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4.3 BETA FRÉCHET . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 BETA MODIFIED WEIBULL . . . . . . . . . . . . . . . . . . 91
4.5 BETA BIRNBAUM-SAUNDERS . . . . . . . . . . . . . . . . 93
4.6 APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 The Kumaraswamy’s Generalized Family of Models 99
5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 PHYSICAL MOTIVATION . . . . . . . . . . . . . . . . . . . 101
5.3 SPECIAL Kw-G DISTRIBUTIONS . . . . . . . . . . . . . . . 102

5.3.1 Kw-Normal (KwN) . . . . . . . . . . . . . . . . . . . . 102
5.3.2 Kw-Weibull (KwW) . . . . . . . . . . . . . . . . . . . 102
5.3.3 Kw-Gamma (KwG) . . . . . . . . . . . . . . . . . . . . 102
5.3.4 Kw-Gumbel (KwGu) . . . . . . . . . . . . . . . . . . . 103
5.3.5 Kw-Inverse Gaussian (KwIG) . . . . . . . . . . . . . . 103
5.3.6 Kw-Chen (KwChen) . . . . . . . . . . . . . . . . . . . 104
5.3.7 Kw-XTG (KwXTG) . . . . . . . . . . . . . . . . . . . 104
5.3.8 Kw-Flexible Weibull (KwFW) . . . . . . . . . . . . . . 104

5.4 ASYMPTOTES AND SHAPES . . . . . . . . . . . . . . . . . 105
5.5 SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6 USEFUL EXPANSIONS . . . . . . . . . . . . . . . . . . . . . 106
5.7 MOMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.8 GENERATING FUNCTION . . . . . . . . . . . . . . . . . . . 108
5.9 MEAN DEVIATIONS . . . . . . . . . . . . . . . . . . . . . . 109
5.10 RELATION WITH THE BETA-G . . . . . . . . . . . . . . . 111
5.11 ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.12 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Special Kumaraswamy Generalized Models 115
6.1 KUMARASWAMY WEIBULL . . . . . . . . . . . . . . . . . 116

6.1.1 Linear Representation . . . . . . . . . . . . . . . . . . 117
6.1.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.3 Generating Function . . . . . . . . . . . . . . . . . . . 118
6.1.4 Maximum Likelihood Estimation . . . . . . . . . . . . 119
6.1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 KUMARASWAMY BURR XII . . . . . . . . . . . . . . . . . 122
6.2.1 Expansion for the Density Function . . . . . . . . . . . 124
6.2.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.3 Generating Function . . . . . . . . . . . . . . . . . . . 126
6.2.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2.5 Simulation Studies . . . . . . . . . . . . . . . . . . . . 130



6.2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 KUMARASWAMY GUMBEL . . . . . . . . . . . . . . . . . . 135

6.3.1 Distribution and Density Functions . . . . . . . . . . . 137
6.3.2 Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3.4 Generating Function . . . . . . . . . . . . . . . . . . . 139
6.3.5 Maximum Likelihood Estimation . . . . . . . . . . . . 141
6.3.6 Bootstrap Re-sampling Methods . . . . . . . . . . . . . 141
6.3.7 A Bayesian Analysis . . . . . . . . . . . . . . . . . . . 143
6.3.8 Application: Minimum Flow Data . . . . . . . . . . . . 144

6.4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 The Gamma-G Family of Distributions 149
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 SPECIAL GAMMA-G MODELS . . . . . . . . . . . . . . . . 150

7.2.1 The Gamma-Weibull Distribution . . . . . . . . . . . . 150
7.2.2 The Gamma-Normal Distribution . . . . . . . . . . . . 151
7.2.3 The Gamma-Gumbel Distribution . . . . . . . . . . . . 151
7.2.4 The Gamma-lognormal Distribution . . . . . . . . . . . 152
7.2.5 The Gamma-log-logistic Distribution . . . . . . . . . . 152

7.3 LINEAR REPRESENTATIONS . . . . . . . . . . . . . . . . . 153
7.4 ASYMPTOTES and SHAPES . . . . . . . . . . . . . . . . . . 153
7.5 QUANTILE FUNCTION . . . . . . . . . . . . . . . . . . . . 155
7.6 MOMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.7 GENERATING FUNCTION . . . . . . . . . . . . . . . . . . . 158
7.8 MEAN DEVIATIONS . . . . . . . . . . . . . . . . . . . . . . 159
7.9 ENTROPIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.10 ORDER STATISTICS . . . . . . . . . . . . . . . . . . . . . . 163
7.11 LIKELIHOOD ESTIMATION . . . . . . . . . . . . . . . . . . 164
7.12 A BIVARIATE GENERALIZATION . . . . . . . . . . . . . . 166
7.13 APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.14 THE RISTIĆ AND BALAKRISHNAN FAMILY . . . . . . . . 169
7.15 ESTIMATION AND APPLICATION . . . . . . . . . . . . . . 172
7.16 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 175

8 Recent Compounding Models 178
8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 178
8.2 QUANTILE FUNCTION . . . . . . . . . . . . . . . . . . . . 187
8.3 USEFUL EXPANSIONS . . . . . . . . . . . . . . . . . . . . . 187
8.4 OTHER QUANTITIES . . . . . . . . . . . . . . . . . . . . . 190
8.5 ORDER STATISTICS . . . . . . . . . . . . . . . . . . . . . . 192



8.6 ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.7 APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.8 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 198

9 Conclusions and Recent Advances 200

SUBJECT INDEX  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   ��223

BIBLIOGRAPHY   ....................................................................................................................................   204



Foreword

This book is, as far as I have gathered, the first book of its kind. The
authors should be commended for spending countless hours researching the
literature and explaining in details the connections between many different
distributions published during the past decades. I believe there will be so
many grateful researchers and readers who will have a broad perspective of
all the interesting distributions presented in this manuscript. This book can
serve as a foundation for those who are seriously interested in doing research
in the field of distribution theory. The content of the book deals with a
comprehensive treatment of methods for lifetime models, which has many
practical applications in various fields. It seems to me, if one wants to do
literature review of the published work in this area, all one needs to do is
get hold of a copy of this book. In my opinion, this book is destined to be
an extremely important source for motivating the younger researches in the
field of distribution theory, in particular lifetime models. This captivated book
represents a complete account of important distributions, their properties and
their applications in various fields of applied sciences. I am sure that this book
will serve as a unique and excellent source of information in the overall field
of statistics and probability for many years to come. I admire the effort of the
authors to come up with such a fantastic work.

G.G. Hamedani
Marquette University

Milwaukee, Wisconsin
USA
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Preface

The theory of distributions with support in the positive real numbers has grown
and matured in the last two decades, becoming one of the main statistical
tools for the analysis of lifetime (survival) data. In fact, in many ways,
lifetime distributions are the common language of survival dialogue because the
framework subsumes many statistical properties of interest, such as reliability,
entropy and maximum likelihood.
This book provides a comprehensive account of models and methods for lifetime
models. Building from primary definitions such as density and hazard rate
functions, the book presents the distribution theory in survival analysis. This
framework covers classical methods, such as the exponentiated method, and
also the most recent developments in lifetime distributions, such as the beta
family and compounding models. Additionally, there is a detailed discussion
of mathematical and statistical properties of each family, such as mixture
representations, asymptotes, some types of moments, order statistics, quantile
and generating functions and estimation. There is also a brief exploration of
regression models for the beta generalized family of distributions. Throughout
the text, we focus not only on the theoretical arguments but also on issues that
arise in implementing the statistical methods in practice. The most recent
parametric models in lifetime data analysis are covered without concentrating
exclusively on any specific field of application, and most of the examples are
drawn from engineering and biomedical sciences. It is important to emphasize
that even with omission of some models, the great amount of models available
has forced us to be very selective for inclusion in this work. To keep the book
at a reasonable length we have had to omit or merely outline certain models
that might have been included.
To help readers, lists of notation, terminology, and some probability distribu-
tions are given at the beginning of the book. All notational conventions are the
same or very similar to the articles from which the models are based. Readers
are assumed to have a good knowledge in advanced calculus. A course in real
analysis is also recommended. If this book is used with a statistics textbook
that does not include probability theory, then knowledge in probability theory
is required.
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The main five generators of new distributions are grouped into seven sections
corresponding to those to which they give names. Chapter 1 contains introduc-
tory material with mathematical and statistical background for understanding
this book. Chapter 2 deals with the exponentiated method. Explicit expres-
sions for the quantile function, ordinary and incomplete moments, probabili-
ty weighted moments, cumulants and generating functions are presented for
the exponentiated-G family. Chapter 3 discusses the procedure that gene-
rates what we call the beta generalized family. Further, useful expansions
and several statistical properties are presented. Chapter 4 provides theoreti-
cal essays about five special models in the beta family. For each model, its
cumulative, density and hazard rate functions have explicit forms and impor-
tant linear representations, which can be used to obtain some mathematical
properties. Two applications are performed in order to illustrate the flexibili-
ty of the densities under discussion. Chapter 5 introduces the Kumaraswamy
generalized family. In addition, several structural properties are presented
and discussed for this family. Among them, useful expansions, quantile and
generating functions, moments and mean deviations. Additionally, estimation
and generation procedures are investigated. Chapter 6 presents three special
cases of the Kumaraswamy generalized family. Some mathematical properties
are provided such as the moments and generating function. Useful expansions
for the density function and some special cases are presented. Chapter 7
discusses the gamma generalized family proposed by Zografos and Balakrishnan
(2009). Several mathematical properties are provided such as expansions for
the density and cumulative functions, quantile function, moments, generating
function and entropies. A bivariate generalization is presented. Chapter 8
introduces a family of models defined by compounding two (a continuous and
other discrete) distributions. We provide important mathematical properties
such as moments and order statistics. We discuss the estimation of the model
parameters by maximum likelihood and prove empirically the potentiality of
the family by means of two applications to real data.

Readership

We hope that this book inspires students that make extensive use of ob-
servational data, including finance, medicine, biology, sociology, education,
psychology, engineering and climatology. Further, we hope that our readers
come to regard this book as a reliable source of information and we gladly
welcome all efforts to bring any remaining errors to our attention.
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Abraão D.C. Nascimento
Universidade Federal de Pernambuco, Brazil

iv



Nomenclature

ACRONYMS

AIC Akaike Information Criterion
BBIII the beta Burr III distribution
BBS the beta Birnbaum-Saunders distribution
BBXII the beta Burr XII distribution
BC Bonferroni curve
BE the beta exponential distribution
BFr the beta Fréchet distribution
BFGS the Broyden-Fletcher-Goldfarb-Shanno

optimization method
BG the beta-G family of distributions
BGE the beta generalized exponential distribution
BHC the beta half-Cauchy distribution
BI Bonferroni index
BIC Bayesian Information Criterion
BLa the beta Laplace distribution
BLN the beta lognormal distribution
BMW the beta modified Weibull distribution
BN the beta normal distribution
BPa the beta Pareto distribution
BSL the beta standard logistic distribution
BSPS the Birbaum-Saunders power series distributions
BW the beta Weibull distribution
BWG the beta Weibull geometric distribution
BXIIPS the Burr XII power series distributions
CAIC Consistent Akaike Information Criterion
cdf cumulative distribution function
cf characteristic function
cgf cumulant generating function
chf cumulative hazard function
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cmgf central moment generating function
EE the exponentiated exponential distribution
EFr the exponentiated Fréchet distribution
EG the exponentiated gamma distribution
EGu the exponentiated Gumbel distribution
EM expectation maximization
EV the extreme value distribution
exp-G the exponentiated-G class of distributions
EW the exponentiated Weibull distribution
EWPS the extended Weibull power series distributions
GE the generalized exponential distribution
GI Gini index
GoF Goodness-of-Fit
GW the generalized Weibull distribution
hrf hazard rate function
KS Kolmogorov Smirnov Statistic
LBBS the log-beta Birnbaum-Saunders distribution
LBW the log-beta Weibull distribution
LC Lorenz curve
log-BW the log-beta-Weibull distribution
LW the log-Weibull distribution
mgf moment generating function
MixEW the mixture of Weibull distributions
MLE maximum likelihood estimate
mrlf mean residual life function
pdf probability density function
PWM probability weighted moment
rhrf reversed hazard rate function
sf survival function
1-MEW the first modified Weibull distribution
2-MEW the second modified Weibull distribution
3-MEW the third modified Weibull distribution

NOTATIONS

h•(·), h(·), h(·; ·) hrf
S•(·), S(·) sf
H•(·), H(·) chf
m(·) mrlf
T, Y,X, T ∗ Random variables (specifically, T

describes failure time)
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θ,β parameters vectors
L(θ) likelihood function
`(θ) log-likelihood function
K(θ) Fisher’s information matrix
I(θ) observed information matrix
∼a to be asymptotically distributed
U index sets for uncensored data
C index sets for censored data
k(·, ·) link function
h0(·) baseline hrf
S0(·) baseline sf
Γ(·) gamma function
ψ(n)(·), ψ(·) polygamma and digamma functions
γ, C Euler-Mascheroni constant
Γ(·, ·), γ(·, ·) incomplete gamma functions
Γ1(·, ·), γ1(·, ·) regularized incomplete gamma

functions
M(·, ·, ·) Kummer’s first kind confluent

hypergeometric function
U(·, ·, ·) Kummer’s second kind confluent

hypergeometric function
N(µ, σ2) the normal (Gaussian) distribution

with mean µ and variance σ2

Φ(·) standard normal cdf
φ(·) standard normal pdf
erf(·), erfc(·) error function amd its counterpart
B(·, ·), Bx(·, ·) beta and incomplete beta functions
IX(·, ·) beta cdf
η(·) Riemann’s zeta function
F (·, ·; ·, ·), 2F1(·, ·; ·, ·) confluent hypergeometric function
(z)n Pochhammer polynomial
Gm,n
p,q (·) the Meijer G-function

Jτ (x) Bessel function of the first kind

F
(n)
A (·; ·; ·; ·) Lauricella function of type A
FA:B
C:D (·; ·; ·) generalized Kampé de Fériet function

pΨq complex parameter Wright generalized
hypergeometric function

(Ω,F , P ) probability space
µ′k, µk, µ

′
(k) kth moment on zero, kth central

moment and descending factorial
moment
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γ1, γ2 skewness and kurtosis
MX(t), KX(t) mgf and cgf
κk kth cumulant
φX(t) cf
τk,l PWM
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Chapter 1

Introduction

Abstract: This chapter presents mathematical and statistical background
for understanding this book. Some results and formulae presented in this
chapter are revisited in the next chapters. Initially, important survival
analysis concepts are defined and issues with respect to inference and statistical
methods. Subsequently, several special functions are presented. The chapter
ends with some discussions on statistical elements that will be used in the rest
of the book.

Keywords:: Censoring data; Inference; Mathematical functions; Statistical
functions; Survival functions; Survival regression.

Lifetime statistical analysis is an important subject in applied areas like bio-
medical science, engineering, reliability, social sciences and several others.
Typically, the term lifetime or failure can have different interpretations. Ac-
cording to Lai (2011) [1], it can represent:

• the human life age [2],

• the time operation of an equipment to fail [3],

• the survival time of a patient with a serious disease from the date of
diagnosis [4],

• the time to first recurrence of a tumor (i.e., length of remission) after
initial treatment or

• the duration of a social event such as marriage [2].

In above practical occurrences, a failure can not be computed either by an
imposed contextual criterion or due to a stochastic censoring. For instance, it
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can be seen whereas a patient does not die during a clinical treatment period
or if he (or she) leaves the trial process. Thus, the proposal of analysis methods
that incorporate censoring as well as procedures for failure time data has been
sought. Survival analysis is the set of statistical procedures able to describe
time-to-event censored data. An important step to deal with survival data
consists at proposing more flexible models, which furnish a good representation
for both nature of data and the shape of its empirical distribution. This book
presents a comprehensive mathematical treatment about the main classes of
distributions for describing lifetime data.
New distributions often result from a modification of a baseline random vari-
able X by (i) linear transformation, (ii) power transformation (e.g. the Weibull
is obtained from the exponential), (iii) non-linear transformation (e.g. the log-
normal from the normal), (iv) log transformation (e.g. the log Weibull, also
known as the type 1 extreme value distribution), and (v) inverse transforma-
tion (e.g. the inverse Weibull and inverse gamma models). In what follows,
we present two simple transformations for generating new models.

POWER TRANSFORMATION

Consider G(x) be the original cumulative distribution function (cdf) and F (x)
be the cdf of a new ageing distribution derived from Y ∼ G by exponentiating
as follows:

F (t) = G(t)α : Using such power transformation, one can deduce the general-

ized modified Weibull distribution proposed by Carrasco et al. (2008) [5],
the exponentiated Erlang distribution by Lai (2010) [6] and the expo-
nentiated Weibull by Mudholkar and Srivastava (1993) [7].

F (t) = 1 − { 1 − G(t) }β : The Lomax model can be formulated from the

Pareto distribution in this way.

MIXTURE OF DISTRIBUTIONS

New models are often obtained from mixtures of two or more distributions.
Let π be the mixing proportion of two cdfs F1(t) and F2(t). The cdf F (t)
resulting from mixture between the two cdfs is

F (t) = π F1(t) + (1− π)F2(t).

In this book, we present the formalisms of five new classes or generators of
distributions, which have been used for describing high complexity data; in
particular, for the survival analysis context. The background for understan-
ding class concepts and associated applications is presented in the rest of this
chapter.



1.1. PRIMARY DEFINITIONS

Let T ≥ 0 denote the lifetime random variable having fT (t) and FT (t) =∫ t
0
fT (x) dx as probability density function (pdf) and cdf, respectively. In this

book, we consider that T is an absolutely continuous random variable (for
a discussion on discrete lifetime models, see Lawless (1982, p. 10) [8]). In
this case, S(t) = F̄T (t) = 1 − FT (t) =

∫∞
t

fT (x) dx is defined as reliability or
survival function (sf). It is obvious that S(t) is a monotone decreasing function
with S(0) = 1 and S(∞) = limt→∞ S(t) = 0. The pdf can be expressed in
terms of S(t) as

fT (t) = lim
∆t→0+

P (t ≤ T < t+ ∆t)

∆t
=

dFT (t)

dt
= −dS(t)

dt
.

An important concept is the hazard rate function (hrf) defined as

hT (t) = lim
∆t→0+

P (t ≤ T < t+ ∆t | T ≥ t)

∆t
=

fT (t)

1 − FT (t)
=

fT (t)

S(t)
(1.1)

and, therefore, “hT (t) ∆t” returns the probability of failure in (t, t+ ∆t] given
the “unit” has survived until time t. The hrf is also referred to as the risk
or mortality rate. The functions F̄T (·) and hT (·) are also called as ageing
measures. There are several other measures of ageing, but we discuss the
hazard and survival functions because they are the major ones in reliability
practice. Further, we have

hT (t) = −dS(t)/dt

S(t)
= −d log[S(t)]

dt

and, therefore, the cumulative hazard function (chf), HT (t), is

HT (t) =

∫ t

0

hT (u) du = − log[S(t)]

⇔ S(t) = exp [−HT (t)] = exp

[
−
∫ t

0

hT (u) du

]
.

Thus, the pdf of T can be expressed from (1.1) as

fT (t) = hT (t) exp

[
−
∫ t

0

hT (u) du

]
.

Moreover, from probability basic results for non-negative random variables,
one has that E(T ) =

∫∞
0

S(t) dt, i.e., the mean survival time is the total
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Chapter 2

Exponentiated Models

Abstract: The exponentiation transform of cumulative distributions can
furnish more flexible models. Such procedure generates the exponentiated
G (exp-G) distributions. This chapter presents a survey on the exp-G models
and its mathematical properties. In particular, explicit expressions for the
quantile function, ordinary and incomplete moments, generating function,
income measures, order statistics and entropies are addressed.

Keywords:: Exponentiated model; Generating function; Hazard function;
Moment; Weibull distribution.

2.1. INTRODUCTION

Let G(x) and g(x) be the cdf and pdf, respectively, of a known random variable
(say, a baseline model). A random variable X is said to have the exponentiated-
G (“exp-G” for short) class if its cdf and pdf are

F (x) = G(x)α, for x ∈ D ⊂ R (2.1)

and
f(x) = α g(x)G(x)α−1, (2.2)
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The proposal of more flexible distributions is an activity often required in
practical contexts. In particular, adding a positive real parameter (say α > 0)
to a cdf G(x) by exponentiation gives a cdf G(x)α that can provide interesting
mathematical properties and better fits to data sets in different contexts. Sev-
eral works have provided evidence that such class covers both monotonic and
non-monotonic hazard rates [25, 26]. Despite simplicity of the approached
transformation, the resulting distribution is richer than the baseline G(x).
Thus, a tailored treatment for this transformation is required.



respectively. We omit the parametric elements for simplicity. This model
is denoted by X ∼ exp-G(θ), where θ = (α, δ> )> ∈ Θ ⊂ Rp+1, > is
the transposition operator, α represents the additional parameter, Θ is the
parametric space of the generated exp-G distribution and δ is the p-dimensional
vector of parameters of the baseline distribution. As one of its properties,
the exp-G class can be understood as the proportional reversed hazard rate
model. In summary, the reversed hazard rate function (rhrf) is the probabi-
lity of observing an outcome within a neighborhood of x, conditional on the
outcome being no more than x, and it is defined (for any baseline model) by
λG(x) = d{log[G(x)]}/dx = g(x)/G(x) [27, 28]. Thus, the exp-G rhrf is

λF (x) =
α g(x)G(x)α−1

G(x)α
= αλG(x),

i.e., the rhrf of the exp-G class is a proportional rhrf. Models which satisfy this
characteristic have been sought in the lifetime data analysis literature [29, 30].
An important aspect is that the class determined by (2.1) and (2.2) under
α ∈ N was pioneered by Lehmann (1953) [31], called initially by Lehmann
alternative type I. The physical interpretation of the additional parameter of
the exp-G class is discussed as follows:

• F (x) = G(x) for α = 1;

• For α = n ∈ N, F (x) represents the cdf of the maximum value defined
on a n-variate random sample from Y ∼ G, say {Y1, . . . , Yn}:

X(n) = max{Y1, . . . , Yn}.
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The subsequent discussion emphasizes the importance of exp-G distributions.
Consider a biological situation, on which corrupted cells are battling to provide
observable tumours. Set Xj, j = 1, . . . , N , as the time for the jth corrupted
cell to become in a observable tumour (promotion time), where N means
the latent number of corrupted cells which may furnish the interest event.
Admit N having probability mass function (pmf) given by pn = Pr(N = n)
for n = 0, 1, . . . Let AN(s) =

∑∞
n=0 pns

n be the corresponding probability
generating function (pgf) for 0 < s < 1, and p0 the cure rate. Conditional on
N , assume that the Xj’s are independent random variables having a common
baseline pdf g(x) and survival function S(x) = 1 − G(x). Given N = n
and the lifetime T = t, let Zj, j = 1, . . . , n, be independent random variables,
independently of N , following a Bernoulli distribution with success probability
G(t) indicating the presence of the jth competing cause at time t. Further,
we consider that the population is divided into two sub-populations of cured



fT (t) =
g(t)

1− p0

{
dAN(s)

ds

∣∣∣∣
s=S(t)

}
.

The corresponding hrf is

hT (t) =
g(t)

AN (S(t))− p0

{
dAN(s)

ds

∣∣∣∣
s=S(t)

}
.

2.2. SPECIAL CASES

In this section, we discuss some special cases of the exp-G class. As the
first case, Gupta et al. [37] pioneered the exponentiated exponential (EE)
distribution as a generalization of the standard exponential distribution. Its
two parameters represent the shape and the scale parameters as those cases of
the classical gamma and Weibull distributions. The mathematical properties
of the EE distribution were studied by Nadarajah and Kotz [41] and also by
Gupta and Kundu [42]. Several papers have addressed other properties: see
Gupta and Kundu (2001a, 2001b, 2007) [38, 43, 44], Raqab and Ahsanullah
(2001) [45], Raqab (2002) [46], Sarhan (2007) [47], Abdel-Hamid and Al-
Hussaini (2009) [48], and Aslam et al. (2010) [49]. Four special cases of the
exponentiated distributions are discussed in Nadarajah and Kotz (2006) [41]:

28   Recent Advances in Lifetime and Reliability Models Cordeiro et al.

and non-cured patients defined by: Ut = 1 if Z1 + · · · + ZN = 1 and Ut = 0
if Z1 + · · · + ZN = 0, where Pr(Ut = 1) = 1 − p0. Let T be a non-negative
lifetime random variable and X the promotion time with pdf g(x). Define the
distribution of T as the conditional distribution of X, given Ut = 1. Under
this set up, Rodrigues et al. (2011) [32] demonstrated that the pdf of T is
given by

The class of distributions specified by the pdf fT (t) is quite broad. It con-
tains as special cases either exp-G distributions or generalizations from them.
For example, the generalized exponential Poisson (Barreto-Souza and Cribari-
Neto, 2009 [33]), Lehmann alternatives, Weibull-geometric (Barreto-Souza et
al., 2010 [34]), exponentiated Weibull (EW) [25], generalized modified Weibull
(Carrasco et al., 2008a [5]) and exponential power series (Chahkandi and Gan-
jali, 2009 [35]) distributions. The properties of the exponentiated distributions
were widely discussed in the last years, see Mudholkar and Srivastava (1993) [7]
and Mudholkar et al. (1995) [36] for exponentiated Weibull, Gupta et al.
(1998) [37] and Gupta and Kundu (2001) [38] for exponentiated exponential,
Nadarajah and Gupta (2007) [39] for exponentiated gamma, Carrasco et al.
(2008) [5] for exponentiated modified Weibull and Cordeiro et al. (2011) [40]
for exponentiated generalized gamma distribution.



Chapter 3

Beta Generalized Models

Abstract: The beta transformation gives a great variety of shapes which
allow to model symmetric, skewed and bimodal shaped densities. Such
procedure generates what we call the beta generalized (beta-G) family of
distributions. This chapter presents a survey on the beta-G models and
their mathematical properties. We present some explicit expressions for the
ordinary and incomplete moments, probability weighted moments, cumulants
and generating function, mean deviations, entropies and order statistics.

Keywords:: Beta-G model; Entropy; Mean deviation; Moment; Probability
weighted moment; Regression model.

3.1. INTRODUCTION

In the last years, several BG models have been proposed in this family, mostly
by statisticians in Brazil. This family has the major benefit for fitting skewed
data that can not be fitted by most well-known continuous distributions.
Starting from a baseline cdf G(x; τ ), where τ indicates the parameters of
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Several distributions have been employed in order to perform inference on
populational properties from one or more observed samples. Choosing the
model which should be adopted to test hypothesis about the data is a crucial
step in statistical data analysis. In this chapter, the beta-G (“BG”) family of
distributions proposed by Eugene et al. (2002) [101] is studied in details.
This family includes nearly all of well-known models as special or limiting cases
such as those exponentiated distributions. Further, it can give lighter tails and
heavier tails and be applied in some areas such as engineering and biological
research, among others. Explicit expressions are reported, which facilitate to
obtain several mathematical properties of this family.



the cdf G(·), Eugene et al. (2002) [100] defined the BG family by the cdf (for
x ∈ IR)

F (x; a, b, τ ) = IG(x;τ )(a, b) =
1

B(a, b)

∫ G(x;τ )

0

ωa−1(1− ω)b−1dω, (3.1)

where a > 0 and b > 0 are shape parameters, Iy(a, b) = By(a, b)/B(a, b)
is the incomplete beta function ratio, By(a, b) =

∫ y
0
ωa−1(1 − ω)b−1dω is the

incomplete beta function, B(a, b) = Γ(a)Γ(b)/Γ(a+b) is the beta function and
Γ(a) =

∫∞
0
ωa−1e−ωdω is the gamma function. If G(x; τ ) = x for x ∈ (0, 1),

we obtain the beta distribution. The pdf associated with (3.1) can be written
as (for x ∈ IR)

f(x; a, b, τ ) =
1

B(a, b)
g(x; τ )G(x; τ )a−1[1−G(x; τ )]b−1, (3.2)

where g(x; τ ) = dG(x; τ )/dx is the baseline pdf. The manageability of f(x; a, b,
τ ) is linked with the forms of G(x; τ ) and g(x; τ ). In fact, depending on the
complexity of these functions, we can take considerable time and effort to work
with the density (3.2) in generality.
If G has the support in IR+, the BG hrf has the form

h(x; a, b, τ ) =
g(x; τ )G(x; τ )a−1 [1−G(x; τ )]b−1

B (a, b) [1− IG(x;τ )(a, b)]
.

We use G(x) instead of G(x; τ ), g(x) instead of g(x; τ ), F (x) instead of
F (x; a, b, τ ), etc, to simplify the notation.
Throughout this chapter, the random variable X having density function
(3.2) is denoted by X ∼ BG(a, b, τ ). It can be expressed by the stochastic
representation X = Q(U) = F−1(U), where U ∼ Beta(a, b) and Q(·) is the
inverse function of (3.1). Further, we can write (3.1) in terms of the Gaussian
hypergeometric function (Gradshteyn and Ryzhik, 2000; Section 9.1 [11]). The
properties of this function are well-known. We have

F (x) =
G(x)

aB(a, b)
2F1(a, 1− b; a+ 1;G(x)), x ∈ IR,

where

2F1(a, b; c; z) =
Γ(c)

Γ(a) Γ(b)

∞∑
j=0

Γ(a+ j) Γ(b+ j)

Γ(c+ j)

zj

j!
.

One important special model of the BG family is the exp-G class, discussed
in Chapter 2, which arises when b = 1 in (3.2). The BG family received great
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consideration in the last years, after the proposals of Eugene et al. (2002) [100]

The first distribution of the BG class was the BN model (Eugene et al.,
2002 [100]). Denote the standard normal cdf and pdf by Φ(·) and φ(·), respec-
tively. Let X = Φ−1(U), where U ∼ Beta(a, b). Then, X has a standard BN
distribution, say BN(a, b, 0, 1), if its pdf has the form

f(x; a, b, 0, 1) =
1

B(a, b)
φ(x) Φ(x)a−1 [1− Φ(x)]b−1, x ∈ IR.

The skewness and kurtosis of X usually depend on the extra parameters a
and b, see Table 3.1. Eugene et al. (2002) evaluated the first four cumulants
of X with µ = 0 and σ2 = 1 for some values of these parameters between
0.05 and 100. The skewness of X is in the interval (−1, 1) and the largest
kurtosis value is 4.1825 for a = 100 and b = 0.1. If X ∼ BN(a, b, 0, 1), then
Y = σX + µ ∼ BN(a, b, µ, σ) has the non-standard BN distribution with
parent N(µ, σ2).

Gupta and Nadarajah (2006) [106] introduced the beta Bessel distribution
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and Jones (2004) [102]. After these seminal works, many extended models
were introduced and studied. Gupta and Nadarajah (2004) [103] determined a
more general formula for the nth moment of the beta normal (BN) distribution.
Razzaghi (2009) [104] adopted the BN distribution for risk assessment and
to model dose-response, where the BN properties are discussed and the risk
estimates are based upon the asymptotic properties of the MLEs. Recently,
Rêgo et al. (2012) [105] furnished a better treatment for the BN distribution,
derivingseveral of its properties and a detailed discussion on its bimodality.
They derived a power series for the qf to obtain computable expressions for the
moments, generating function and mean deviations. Further, the BN law has
been employed successfully to synthetic aperture radar imagery processing;
see Cintra et al. (2012) [106]. fgumbelThese authors proposed the beta gener-
alized normal distribution by compounding the beta and generalized normal
distributions.

New distributions in the BG family were investigated in the last ten years.
Some of them are now described in the order they were published. The beta
Fréchet (BFr) distribution follows from the Fréchet cdf G(x). It was defined
by Nadarajah and Gupta (2004) [103], who studied analytically its density
and hrf as well as the limit distribution of the order statistics. Nadarajah and
Kotz (2004) [41] proposed the beta Gumbel distribution from the Gumbel cdf
G(x) and yielded expressions for its moments and the asymptotic distribution
of the order statistics. A generalization of the Weibull model called the beta
Weibull (BW) distribution was presented by Famoye et al. (2005) [80].



Chapter 4

Special Generalized Beta
Models

Abstract: In this chapter, we provide theoretical essays about five special
models in the beta family. For each model, its cdf, pdf and hrf have explicit
forms, which can be utilized for determining some mathematical properties.
Two applications are performed in order to illustrate the flexibility of the
densities under discussion.

Keywords:: BBS; Beta-G model; BF; BGE; BMW; BW; Moment.

This chapter includes a discussion about five special beta models: beta genera-
lized exponential, beta Weibull, beta Fréchet, beta modified Weibull and beta
Birnbaum-Saunders distributions. Two applications to real data with positive
support emphasize the flexibility of these five models.

4.1. BETA GENERALIZED EXPONENTIAL

As mentioned in Chapter 2, a random variable T is said to have the generalized
exponential (GE) distribution if its cdf and pdf are

G(x;λ, α) = (1− e−λx)α and g(x;λ, α) = αλ e−λx(1− e−λx)α−1, (4.1)

respectively. The shape (α > 0) and scale (λ > 0) parameters of the GE
distribution are similar to those of the gamma and Weibull distributions.

The distribution (4.1) is also named the exponentiated exponential (EE) dis-
tribution. Note that the exponential distribution is a special case of the GE
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distribution when α = 1.

The four-parameter beta generalized exponential (BGE) distribution is defined
by taking G(x) in equation (4.1) as the baseline cdf in (3.1). Thus, a random
variable X is said to have the BGE distribution if its cdf and pdf are (for
x > 0)

F (x; a, b, λ, α) = I(1−e−λx)α(a, b) (4.2)

and

f(x; a, b, λ, α) =
αλ

B(a, b)
e−λx(1− e−λx)αa−1

{
1− (1− e−λx)α

}b−1
, (4.3)

respectively, for a, b, λ, α > 0. The corresponding hrf becomes

τ(x;λ, α) =
αλe−λx(1− e−λx)αa−1

{
1− (1− e−λx)α

}b−1

B(a, b)[1− I(1−e−λx)α(a, b)]
. (4.4)

Note that the pdf (4.3) does not involve any complicated function. If X is
a random variable with pdf (4.3), we write X ∼ BGE(a, b, λ, α). The BGE
distribution generalizes some well-known distributions in the literature. The
GE distribution is a special case when a = b = 1. For α = 1, we obtain
the exponential distribution with parameter λ. The BE distribution follows
from (4.2) when α = 1. The hrf (4.4) can be bathtub shaped, monotonically
increasing or decreasing and upside-down bathtub depending on the parameter
selection.
There are two simple formulae for the cdf of the BGE distribution depending
if the parameter b > 0 is real non-integer or integer. Note that, if |z| < 1 and
b > 0 is real non-integer, we have

(1− z)b−1 =
∞∑
j=0

(−1)jΓ(b)

Γ(b− j)j!
zj, (4.5)

where Γ(·) is the gamma function. Using the expansion (4.5) in (4.2), the cdf
of the BGE distribution when b > 0 is real non-integer follows as

F (x; a, b, α, λ) =
Γ(b)

B(a, b)

∞∑
j=0

(−1)j

Γ(b− j)j!

∫ (1−e−λx)α

0

ωa+j−1dω

=
Γ(a+ b)

Γ(a)

∞∑
j=0

(−1)jG(x;λ, α (a+ j))α (a+j)

Γ(b− j)j!(a+ j)

=
∞∑
j=0

wj G(x;λ, α (a+ j))α (a+j), (4.6)
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where wj = (−1)jΓ(a + b)[(a + j) Γ(a) Γ(b − j) j!]−1. Equation (4.6) reveals
that the cdf of the BGE distribution can be expressed as an infinite weighted
sum of cdfs of GE distributions. The BE cdf follows with α = 1 from (4.6).
The cdf of the double generalized exponential (DGE) distribution follows from
(4.6) when a = 1.
By differentiating (4.6), the density function (4.3) can be expressed as a linear
combination of the GE pdfs

f(x; a, b, λ, α) =
∞∑
j=0

wj f
∗(x;λ, α (a+ j)),

4.2. BETA WEIBULL

A random variable T is said to have the Weibull distribution if its cdf and pdf
are

G(x;α, β) = 1− e−(βx)α and g(x;α, β) = αβαxα−1e−(βx)α , x > 0,

respectively. The four-parameter beta Weibull (BW) cdf is defined by inserting
the above G(x;α, β) in equation (3.1). Thus, a random variable X is said to
have the BW distribution if its cdf and pdf are (for x > 0)

F (x; a, b, α, β) = I1−exp{−(βx)α}(a, b) (4.7)

and

f(x; a, b, α, β) =
αβα

B(a, b)
xα−1 exp {−b (βx)α} [1− exp {−(βx)α}]a−1, (4.8)

respectively, for a > 0, b > 0, β > 0 and α > 0. The associated hrf is

τ(x; a, b, α, β) =
αβα exp {−b (βx)α} [1− exp {−(βx)α}]a−1

B(a, b)I1−exp{−(βx)α}(a, b)
.

If X is a random variable with pdf (4.8), we write X ∼ BW (a, b, α, β). The
BW distribution contains as special case the EW distribution when b = 1.
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where f ∗(x;λ, α (a + j)) = α(a + j) g(x;λ, α (a + j))G(x;λ, α (a + j))α(a+j)−1

is the GE density function corresponding to the cdf G(x;λ, α (a+ j))α(a+j) in
equation (4.6). Thus, the BGE distribution has the advantage that some of
its mathematical properties can be directly obtained from the corresponding
properties of the GE distribution, such as those explored in Sections 3.5 and
3.8.



Chapter 5

The Kumaraswamy’s
Generalized Family of Models

Abstract:
This chapter addresses the Kumaraswamy’s generalized (“Kw-G” for short)
family of models. A physical motivation for the Kw-G family is presented
and some of its special cases are discussed in detail. This family receives
a baseline distribution as input and returns a new distribution with two
additional parameters. The returned model is often more flexible than the
baseline one. Several structural properties are presented and discussed for
the Kw-G family. Among them, useful expansions, mgf, moments and mean
deviations. Additionally, estimation and generation procedures are presented.

Keywords:: Asymptotes; Kw-G Model; Moment; Physical Motivation;
Shapes.

5.1. INTRODUCTION

π(x) = a b xa−1(1− xa)b−1 and Π(x) = 1− (1− xa)b. (5.1)
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In life testing experiments, the data can be modeled by a wide range of dis-
tributions. Kumaraswamy (1980) [162] pioneered a distribution for double
bounded random processes with applications in hydrology. In addition to the
hydrological context, the Kumaraswamy (Kw) model has been adopted in re-
lated areas, such as reservoir operations and design, see, for example, Fletcher
and Ponnambalam (1996) [163] and Seifi et al. (2000) [164].
The pdf and cdf of the Kw distribution with two shape parameters a > 0 and
b > 0 in the interval (0, 1) are, respectively,



The density function (5.1) has several properties similar to those of the beta
distribution but has some advantages in terms of tractability.
The Kw distribution is not widely known, although Jones (2009) [164] pointed
out some differences and similarities with the beta distribution. For example,
the Kw densities can be unimodal, anti-modal, increasing, decreasing or cons-
tant depending on the parameter values in a similar way of the beta distribution.
He addressed several advantages of this distribution over the beta distribution
such as simpler formulae for the cdf and qf and moments of the order statistics.
Jones (2009) [164] also emphasized that the beta distribution has some advan-
tages over the Kw distribution such as simpler expressions for moments and
generating function and more ways for generation using physical processes.

F (x) = 1− {1−G(x)a}b, (5.2)

Correspondingly, the pdf and hrf of this family have very simple forms:

f(x) = a b g(x)G(x)a−1 {1−G(x)a}b−1. (5.3)

and
τ(x) = a b g(x)G(x)a−1{1−G(x)a}−1. (5.4)

In this chapter, X denotes the random variable with density function (5.3)
and we write X ∼Kw-G(a, b). Each Kw-G generated distribution can be
determined from a parent G distribution, which is clearly a basic exemplar of
the Kw-G family when a = b = 1.
If b = 1, we obtain as a special case from (5.3) the exp-G family discussed in
Chapter 2. One major benefit of the Kw-G family is to fit skewed data that
can not be fitted by classic distributions. Most of the results of this chapter
follow Cordeiro and de Castro (2011) [87] and Nadarajah et al. (2012) [88].
Based on the cdf G(x) and pdf g(x) of any baseline G distribution, we can
associate the Kw-G density (5.3) with two extra shape parameters a and b.
These parameters can generate distributions with heavier or lighter tails and
control skewness and kurtosis. They can provide more flexible distributions.
The Kw-G family has a wide variety of shapes and it is able to model bathtub-
shaped hazard rate data. Further, it can be easily used for discriminating
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The Kumaraswamy generalized (“Kw-G”) family of distributions was proposed
by Cordeiro and de Castro (2011) [87] and has the Kw distribution as the
baseline model. The Kw-G family is defined as

Note that the two additional parameters a > 0 and b > 0 provide skewness
and vary tail weights. Because of the simple form of equation (5.2), this family
can be easily fitted even if the data are censored. The Kw-G family allows for
greater flexibility of its tails and can be applied in several areas of engineering,
medicine and biology.



between the Kw-G and G distributions. If a < 1, then the tails of f(x) will
be heavier than those of g(x). Similarly, if b < 1, then the tails of f(x) will be
heavier than those of g(x). On the other hand, if a > 1, then the tails of f(x)
will be lighter than those of g(x). Similarly, if b > 1, then the tails of f(x) will
be lighter than those of g(x). The density (5.3) has an important advantage
over the BG class (Eugene et al., 2002 [100]) discussed in Chapter 3, since it
does not involve any complicated function.
Each Kw-G distribution can be determined from a given G distribution as
follows: the Kw-normal (KwN) distribution follows by taking G(x) in equation
(5.3) as the normal cdf. In a similar manner, the Kw-gamma (KwGa), Kw-
Weibull (KwW) and Kw-Gumbel (KwGu) models follow by taking G(x) to be
the cdf of the gamma, Weibull and Gumbel distributions, respectively.
In this chapter, equation (5.3) is applied in some generality. The structural
properties of the Kw-G family are usually simpler to derive than those of the
BG family.
If g(x) is a symmetric function around zero, then f(x) will not be a symmetric
distribution even when a = b. By inverting (5.2), the Kw-G qf can be expressed
in terms of the baseline qf, say QG(u) = G−1(u), by Q(u) = QG({1 − (1 −
u)1/b}1/a).

5.2. PHYSICAL MOTIVATION

Pr(X ≤ x) = 1− Pr (X1 > x, . . . , Xb > x) = 1− Prb (X1 > x)

= 1− {1− Pr (X1 ≤ x)}b = 1− {1− Pr (X11 ≤ x, . . . , X1a ≤ x)}b

= 1− {1−Ga(x)}b .

Hence, the Kw-G family (5.2) is precisely the time to failure distribution of
the entire system.
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For a and b positive integers, a physical interpretation of the Kw-G family (5.3)
can be given as follows. Suppose that a system is composed by b independent
components, which in turn is composed by a independent subcomponents.
Define Xj1, . . . , Xja as the subcomponents lifetimes of the jth component (for
j = 1, . . . , b) with common cdf G(x). Suppose that the system failure occurs
if any of the b components fails and each component fails only if all a sub-
components fail. Further, denote Xj as the lifetime of the jth component (for
j = 1, . . . , b) and let X denote the lifetime of the entire system. Then, the cdf
of X can be expressed as



Chapter 6

Special Kumaraswamy
Generalized Models

Abstract: In this chapter, three special cases of the Kumaraswamy generali-
zed family of distributions are presented. Some mathematical characteristics
are provided such as the moments and generating function. An expanded
expression for the density function and some special cases are presented. For
illustrative purposes, practical examples of the KwG models are reported by
means of applications to empirical data.

Keywords: Kw-G model; KwBXII; KwGum; KwW; Moment.

The cdf and pdf of the Kumaraswamy-G (Kw-G) family (Cordeiro and de
Castro, 2010 [87]) are given by

F (x) = 1 − {1−G(x)a}b (6.1)

and

f(x) = a b g(x)G(x)a−1 {1−G(x)a}b−1, (6.2)

respectively, for a > 0 and b > 0, where G(x) and g(x) are the cdf and pdf of
an arbitrary baseline distribution, respectively. We denote by X ∼Kw-G(a, b)
a random variable with cdf (6.1) and pdf (6.2).
Next, we present some mathematical characteristics of three important special
models of the Kw-G family, namely: the Kumaraswamy Weibull (Cordeiro et
al., 2010 [84]), Kumaraswamy Burr XII (Paranáıba et al., 2011 [117] and
2013 [169]) and Kumaraswamy Gumbel (Cordeiro et al., 2012d [170]) distri-
butions.
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6.1. KUMARASWAMY WEIBULL

The Weibull distribution has been widely used along several decades in a
variety of research areas, such as engineering, medicine and biological sciences,
among others. In the last two decades, several extensions of the Weibull
distribution were proposed. In this sense, we have the exponentiated Weibull
(EW) (Mudholkar et al., 1995 [36], Mudholkar and Hutson 1996 [59]), additive
Weibull (Xie and Lai, 1995 [171]), extended Weibull (Xie et al., 2002 [156]),
modified Weibull (MW) (Lai et al., 2003 [72]), beta exponential (BE) (Nada-
rajah and Kotz, 2005 [41]), beta Weibull (BW) (Lee et al., 2007 [81]), extended
flexible Weibull (Bebbington et al., 2007 [166]), generalized modified Weibull
(GMW) (Carrasco et al., 2008 [5]) and generalized inverse Weibull (Gusmão
et al., 2009 [140]) distributions.
In this section, we address some mathematical properties of the KwW model
in order to increase the range of possible applications. Note that the Weibull
distribution is a basic exemplar of the KwW distribution. Most of the KwW
properties presented here were derived by Cordeiro et al. (2010a) [84].
The cdf and pdf of the KwW distribution are obtained from (6.1) and (6.2)
by taking Gα,β(x) = 1 − exp{−(βx)α}, i.e., the Weibull cdf with parameters
α > 0 and β > 0. Hence, we obtain

F (x) = 1− {1− [1− exp{−(βx)α}]a}b (6.3)

and

f(x) = a b α βα xα−1exp{−(βx)α}[1− exp{−(βx)α}]a−1

× {1− [1− exp{−(βx)α}]a}b−1 . (6.4)

Hereafter, the random variable X following (6.4) with parameters a, b, α and
β is denoted by X ∼ KwW(a, b, α, β).
It is clear that the Weibull, EW and EE models are special cases of (6.4) when
a = b = 1, b = 1, and α = b = 1, respectively. The KwW distribution (6.4) is
much more flexible than its special cases.
The hrf of X is

τ(x) =
abα βα xα−1 exp{−(βx)α} [1− exp{−(βx)α}]a−1

1− [1− exp{−(βx)α}]a
. (6.5)

Further, the asymptotes of f(x) and F (x) as x→ 0,∞ are given by

f(x) ∼ a b αβaαxaα−1 as x→ 0,

f(x) ∼ abb α βα xα−1 exp {−b(βx)α} as x→∞,
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F (x) ∼ b(βx)aα as x→ 0,

1− F (x) ∼ ab exp {−b(βx)α} as x→∞.

Note that the upper tail of f(x) is exponential and the lower tail is polynomial.

6.1.1. Linear Representation

Expanding the binomial {1 − Ga(x)}b−1 in equation (6.2), the Kw-G family
density can be expressed as

f(x) =
∞∑
j=0

(−1)j b

(j + 1)

(
b− 1

j

)
h(j+1)a(x), (6.6)

where ha(x) = ag(x)G(x)a−1 represents the exp-G density with parameter
a > 0 (Eugene et al., 2002 [100]) (see Section 2.1). In Chapter 2, we obtain
some mathematical properties of the exponentiated models.
The KwW density can be expressed as a linear combination of Weibull densities
by applying (6.6) to the Weibull distribution and expanding the generalized
binomial. We obtain

f(x) =
∞∑
k=0

wk gα,βk(x), (6.7)

where gα,βk(x) is the Weibull density function with parameters α and βk =
β (k + 1)1/α, and the coefficients wk are given by

wk =
∞∑
j=0

a b (−1)j+k

(k + 1)

(
b− 1

j

)(
(j + 1) a− 1

k

)
. (6.8)

It is easily verified using Maple that
∑∞

k=0wk = 1 as expected. By integrating
(6.7), we have

F (x) =
∞∑
k=0

wkGα,βk(x). (6.9)

6.1.2. Moments

Based on equation (6.7), some structural properties like ordinary, incomplete,
factorial and inverse moments of X can be determined as infinite linear combi-
nations of the corresponding Weibull quantities. For example, the sth ordinary
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Chapter 7

The Gamma-G Family of
Distributions

Abstract: This chapter presents the gamma generalized family of
distributions proposed by Zofragos and Balakrishnan (2009). Several
mathematical properties are provided such as representations for gamma-G
density and cumulative functions, some generalized moments, quantile and
generating functions and entropies. A bivariate generalization is presented.
An application is performed in order to illustrate empirically the usefulness of
this family.

Keywords:: Gamma-G Model; GGum; GLL; GLN; GN; GW; Mean
deviation; Moment; Order statistic.

7.1. INTRODUCTION

f(x) =
1

Γ(a)
{− log[1−G(x)]}a−1 g(x) (7.1)

and

F (x) =
γ (a,− log [1−G(x)])

Γ(a)
=

1

Γ(a)

∫ − log[1−G(x)]

0

ta−1 e−tdt, (7.2)

respectively, for a > 0, where g(x) = dG(x)/dx, Γ(a) is the gamma function,
and γ(a, z) is the incomplete gamma function defined by (1.7) in Section 1.4.
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Zografos and Balakrishnan (2009) [202] pioneered a family of univariate con-
tinuous distributions generated by gamma random variables. Let G(x) be any
parent cdf for x ∈ R. They defined the gamma-G family with pdf f(x) and
cdf F (x) given by



The hrf corresponding to (7.1) becomes

h(x) =
{− log[1−G(x)]}a−1 g(x)

Γ (a,− log [1−G(x)])
, (7.3)

where Γ(a, z) =
∫∞
z
ta−1 e−tdt denotes the upper incomplete gamma function.

The gamma-G family has the same parameters of the parent G plus an extra
shape parameter a > 0. Henceforth, if X is a random variable with pdf (7.1),
we write X ∼ gamma-G(a). Every new gamma-G model can be determined
from a given G distribution. Clearly, the G distribution is the basic exemplar
of the gamma-G family when a = 1.
Zografos and Balakrishnan (2009) [201] presented several motivations for the
gamma-G family: if X1:1, . . . , X1:n are the order statistics from a sequence
of independent random variables with common pdf g(·), then the pdf of the
nth lower statistic is given by (7.1). Further, if Z is a gamma random variable
with shape parameter a > 0 and unit scale parameter, then X = F−1(exp(Z))
has the pdf (7.1). Finally, if Z is a log-gamma random variable, then X =
F−1(exp{− exp(Z)}) has the pdf (7.1).
Recently, several mathematical properties of (7.1) and (7.2) were investigated
by Nadarajah et al. (2015) [202]. Zografos and Balakrishnan (2009) [201]

proposed expressions for moments associated with special gamma-G models
(which hold only for natural a), a general expression for the Shannon entropy
and a maximum entropy characterization.

7.2. SPECIAL GAMMA-G MODELS

7.2.1. The Gamma-Weibull Distribution

Consider G(x) = 1− exp{−(βx)α} to be the Weibull cdf with scale parameter
β > 0 and shape parameter α > 0, the gamma-Weibull (GW) density function
(for x > 0) becomes

fGW(x) =
αβαa

Γ(a)
xaα−1 exp{−(βx)α}. (7.4)
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The gamma-G family density function (7.1) furnishes for greater flexibility
to describe tail points and, therefore, can be widely employed in many areas
of engineering and biology. In this section, we present five special cases of this
family. Models deduced from the Equation (7.1) can be analytically tractable
when the cdf G(x) and the pdf g(x) have simple analytic expressions.



Equation (7.4) is important because it extends many distributions previously
considered in the literature. In fact, it is identical to the generalized gamma
(Stacy, 1962 [203]) distribution.
The Weibull distribution is a special case when a = 1 and the gamma

distribution is another special case when α = 1. The half-normal distribution
corresponds to a = 3 and α = 2. In addition, the log-normal distribution is a
limiting special case when a goes to infinity.
The cdf and hrf corresponding to (7.4) are

FGW(x) =
γ[a, (β x)α]

Γ(a)

and

hGW(x) =
αβaα xaα−1 exp{−(βx)α}{

Γ(a) − γ[a, (β x)α]
} ,

respectively.

7.2.2. The Gamma-Normal Distribution

The gamma-normal (GN) distribution is defined from (7.1) by taking G(x)
and g(x) to be the cdf and pdf of the normal N(µ, σ2) distribution. Its pdf is

fGN (x) =
1

Γ(a)

{
− log

[
1− Φ

(x− µ
σ

)]}a−1

φ
(x− µ

σ

)
,

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter,
a > 0 is a shape parameter, and φ(·) and Φ(·) are the pdf and cdf of the
standard normal distribution, respectively. For µ = 0 and σ = 1, we obtain
the standard GN distribution. Further, this distribution with a = 1 becomes
the normal distribution.

7.2.3. The Gamma-Gumbel Distribution

Consider the Gumbel distribution with location parameter µ ∈ R and scale
parameter σ > 0, where the pdf and cdf (for x ∈ R) are

g(x) =
1

σ
exp

{(
x− µ
σ

)
− exp

(
x− µ
σ

)}
and

G(x) = 1− exp

{
− exp

(
x− µ
σ

)}
,
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Chapter 8

Recent Compounding Models

Abstract: In this chapter, we introduce a family of models defined by
compounding two (a continuous and other discrete) distributions. The new
family has as limiting case the adopted baseline distribution. The generated
models are frequently more flexible than the baseline distributions. Several
mathematical properties such as moments, quantile and generating functions,
among others, are provided. Further, the estimation procedure is approched
by maximum likelihood. The potentiality of the family of models is illustrated
by means of two applications to real data.

Keywords: BSPS; BXIIPS; Compounding Models; EWPS; Generating
function; Moment; Order statistic; WPS.

8.1. INTRODUCTION
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In this chapter, we review some recent compounding lifetime distributions,
which were pioneered by Marshall and Olkin (1998) [4] and after extended by
some authors. Several well-known lifetime models, such as the exponential,
gamma and Weibull distributions, have been extended by compounding life-
time distributions recently introduced in the statistical literature. The class
of compounding distributions allows for the use in industrial applications and
biological research. It arises by mixing the power series and lifetime distribu-
tions. It is specially useful in a situation “where the failure occurs due to the
presence of an unknown number, say N , of initial defects of the same kind and
the T ’s represent their lifetimes and each defect can be detected only after
causing failure, in which case it is repaired perfectly” (Adamidis and Loukas,
1998 [208]).



Given N , let T1, . . . , TN be iid random variables having a baseline cdf G(t; τ ),
where τ is a vector of parameters and N is a discrete random variable following
a zero truncated power series (PS) distribution with probability mass function
(pmf) expressed by

pn = P (N = n) =
an θ

n

C(θ)
, n = 1, 2, . . . . (8.1)

Note that the coefficient an is a function of n and C(θ) =
∑∞

n=1 an θ
n, with

θ > 0 such that C(θ) is finite. It is important to emphasize that the probability
distributions of the form (8.1) have been considered in Boehme and Powell
(1968) [208] and Ostrovska (2007) [209]. Table 8.1 lists some PS distributions
defined by (8.1) such as the Poisson, logarithmic, geometric and binomial
distributions.
Define X = min {Ti}Ni=1. The conditional cumulative distribution of X|N = n
is given by

FX|N=n(x) = 1− [1−G(x; τ )]n

and then

P (X ≤ x,N = n) =
anθ

n

C(θ)
{1− [1−G(x; τ )]n} , x > 0, n = 1, 2, . . . .

Therefore, the marginal cdf of X becomes

F (x; θ, τ ) = 1− 1

C(θ)
C {θ [1−G(x; τ )]} , x > 0. (8.2)

Distribution an C(θ) C′(θ) C′′(θ) C(θ)−1 Θ

Poisson n!−1 eθ − 1 eθ eθ log(θ + 1) θ ∈ (0,∞)

Logarithmic n−1 − log(1− θ) (1− θ)−1 (1− θ)−2 1− e−θ θ ∈ (0, 1)

Geometric 1 θ(1− θ)−1 (1− θ)−2 2(1− θ)−3 θ(θ + 1)−1 θ ∈ (0, 1)

Binomial
(m
n

)
(θ + 1)m − 1 m(θ + 1)m−1 m(m−1)

(θ+1)2−m
(θ − 1)1/m − 1 θ ∈ (0, 1)

Table 8.1: Functional quantities for some PS distributions.

The pdf associated to (8.2) is

f(x; θ, τ ) =
θ

C(θ)
g(x; τ )C ′ {θ [1−G(x; τ )]} , x > 0, (8.3)
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where g(x; τ ) is the baseline density function and C ′(·) is the first derivative
with respect to θ.
The random variable X with density (8.3) is called the G-power series (GPS)
family and denoted by X ∼ GPS(θ, τ ), which is customary for such a name
given to the distributions arising by means of the operation of compounding.
Remark. In an analogous way for X, define Y = max{Ti}Ni=1, where N ∼
PS(θ). Then, the cumulative and density functions of Y are

F (y; θ, τ ) =
1

C(θ)
C [θ G(y; τ )] , y > 0

and

f(y; θ, τ ) =
θ

C(θ)
g(y; τ )C ′ [θ G(y; τ )] , (8.4)

respectively. The family with cumulative distribution (8.4) is a complement
of the GPS family and thus, hereafter, it is called the complementary G-power
series (CGPS) family, denoted by Y ∼ CGPS(θ, τ ).
This type of compounding family is suitable for complementary risks scenarios,
where the lifetime corresponding to a particular risk is not perceptible, rather
we observe only the maximum lifetime value among all risks. Note that
equations (8.3) and (8.4) will be most manageable when both functions G(x; τ )
and g(x; τ ) have uncomplicated expressions. In general, except for some
special choices of these functions, these densities will be difficult to deal with.
A positive point of the compounding distributions is that the baseline dis-
tribution G is a basic exemplar of the generated model. In addition, the
compounding distributions have various interesting applications based on the
stochastic representations (8.3) and (8.4), which make them of recognizable
scientific relevance from other lifetime distributions. We list below some of
these interesting applications.

• Reliability. From the stochastic quantities (8.3) and (8.4), we have that
the compounding models can emerge in series and parallel systems with
identical components, which appear in many industrial applications and
biological organisms.
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• Time to the first failure (Adamidis and Loukas, 1998 [208] and Kus, 2007
[211]). Consider that a component or system can fail after the ocurrence of
a number N of early defects of the same kind, only detected after causing
failure and perfectly repaired. If we denote by Ti the time to the device
failure due to the ith defect, then the model defined in (8.3) is adequate for
modelling the time to the first failure, under the assumptions that the Ti’s
are iid random variables independent of N , which is defined in (8.1).



Bibliography

[1] C. D. Lai, “Constructions and applications of lifetime distributions,” Appl.
Stoch. Model Bus., vol. 29, pp. 127–140, 2013.

[2] M. E. Ghitany, F. A. Al-Awadhi, and L. A. Alkhalfan, “Marshall-Olkin
extended Lomax distribution and its application,” Commun. Stat.-Theory
Methods, vol. 36, pp. 1855–1866, 2007.

[3] W. Q. Meeker and L. A. Escobar, Statistical Methods for Reliability Data.
New York: John Wiley & Sons, 1998.

[4] A. W. Marshall and I. Olkin, “A new method for adding a parameter to a fami-
ly of distributions with application to the exponential and Weibull families,”
Biometrika, vol. 84, pp. 641–652, 1997.

[5] J. M. F. Carrasco, E. M. M. Ortega, and G. M. Cordeiro, “A generalized
modified Weibull distribution for lifetime modeling.” Comput. Stat. Data An.,
vol. 53, pp. 450–462, 2008.

[6] C. D. Lai, “Generalized Erlang and mortality levelling off distributions,” Math.
Comput. Model., vol. 51, pp. 1268–1276, 2010.

[7] G. S. Mudholkar and D. K. Srivastava, “Exponentiated Weibull family for
analyzing bathtub failure-rate data,” IEEE Trans. Rel., vol. 42, pp. 299–302,
1993.

[8] J. Lawless, Statistical Models and Methods for Lifetime Data, ser. Wiley Series
in Probability and Statistics. Wiley, 2011.

[9] R. B. Silva, W. Barreto-Souza, and G. M. Cordeiro, “A new distribution with
decreasing, increasing and upside-down bathtub failure rate,” Comput. Stat.
Data An., vol. 54, pp. 935–944, 2010.

[10] M. Tableman and J. Kim, Survival Analysis Using S: Analysis of Time-to-
Event Data, ser. Chapman & Hall/CRC Texts in Stat. Sci. Taylor & Francis,
2003.

[11] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products.
New York: Academic, 2000.

Recent Advances in Lifetime and Reliability Models, 2020, 20� -22�20�   

Gauss M. Cordeiro, Rodrigo B. Silva & Abraão D. C. Nascimento
All rights reserved-© 2020  Bentham Science Publishers



[12] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With
Formulas, Graphs, and Mathematical Tables, ser. Applied mathematics series.
Dover Publications, 1965.

[13] H. Exton, Handbook of Hypergeometric Integrals: Theory, Applications,
Tables, Computer Programs. New York, Halsted Press, 1978.

[14] A. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory And Applications
of Fractional Differential Equations, ser. North-Holland Mathematics Studies.
Elsevier Science & Tech, 2006.

[15] J. A. Greenwood, J. M. Landwehr, N. C. Matalas, and J. R. Wallis, “Pro-
bability weighted moments: definition and relation to parameters of several
distributions expressable in inverse form.” Water Resour. Res., vol. 15, pp.
1049–1064, 1979.

[16] J. Hosking, “L-moments: analysis and estimation of distributions using linear
combinations of order statistics,” J. R. Stat. Soc. Series B Stat. Methodol.,
vol. 52, pp. 105–124, 1990.

[17] ——, “Distributions with maximum entropy subject to constraints on their
l-moments or expected order statistics,” J. Stat. Plan. Inference, vol. 137, pp.
2870–2891, 2007.

[18] R. V. L. Hartley, “Transmission of information,” Bell Sys. Tech. J., vol. 7, pp.
535–563, 1928.

[19] C. E. Shannon, “A mathematical theory of communication,” Bell Sys. Tech.
J., vol. 27, pp. 379–423, 1948.

[20] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math.
Stat., vol. 22, pp. 79–86, 1951.

[21] S. Nadarajah, G. Cordeiro, and E. Ortega, “General results for the beta-
modified weibull distribution,” J. Stat. Comput. Simul., vol. 81, 2011.

[22] G. Cordeiro, A. J. Lemonte, and E. Ortega, “The Marshall–Olkin family
of distributions: Mathematical properties and new models,” J. Stat. Theory
Pract., vol. 8, 2014.

[23] G. Chen and N. Balakrishnan, “A general purpose approximate goodness-of-fit
test,” J. Qual. Technol., vol. 27, pp. 154–161, 1995.

[24] R. Pakyari and N. Balakrishnan, “A general purpose approximate goodness-
of-fit test for progressively Type-II censored data,” IEEE Trans. Rel., vol. 61,
pp. 238–244, March 2012.

[25] S. Nadarajah, “The exponentiated exponential distribution: a survey,” AStA
Adv. Stat. Anal., vol. 95, pp. 219–251, 2011.

Conclusions and Recent Advances Recent Advances in Lifetime and Reliability Models   2��



[26] S. Nadarajah, G. M. Cordeiro, and E. M. M. Ortega, “The exponentiated
Weibull distribution: a survey,” Stat. Pap., vol. 54, pp. 839–877, 2013.

[27] P. G. Sankaran and V. L. Gleeja, “On bivariate reversed hazard rates,” J.
Japan Stat. Soc., vol. 36, pp. 213–224, 2006.

[28] A. M. Variyath and P. G. Sankaran, “Parametric regression models using
reversed hazard rates,” J. Probab. Stat., vol. 2014, pp. 1–5, 2014.

[29] D. Kundu and R. D. Gupta, “A class of bivariate models with proportional
reversed hazard marginals,” Sankhya B, vol. 72, pp. 236–253, 2010.

[30] E. J. Veres-Ferrer and J. M. Pav́ıa, “On the relationship between the reversed
hazard rate and elasticity,” Stat. Pap., vol. 22, pp. 1–10, 2012.

[31] E. L. Lehmann, “The power of rank tests,” Ann. Stat., vol. 24, pp. 28–43,
1953.

[32] J. Rodrigues, N. Balakrishnan, G. M. Cordeiro, and M. de Castro, “A unified
view on lifetime distributions arising from selection mechanisms,” Comput.
Stat. Data An., vol. 55, pp. 3311–3319, 2011.

[33] W. Barreto-Souza and F. Cribari-Neto, “A generalization of the exponential-
Poisson distribution,” Stat. Probab. Lett., vol. 79, pp. 2493–2500, 2009.

[34] W. Barreto-Souza, R. B. Silva, and G. M. Cordeiro, “A new distribution with
decreasing, increasing and upside-down bathtub failure rate,” Comput. Stat.
Data An., vol. 54, pp. 935–944, 2010.

[35] M. Chahkandi and M. Ganjali, “On some lifetime distributions with decreasing
failure rate,” Comput. Stat. Data An., vol. 53, pp. 4433–4440, 2009.

[36] G. S. Mudholkar, D. K. Srivastava, and M. Freimer, “The exponentiated
Weibull family: A reanalysis of the bus-motor-failure data,” Technometrics,
vol. 37, pp. 436–445, 1995.

[37] R. C. Gupta, R. D. Gupta, and P. L. Gupta, “Modeling failure time data by
Lehmann alternatives,” Commun. Stat.-Theory Methods, vol. 27, pp. 887–904,
1998.

[38] R. D. Gupta and D. Kundu, “Exponentiated exponential family: An
alternative to gamma and Weibull distributions,” Biom. J., vol. 43, pp. 117–
130, 2001.

[39] S. Nadarajah and A. K. Gupta, “The exponentiated gamma distribution with
application to drought data,” Cal. Stat. Assoc. Bull., vol. 59, pp. 29–54, 2007.

2��   Recent Advances in Lifetime and Reliability Models Cordeiro et al.



[40] G. M. Cordeiro, E. M. M. Ortega, and G. O. Silva, “The exponentiated
generalized gamma distribution with application to lifetime data,” J. Stat.
Comput. Simul., vol. 81, pp. 827–842, 2011.

[41] S. Nadarajah and S. Kotz, “The exponentiated type distributions,” Acta Appl.
Math., vol. 92, pp. 97–111, 2006.

[42] R. D. Gupta and D. Kundu, “Generalized exponential distributions,” Aust.
N. Z. J. Stat., vol. 41, pp. 173–188, 1999.

[43] ——, “Generalized exponential distribution: Different method of
estimations,” J. Stat. Comput. Simul., vol. 69, pp. 315–337, 2001.

[44] ——, “Generalized exponential distribution: Existing results and some recent
developments,” J. Stat. Plan. Inference, vol. 137, pp. 3537–3547, 2007, special
Issue: In Celebration of the Centennial of The Birth of Samarendra Nath Roy
(1906-1964).

[45] M. Z. Raqab and M. Ahsanullah, “Estimation of the location and scale
parameters of generalized exponential distribution based on order statistics,”
J. Stat. Comput. Simul., vol. 69, pp. 109–124, 2001.

[46] M. Z. Raqab, “Inferences for generalized exponential distribution based on
record statistics,” J. Stat. Plan. Inference, vol. 104, pp. 339–350, 2002.

[47] A. M. Sarhan, “Analysis of incomplete, censored data in competing risks
models with generalized exponential distributions,” IEEE Trans. Rel., vol. 56,
pp. 132–138, 2007.

[48] A. H. Abdel-Hamid and E. K. Al-Hussaini, “Estimation in step-stress
accelerated life tests for the exponentiated exponential distribution with type-I
censoring,” Comput. Stat. Data An., vol. 59, pp. 1328–1338, 2009.

[49] M. Aslam, D. Kundu, and M. Ahmad, “Time truncated acceptance sampling
plans for generalized exponential distribution,” J. Appl. Stat., vol. 37, pp.
555–566, 2010.

[50] A. I. Shawky and R. A. Bakoban, “Exponentiated gamma distribution:
Different methods of estimations,” J. Appl. Math., vol. 2012, pp. 1–23, 2012.

[51] K. Persson and J. Rydén, “Exponentiated Gumbel distribution for estimation
of return levels of significant wave height,” J. Environ. Stat., vol. 1, pp. 1–12,
2010.

[52] D. Kundu and R. D. Gupta, “Generalized exponential distribution: Bayesian
estimations,” Comput. Stat. Data An., vol. 52, pp. 1873–1883, 2008.

Conclusions and Recent Advances Recent Advances in Lifetime and Reliability Models   2�	



[53] D. Kundu, R. D. Gupta, and A. Manglick, “Discriminating between the log-
normal and generalized exponential distributions,” J. Stat. Plan. Inference,
vol. 127, pp. 213–227, 2005.

[54] E. M. Hashimoto, E. M. M. Ortega, V. G. Cancho, and G. M. Cordeiro,
“The log-exponentiated Weibull regression model for interval-censored data,”
Comput. Stat. Data An., vol. 54, pp. 1017–1035, 2010.

[55] B. Gompertz, “On the nature of the function expressive of the law of human
mortality, and on a new mode of determining the value of life contingencies,”
Philos. Trans. R. Soc. London, vol. 115, pp. 513–583, 1825.

[56] P. F. Verhulst, Deuxieme memoire sur la loi d’accroissement de la population.
Memoires de l’Academie Royale des Sciences, des Lettres et des Beaux-Arts
de Belgique, 1847.

[57] D. N. P. Murthy, M. Xie, and R. Jiang, Weibull Models. Wiley Series in
Probability and Statistics, 2004.

[58] H. Rinne, The Weibull Distribution: A Handbook. CRC Press, 2009.

[59] G. S. Mudholkar and A. D. Hutson, “The exponentiated Weibull family: some
properties and a flood data application,” Commun. Stat.-Theory Methods,
vol. 25, pp. 3059–3083, 1996.

[60] M. M. Nassar and F. H. Eissa, “On the exponentiated Weibull distribution,”
Commun. Stat.-Theory Methods, vol. 32, pp. 1317–1336, 2003.

[61] M. Pal, M. M. Ali, and J. Woo, “Exponentiated Weibull distribution,”
Statistica, vol. LXVI, pp. 139–147, 2006.

[62] S. Nadarajah and A. K. Gupta, “On the moments of the exponentiated
Weibull distribution,” Commun. Stat.-Theory Methods, vol. 34, pp. 253–256,
2005.

[63] H. A. Sartawi and M. S. Abu-Salih, “Bayes prediction bounds for the Burr
type X model,” Commun. Stat.-Theory Methods, vol. 20, pp. 2307–2330, 1991.

[64] D. Kundu and R. D. Gupta, “Characterizations of the proportional (reversed)
hazard class,” Commun. Stat.-Theory Methods, vol. 38, pp. 3095–3102, 2004.

[65] D. Kundu and M. Raqab, “Generalized Rayleigh distribution: Different
methods of estimations,” Comput. Stat. Data An., vol. 49, pp. 187–200, 2005.

[66] I. Malinowska and D. Szynal, “On characterization of certain distributions of
kth lower (upper) record values,” Appl. Math. Compt., vol. 202, pp. 338–347,
2008.

2�
   Recent Advances in Lifetime and Reliability Models Cordeiro et al.



[67] M. Zhou, D. Yang, Y. Wang, and S. . Nadarajah, “Moments of the scaled Burr
type X distribution,” J. Comput. Anal. Appl., vol. 10, pp. 523–525, 2008.

[68] S. Nadarajah, “Batub-shaped failure rate functions,” Qual. Quant., vol. 43,
pp. 855–863, 2009.
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notificadas pelo núcleo de vigilância epidemiológica do HCFMRP-USP,”
Ph.D. dissertation, Universidade de São Paulo Faculdade de Medicina de
Riberão Preto, 2004.
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