
_ 0.065>;(1§;;;<;0260.026 In [1 + exp (_ %)] (A.16)

= 2.0764x1073nm™2 = 2.0764x10>m™2.
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With this quantum dot density, from (3.471) we obtain the potential of the lower
level well,

U,= Tln [exp (”hzczNB> - 1]

2
Mpc T

2 -3 A.17
719722.0764x10 )_ 1] ( )

= 0.026In [exp (0.5><0.511x1060.026
= —0.084453 =~ —0.084eV.

Choosing a potential of the lower level well separation barrier

U,=U,—0.05el, (A.18)
from (A.4) we find the effective height of the lower level well separation barrier
%>T — (U, — 0.05) = 0.05 + (1 + %>T
Mp 2 M/ (AL19)
1, 0.065
= 0.05 + (5 + =) 0.026 = 0.066380 ~ 0.066eV,

Ey—U, = U,,+(§+

while, neglecting the thin layer effect (subsection 3.3.4),
U, — Uy = —0.084 + 1.720 = 1.636eV. (A.20)

From (4.157) we calculate the ground state energy of the lower level potential, by
determining the width of this potential x, — x, = 3nm,

w Eg)o = h2c2 _ 1972ev2nm?2
2 070 ™ aMpc2(xy4-x2)2 ~ 2x0.5%0.511x106eV32nm?
= 0.0084386eV

2
Uz—U Eo—U.
(U, —Ey); = (U, —Ep), (arctan ,ﬁ — 1+ arctan _(Uzo—E:)o)
2
= 0.0084386eV (arctan 1936 _ 9 4 arctan |—%° )
\j 0.0084386 ‘/ 0.0084386

= 0.062722eV

2
W= (=B artn [FE58 — - arcn 55

201 (A2
= 0.0084386eV<arctan 193%  _ 1 4 arctan 0'066>

\j 0.062722 \/ 0.062722

= 0.039804eV
(U, — Eg)s = 0.045603eV
(U, — Eg)s = 0.043881eV
(U, — Eg)s = 0.044370eV
(U, — Eg)g = 0.044229eV
(U, —Ey), = 0.044269V,
)

U,—Ey=  0.044eV
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With (A.17), we obtain the quantum dot ground state energy as

Ey,=U,— (U, — E,) =—0.084 — 0.044 = —0.128eV, (A.22)
and the effective height of the internal barrier as
Ey—Uyy = —0.128 + 1.720 = 1.592¢V. (A.23)
At the same time, from ((1176)) we obtain the p-region potential
U, = E, — G + Z—Z> T =-0128 — (3 +2%)0.026 = —0.144eV, (A.24)

We also obtain the potential of the lower level separation barrier (A.18),
U, =U,—0.05=-0.144 — 0.05 = —0.194¢V, (A.25)
and the height of this barrier
U, — U, =—0.084 + 0.194 = 0.110eV. (A.26)
From (A.24) and (A.1), we obtain the effective resonance energy (A.5),
hwy =U, — U, = 0.068 + 0.144 = 0.212¢V. (A.27)

The potential U, of the p-region is given by an acceptor concentration N, from
(3.466) with (3.149),

N, = N,eU»/T = 8,9x1018¢~0144/0.026 = 3 5% 1016cm =3, (A.28)

With the expressions (3.343), (3.346), (3.344), (3.345), (3.347), and (3.348), with
(A.12), (A.21), (A.10), (A.11), (A.23) and (A.19), for the two quantum dot wave
functions we obtain the wave numbers,

1
ki, = E\/ZMnCZ (E,1 = Uy (A.29)
ET:E PR 7 S XU. X 0. %106 ]
1976‘Vnm\/2 0.065%0.511x10%eV0.027eV
= 0.21498nm"1,
1
ko = 5-+/2Mpc* (U, — Eo) (A.30)

T~ r— 6
197eVnm‘/2X0-5X0-511X10 oV 0.044e)

=0.76115nm71,

and the attenuation coefficients of in the potential barriers,
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1
oy = —[2My,c? (U, — Ey) (A31)
= oo Vexu. x0. %106 .
197eVnm\/2 0.065%0.511x106eV0.145¢V
— 0.49820nm™1
1
a3 = 1=/ 2Myc® (U — Ey) (A.32)
= oo Vexu. x0. %106 .
197eVnm\/z 0.065%0.511x106e/0.063eV
— 0.32839nm™?
1
Qo = =[2M,c*(Eo — Ugo) (A.33)
ET:Y: P72 X0.0X%X0. %106 ]
197eVnm‘/2 0.5%0.511x105eV/1.592¢eV
= 4.5784nm™1
1
a, = E\/ZMpCZ(Eo -U,) (A.34)

= o aUo 6
197eVnm‘/2X0-5X0-511X10 2/ 0.066eV

=0.93222nm™1,

From (3.351) and (3.367), we obtain the phase constants of the two quantum dot
wave functions,

S o 049820y _ _

¢, = —arctan pal arctan (0.21498) = —1.1634rad (A.35)
_ X _ 4.5784\ _ _

@, = —arctan o arctan (0.76115) = —1.4061rad, (A.36)

while from (3.362) with (A.10) and (A.11), and from (3.376) with (A.23) and
(A.19), we obtain the amplitudes of these wave functions,

A1=ﬁ(x0—x+ he ,__ he ) (A.37)

1
VeMpc2(Uo—Ey)  2Mpc?(U3—Eq)

197eVnm
V2x0.065%0.511x106eV0.145eV

=2 (IOnm +

1

1
) 2 = 0.36451nm "z

197eVnm
V2x0.065%0.511x106eV0.063eV
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Ao =VZ| x4 — 2y + he + L (A.38)

JZMpcz(EO—UOO) JZMpcz(EO—U4)

197eVnm

V2x0.5%0.511x106eV1.592¢eV

1
197eVnm )_?

+
V2x0.5%0.511x106eV0.066eV

= \/E(Bnm +

1
= 0.68270nm 2.
With these coefficients, we obtain the higher level wave function (3.361),

E1-Uy
U3-Uq

= 0.36451 | 2227 p-0.32839(xo~10-x)
' 0.090

= 0.19965¢ ~0:32839(x0=10-x)

A, e—dz(x1—x)’ Xo—20<x<x3—10

0y () = Ajcos[ky(xg — x) + @4], X — 10 < x < xq (A.39)
= 0.36451c0s[0.21498(x, — x) — 1.1634]

EsUs ,ay (v-x0)
Up—Uq ’

= 0.36451 |22 ¢-0495200x-x0)
0.172

= 0.14442¢~0-49820(x~%0)

1 Xg S X < X,

and the lower level wave function (3.375),

Ay ﬂe—ao(xz—x)’ Xo < x < Xy
Uz2-Uoo
0.044 _ —_
= 0.68270 /—e #.5784(x2=%)
1.636

= 0.11196¢~*5784(27%)

o (x) = Agcoslky(x — x3) + @ol, X, Sx<x,+3 (A.40)
= 0.68270c0s[0.76115(x — x,) — 1.4061]

Ay [=E pmaar-xa) x;+3<x<x,+6
0\ U0, ’ 2 SX=X; )
= 0.68270 0-044'6—0.93222(96—:(2—3)
\/ 0.110

— 0.431786—0.93222(96—962—3)
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We distinguish the continuity coordinate values, for the higher level wave
function,

0.027

P1(xo — 10) = 0.36451 |2 = 0.36451c05(0.21498x10 — 1.1634) (A.41)
1
= 0.20nm 2
W1 (x0) = 0.36451 /% = 0.36451cos(—1.1634) (A.42)
1
= 0.1444nm 2

and for the lower level wave function,

0.044
1.636

Yo (x,) = 0.68270 = 0.68270cos(—1.4061) (A.43)

1
=0.1119nm 2

Wo(xs + 3) = 0.68270 /% = 0.68270c0s(0.76115x3 — 1.4061)  (A.44)

1
= 0.43nm 2

For simplicity, we considered the energy values with a precision of only 1mV, and
the distances with a precision of 0.1nm. As a result, these wave functions are
approximated with a precision of 3 significant figures around the limits x, and x,
of the internal barrier, and a lower precision of only 2 significant figures around
the limits of the separation barriers. This precision is sufficient for the evaluation
of the overlap function and dipole moment in the separation barrier. From (4.155),
we obtain the approximate value

n2eo(Uc—Up)  Xo—X1 _ X4=%;
eZN, 2 2 (A.45)
= 61.528 — 5.000 — 1.500 = 55.0nm.

For a narrower higher level potential well, x, — x; = 3.5nm, the sequence (A.12)
for the ground state energy of this well becomes

Xy —Xo =
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(B, — U), = h2c? 3 1972%eV?nm?
LoT0 T aM,c2(xg — x,)? 2%0.065%0.511x106eV3. 52nm?
= 0.047691eV
2
E,—U),= (E,—U t Yo B | vt Us — By
(E; 1= (B 1)o | arctan (B, — UD, arctan (E, — U,
2
= 0.047691eV t 0.145 + arct 0.063
= ' eviaretan 150a7691 " 2! [0.047691
= 0.17305eV
2
E,—U),= (E,—U t Yo B | vt Us — &
(E1 2= (£ 1)o | arctan (E, - Uy, arctan (E, — Uy,
2
= 0.047691eV t 0.145 + arct 0.063
= ' eviarean 517305 T A 1917305
= 0.078643eV

(E, —U)); = 0.13238eV
(E, —U)), = 0.95089eV
(E, —U))s = 0.11805eV,

which is
E, —U; =0.109eV. (A.46)
We obtain the potential of the higher level well,
U, =E; — (E; —U;) =0.055—-0.109 = —0.054eV, (A.47)
with the barriers
Uy —U; = 0.200 + 0.054 = 0.254eV (A.48)
U; —U; =0.118 + 0.054 = 0.172eV (A.49)

and the quantum dot density creating this well,

N, = M"—CZTln (1 + e_%)

mh2c?
0.065%0.511x10%0.026 0.054 A.50
= In [1 + exp (—)] ( )
71972nm?2 0.026

= 1.5547x107?nm™2 = 1.5547%x10'°m ™2,

With this quantum dot density, from (3.471) we obtain the potential of the lower
level well,
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nh?c?N,
U, = TIn [exp( Py ) — 1]
_ 719721.5547x102 (A.51)
n 0.026¢V1n [exp (0.5x0.511x1060.026) N 1]

= —0.028808eeV ~ —0.029¢eV.

with a height of the internal barrier

U, — Upy = —0.029 + 1.720 = 1.691eV. (A.52)

We consider a potential of the separation barrier (A.18),
U, =U, —0.05¢eV, (A.53)
and an effective height of this barrier (A.19),
E,—U, = 0.066eV. (A.54)

We select the width x, — x, = 2nm of the lower level potential well, and
calculate the ground state energy of this well

(U E ) _ h2c? _ 1972eV?nm?
2 070 ™ 2Mpc2(x4—x5)?  2x0.5%0.511x106eV22nm?
= 0.018987eV

2
U,—U Eo—U
(Uy —Ey); = (U, —Ep)p (arctan /ﬁ — 1+ arctan m>
2
= 0.018987eV (arctan 1691 1 + arctan 0.066 )
\/ 0.018987 \/ 0.018987

= 0.15611eV

2
Uz—U Eo-U
(Uz = Eo)2 = (Uz — Eo)o (arctan\/% + arctan —(UzO—E:h)
2
= 0.018987eV (arctan\/T_l+ arctan |-226° )
0.12278 ,f0_12278

= 0.10757eV
(U, — Ey)s = 0.11895eV
(U, — Ey), = 0.11600eV
(U, — Ep)s = 0.11674eV
(U, — Ep)g = 0.11655eV

(U, — Ey), = 0.11660eV,
(A.55)

which is

U, — E, = 0.117¢V. (A.56)
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With this value and (A.51), we obtain the quantum dot ground state energy

Ey=U,— (U, — E,) =—-0.029 — 0.117 = —0.146€V, (A.57)
and the effective height of the internal barrier,
Ey—Uyy = —0.146 + 1.720 = 1.574€V. (A.58)
From (A.4), we obtain the p-region potential
U, = E, — G + Z—:) T= —0146 — (3 + %) 0.026 = —0.16238¢V (A.59)
~ —0.162eV

With this potential, we obtain the potential of the separation barrier of the quantum
dot lower level well (A.53),

U,=U,—0.05=-0.162 - 0.05 = -0.212¢eV (A.60)
and the height of this barrier,
U, —U, =-0.029 + 0.212 = 0.183€V. (A.61)
From (A.1) and (A.59), , we obtain the effective resonance energy (A.5),
hwy =U.— U, =0.068 + 0.162 = 0.230eV. (A.62)

From (3.466), we obtain the acceptor concentration N,, with the potential U,, of
the p conduction region,

N, = N,eU»/T = 8,9x1018¢70162/0.026 = 1 7515x10°cm 3. (A.63)

With the expressions (3.343), (3.346), (3.344), (3.345), (3.347), and (3.348), with
(A.46), (A.56), (A.10), (A.11), (A.58) and (A.54), for the two quantum dot wave
functions we obtain the wave numbers,

1
k, = E\/ZMnCZ (E, = Uy (A.64)
ET:E PR 7 S XU. X 0. %106 ]
197eVnm\/2 0.065x0.511x10e170.109eV
= 0.43195nm 71,
1
ko = E\/ZMPCZ(UZ —Ey) (A.65)

r-rarr— 6
197eVnm‘/2X0-5X0-511X10 V0 117eV

= 1.2412nm™ 1,
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and the attenuation coefficients of in the potential barriers,

1
ay = 5o 2Myc? (Uo — i) (A.66)
T PR 7 S XU. X0. %106 ]
197eVnm\/z 0.065%0.511x106e/0.145¢V
— 0.49820nm™1
1
a3 = —\[2Myc?(Us — Ey) (A.67)
ET:E PR 7 S XU. X 0. %106 ]
197eVnm\/z 0.065%0.511x106e/0.063eV
— 0.32839nm™?
1
Qo = =[2M,c*(Eo — Ugo) (A.68)
ET:Y: P72 X0.0X%X0. %106 ]
197evnm‘/2 0.5%0.511x105eV1.574eV
= 4.5525nm™?
1
a, = E\/ZMpCZ(Eo -U,) (A.69)
EETY: P72 X0.0X%X0. %106 ]
197evnm‘/2 0.5%0.511x105eV0.066eV

=0.93222nm™1,

From (3.351) and (3.367), we obtain the phase constants of the two quantum dot
wave functions,

QL= —arctan% = —arctan (g':zzz) = —0.85650rad (A.70)
1 .

Qo = —arctan% = —arctan (i;ii) = —1.3046rad, (A.71)
0 .

while from (3.362) with (A.10) and (A.11), and from (3.376) with (A.58) and
(A.54), we obtain the amplitudes of these wave functions,

1
1 1\ 2
A1=ﬁ(x0—x1+a—1+a—3) 2 (A.72)
1
! )7 — 0.48358nm™2
0.4982nm—1 T 032839nm—1) nm

=2 (B.Snm +
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1

A0=\/§(x4—x2+aio+al4) 2 (A.73)
V2 (2 1 1 K 0.77940nm"3
= = 0. 2
( et et m 0.93222nm‘1> nm

From (4.155),

nZSO(UC_Uv)

Xy — Xg = 22N,
ARy — )t 4R LB LB
2 L2 as 202 Ug-Uy = 202 Us—U,
+ 1 (Uo—E1—(E1—U1) _ U3—E1—(E1—U1))] (A.74)
4k2 Up—U; Us—U; )
~B Ry m a4 e L Lahe y LUk
2 L2 ay 202 Up—Ugy = 2a2 Up—U,
+ 1 (Eo—Uoo—(Uz—Eo) _ Eo—U4—(U2—Eo))]
4k2 U,—Ugo Uy—U, ’
we obtain
__ 3.328.854x107'2¢cv~tm~10.230v10 " mnm?!
X2 = %0 = 1.6x10~19¢1.5547x10~2nm—2
0.483582 [3.52 3.5 1 0.109 1 0.109
“ 2 2 T 032839 2x0520254 ' 2x0.3320.172
1 0.145-0.109  0.063—0.109
4%0.4312 ( 0254 0172 )]
0.779632 [22 2 1 0117 1 0.117 AT5
T 2 |2 T 093222 2x4621.691 ' 2x0.9320.183 (A.75)

1 (1.574—0.117 0.066—0.117)]

4x1.2412 1.691 0.183
= 8.9151 — 2.2346 — 1.4267 = 5.2218nm
N2eo(Uc—Up)  Xo—=X1  X4—Xp
e?N, 2 2
~ 8.9151 — 1.75 — 1.000 = 6.1651nm.

Q
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Appendix B

Particle in a System of Oscillators

We consider a particle with a mass M, in a system of N harmonic oscillators of
mass M in the potential wells U, (#,), under the action of a time dependent
potential V(#,t). With the interaction potential YN_, V,,(# — 7,,) of this particle
with the oscillators, the Lagrangian of the total system is a follows

n=1
- Zg:l Vn(? - Fn) - 211\1[=1 Un(Fn)- (Bl)
We obtain the Lagrange equations as:
M = __V( t) — Xn=1 6* n(r rn) (B.2)
4 ]
M, = _EVn( rn) U (rn) = ( n) - U (rn) (B.3)

We also obtain an equation of motion for this particle with the coupled oscillator
system under the action of the potential V (7, t),

3 3 [3] N a -
M7+ 30, [ M7, + o UnG)| = —=VE D). (B.4)

It is interesting that we can reduce this equation for the total system, particle +
system of oscillators, to a dynamic equation only for the particle, by using a
simpler Lagrangian, with the kinetic energies induced by the two potentials of
interaction, V(#,t) and YN_, V,,(F — 7),

LD =57+ 5500 G =7 = VED — S WG - 7). (BS)
In this case, the Lagrange equation,
Ea_l'(? 7 t) = —L(r 1), (B.6)
is
(M + NM)F = M EN, F = —2V(FED - B =G = 7). (BT
With a symmetry condition of the oscillator distribution around the particle,
MIN_ 7 =0 (B.8)
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a - -
ﬁ:l E‘/n(r —1) =0,
for this particle we obtain an equation of motion
(M + NM)F = =SV, 1),

with an effective mass

Eliade Stefanescu

(B.9)

(B.10)

(B.11)
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