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PREFACE

The third  volume of  Frontiers  in  Clinical  Drug Research -  Anti-Cancer  Agents  presents
seven cutting edge reviews on recent developments in various therapeutic approaches against
different types of cancer.

Studies have revealed that the Epidermal Growth Factor Receptor (EGFR) is involved in the
pathogenesis  and  progression  of  different  types  of  carcinoma.  Tumor  resistance  to  agents
targeting the Epidermal Growth Factor Receptor (EGFR) is common, and is well recognized
as  a  major  challenge.  In  first  two  consecutive  chapters,  Rodney  B.  Luwor  provides  an
overview of the progress in targeting the EGFR that will lead to overall refractory outcomes
to anti-EGFR therapies. In Chapter 1 he discusses on the resistance mechanisms driven by
alterations in ligand and receptors of the EGFR family as well as on the cross-talk between
EGFR receptors and non-EGFR family members. In Chapter 2 the same author describes the
current  understanding  regarding  the  resistance  mechanisms  mediated  by  alterations  in
substrates  downstream  of  the  EGFR.  Luwor  has  also  reviewed  the  other  intracellular
mechanisms that mediate both sensitivity and resistance outcomes to anti-EGFR agents in this
chapter.

Melanoma is the most dangerous form of skin cancer that develops when unrepaired DNA
damage to skin cells  triggers  mutations,  which lead to the formation malignant  tumors.  In
Chapter  3  Shukla  et  al.,  present  a  comprehensive  review  on  the  chemotherapeutic,
immunologic,  and  molecularly  targeted  therapy  approaches  to  the  treatment  of  advanced
melanoma.

In  various  tumor  cells,  there  is  increased  aerobic  glycolysis  that  represents  a  major
biochemical alteration associated with malignant transformation. This phenomenon is known
as  the  Warburg  effect.  18F-deoxyglucose  positron  emission  tomography  (18FDG–PET),  a
metabolic imaging technique, is based on the avidity of cancer cells for glucose; currently, it
represents  the  only  successful  exploitation of  the  Warburg effect  for  medical  purposes.  In
Chapter 4, Abreu and Urbano focus on past and current efforts to target the Warburg effect for
selective anti-cancer therapeutics.

Follicular lymphoma (FL) is a B-cell lymphoma and the most common slow-growing form of
non-Hodgkin lymphoma (NHL). Studies suggest that immunotherapy, radioimmunotherapy
and vaccines result in high response rates and survival in FL patients. Chapter 5 by Panizo et
al.,  briefly  describes  the  biology  and  conventional  treatment  of  follicular  lymphoma  with
immunochemotherapy.  They  also  discuss  novel  immunotherapy  strategies  (active  and
passive)  for  the  treatment  of  follicular  lymphoma.

  i



The progression of cancer involves epigenetic abnormalities along with genetic alterations.
The manipulation of epigenetic alterations holds great promise for the prevention, detection,
and  therapy  of  cancer.  Evidence  indicates  that  the  activities  of  key  epigenetic  regulators
including DNA methyltransferases and histone modification enzymes are sensitive to cellular
metabolism. Wong and Yu in Chapter 6 discuss that the cross-talk between epigenetics and
cancer cell metabolism may reveal novel therapeutic opportunities. They also highlight their
implications  in  oncogenesis,  and  potential  therapeutic  approaches  to  target  these  cancer
specific  abnormities.

Apoptosis is a programmed cell death, which involves various biochemical events that lead to
characteristic  cell  changes  and  death.  Dysfunctions  of  apoptosis  pathways  promote
oncogenesis as well  as confer resistance of cancer cells  to most conventional therapies.  In
Chapter  7  by  Moorthy  et  al.  focus  their  discussion  small  molecular  anticancer  drugs,
especially  target  proteins,  responsible  for  apoptosis.

I hope that the current volume of this book series will provide fresh insights into development
of new recent approaches to anti-cancer therapy for interested researchers and pharmaceutical
scientists. I would like to thank the editorial staff, particularly Mr. Mahmood Alam (Director
Publications) and Mr. Shehzad Naqvi (Senior Manager Publications) for their hard work and
dedicated efforts.

Atta-ur-Rahman, FRS
Kings College

University of Cambridge
Cambridge

UK
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CHAPTER 1

Tumor  Resistance  Mechanisms  to  Inhibitors
Targeting the Epidermal Growth Factor Receptor–
Part I: Extracellular Molecules
Rodney B. Luwor*

Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville,
Victoria 3050, Australia

Abstract:  Since  its  discovery  several  decades  ago,  the  Epidermal  Growth  Factor
Receptor  (EGFR) has  become one  of  the  most  extensively  studies  receptor  tyrosine
kinases. However, despite continued insight into the cancer promoting properties of the
EGFR and  its  downstream signalling  substrates,  clinical  use  of  agents  targeting  the
EGFR continue to yield modest outcomes. Clinically, approved anti-EGFR therapeutics
can  successfully  inhibit  receptor  activation.  However  major  tumour  regression  is
observed in only 10-30% of advanced unselected cancer patients, with most patients
showing no therapeutic benefit.  Furthermore, those who initially respond commonly
relapse  presenting  with  reoccurrence  of  tumours  that  are  frequently  resistant  to  the
original  therapy.  In  addition,  the  standard  course  of  treatment  of  such  agents  is
estimated  to  cost  between  “US  $15,000-80,000/patient”  for  an  improved  overall
survival of only 1-2 months. Therefore, it is both medically and financially critical to
determine  the  true  molecular  mechanisms  of  tumour  resistance,  and  how  it  can  be
overcome.  In  these  2  back-to-back  chapters,  we  will  provide  an  overview  of  the
progress  made  in  targeting  the  EGFR  and  discuss  the  challenges  presented  by  the
numerous  molecular  mechanisms  currently  identified,  leading  to  overall  refractory
outcomes to anti-EGFR therapeutics. In this chapter (Part I) we will specifically focus
on the resistance mechanisms driven by alterations in ligand and receptors of the EGFR
family and cross-talk between EGFR receptors and non-EGFR family members.
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1. INTRODUCTION

Since the discovery of the Epidermal Growth Factor (EGF) in 1962 by Stanley
Cohen  and  colleagues  [1]  tremendous  advances  in  our  understanding  of  the
sophisticated  interactions  between  growth  factors  and  their  accompanying  cell
surface receptors have been made. One of the most intensely studied classes of
receptors is the HER or ErbB family [2]. This family consists of four members,
the  Epidermal  Growth  Factor  Receptor  (EGFR)  (also  referred  to  as  ErbB1  or
HER1) [3], HER2 (p185Neu or ErbB2) [4], HER3 (ErbB3) [5] and HER4 (ErbB4)
[6].  All  4  family  members  share  a  similar  overall  structure  consisting  of  an
extracellular  domain  with  2  cysteine-rich  regions,  a  single  membrane-spanning
region and a cytoplasmic domain containing multiple tyrosine residues that  are
phosphorylated upon receptor activation [7, 8].

The EGFR gene is located on the short arm of chromosome 7 [9, 10], and encodes
an  1186  amino  acid  long,  140  KDa  polypeptide  chain  [3,  11],  which  contains
approximately 30 – 40 KDa of N-linked oligosaccharides [12, 13].  A single 23
amino  acid  long  hydrophobic  sequence  transverses  the  cell  membrane.  The
extracellular  N-terminal  end  (amino  acids  1  -  621)  can  be  divided  into  four
domains (I-IV) [14, 15]. The intracellular C-terminal region (amino acids 645 -
1186) is responsible for tyrosine kinase activity and regulatory functions [16].

Currently  eight  ligands  have  been  identified  to  bind  the  EGFR  with  varying
affinity and potentially differential downstream function. They include EGF [1],
transforming growth factor alpha (TGF() [17], amphiregulin (AR) [18], heparin-
binding EGF-like growth factor (HB-EGF) [19], betacellulin [20], epiregulin [21],
neuregulin-2-beta (NRG2β) [22] and the most recently discovered Epigen [23].
These peptide ligands are produced as trans-membrane precursors that  are then
processed by metalloproteases and released in their soluble form [24] (Fig. 1).

Ligand induced ATP binding to the EGFR lysine-721 residue is a critical step in
tyrosine kinase activation and auto-phosphorylation in the intracellular region of
the receptor [11, 25 - 28]. In turn, this auto-phosphorylation results in a more open
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conformation allowing access to several cellular substrates to the tyrosine kinase
domain of the EGFR [25, 29] and subsequent triggering of downstream signaling
cascades  including the  RAS-RAF-MAPK-Erk1/2 pathway,  the  PTEN regulated
phosphatidylinositol 3-kinase (PI3-K)-Akt-mTOR pathway, Src-Signal transducer
and activator of transcription (STAT) family members and the Phospholipase C
gamma  (PLCγ)  signaling  pathway  [30].  These  signaling  networks  and  the
evidence for alterations or hyper-activity of each of these downstream molecules
in  providing  resistance  mechanisms  to  anti-EGFR  therapy  will  be  covered
thoroughly  in  Part  II  of  our  series  of  reviews.

Due  to  the  EGFR’s  many  associations  at  the  cell  membrane  and  the  diverse
network  of  signaling,  its  activation  is  intimately  associated  with  many  cellular
activities in both development and in the adult organism including proliferation,
survival, differentiation, adhesion, migration and invasion and tumor metastasis.
The  importance  of  the  EGFR  in  development  is  provided  from  the  analysis  of
genetically  altered  mice.  EGFR  knockout  mice  display  impaired  epithelial
development  resulting  in  either  embryonic  or  perinatal  lethality  or  in  mice
suffered from abnormalities in multiple organs including the brain, skin, lung and
gastrointestinal tract, depending on the genetic background [31 - 34]. Among the
functions attributed to the EGFR are the proliferation and development of specific
epithelial  regions  in  the  embryo,  including  branch  point  morphogenesis,
maturation  of  early  embryonic  lung  tissue,  skin  development  and  promoting
survival of early progenitor cells in the cleft  palate [35, 36].  The EGFR is also
expressed  throughout  the  brain  during  development  primarily  in  the  early
postnatal astrocytes and purkinje cells [37, 38]. The EGFR also plays an important
role in the adult organism where it  is essential for the differentiation of normal
mammary glands and the induction of uterine and vaginal growth [39, 40]. It is
also required in the adult neurones of the cerebral cortex where it acts to promote
terminal differentiation [41].

In summary these data clearly show the essential role of the EGFR during normal
development  and  homeostasis.  Not  surprisingly,  genetic  alterations  leading  to
EGFR over-expression  or  gain-of-function  mutation  are  frequently  observed  in
cancer [42 - 44]. These findings led to the vigorous pursuit that continues today to
develop agents targeting the EGFR (and downstream substrates) in the hope that



142  - Anti-Cancer Agents, 2016, Vol. 3, 142-216

CHAPTER 2

Tumor  Resistance  Mechanisms  to  Inhibitors
Targeting the Epidermal Growth Factor Receptor
– Part II: Intracellular Molecules
Rodney B. Luwor*

Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville,
Victoria 3050, Australia

Abstract: Tumor resistance to agents targeting the Epidermal Growth Factor Receptor
(EGFR) is  common, and well  recognised as a major challenge to successful  clinical
outcome, because patients often present with tumors that contain pre-existing intrinsic
resistance mechanisms to current EGFR inhibitors, which ultimately has no therapeutic
benefit.  Furthermore,  patients  who  initially  respond  to  these  therapies  commonly
relapse,  presenting  with  new  tumors  that  have  acquired  resistance  to  the  original
therapy. Substantial translational and clinical research has been undertaken in order to
understand, and more importantly overcome, the molecular initiators of both intrinsic
and  acquired  tumor  resistance.  However,  despite  a  multitude  of  cost  and  effort  in
gaining greater understanding of the molecular mechanisms that drive tumor resistance,
very little has translated into clinical practice and management of patients. In these 2
back-to-back chapters, we will provide an overview of the progress made in targeting
the  EGFR  and  discuss  the  challenges  presented  by  the  numerous  molecular
mechanisms currently identified, leading to overall refractory outcomes to anti-EGFR
therapeutics.  In  this  chapter  (Part  II)  we  will  specifically  focus  on  the  resistance
mechanisms mediated by alterations in substrates downstream of the EGFR and review
other intracellular mechanisms that mediate both sensitivity and resistance outcomes to
anti-EGFR agents.
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1. INTRODUCTION

The HER or ErbB family consists of four members, the Epidermal Growth Factor
Receptor  (EGFR)  (also  referred  to  as  ErbB1  or  HER1)  [1],  HER2  (p185Neu  or
ErbB2)  [2],  HER3  (ErbB3)  [3]  and  HER4  (ErbB4)  [4]  and  is  one  of  the  most
intensely studied, and targeted, receptor tyrosine kinase families. Inactive EGFR
exists mainly in a “tethered” confirmation where extracellular domains II and IV
associate  intra-molecularly  leading  to  an  auto-inhibitory  favoured  state.  This
confirmation occludes the accessibility of the dimerization arm of the receptor (in
domain  II)  and  separates  two  regions  in  domain  I  and  III  involved  in  ligand
binding. Upon ligand binding, the ligand binding regions of domain I and III are
brought  closer  together  and  the  EGFR  converts  into  an  extended  confirmation
resulting in a dis-association of the auto-inhibitory interaction of domain II and IV
and exposure of the dimerization arm facilitating dimerization of the extracellular
region [5 - 7].

In addition, the ligand induced extended confirmation of the EGFR instigates ATP
binding to a lysine residue, (Lys-721), within the EGFR kinase domain [8]. This
binding is  a  critical  event  required for  rapid intrinsic  tyrosine kinase activation
and auto-phosphorylation of specific tyrosine residues in the intracellular domain
of  EGFR  [9  -  12].  This  auto-phosphorylation  in  turn  results  in  a  more  open
conformation  permitting  the  access  of  cellular  substrates  to  the  tyrosine  kinase
domain [8, 13]. The phosphorylated tyrosines of the EGFR serve as high affinity
docking  sites  for  Src  homology  2  (SH2)  and  phospho-tyrosine  binding  (PTB)
domain  containing  signalling  proteins  [14,  15].  Mutational  analysis  has  shown
that the removal of the auto-phosphorylation sites has a severe effect on substrate
binding  if  all  five  tyrosine  sites  are  removed.  However,  when  only  one  site  is
altered, the remaining auto-phosphorylated sites appear to be able to compensate
for the loss of the tyrosine site [16]. Adding to the diversity of EGFR downstream
signaling  is  the  presence  of  other  ligands  including  the  neuregulin  family  that
activate the EGFR indirectly by binding HER3 and HER4 and resulting in EGFR
trans-phosphorylation  by  EGFR-HER3  or  EGFR-HER4  dimerization  [17,  18].
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Furthermore,  the  EGFR  can  co-operate  with  many  other  non-ErbB  family
members receptors leading to increased diversity of signaling pathway activation
downstream [19 - 30]. It is thought that each ligand within the ErbB family illicit
a  subtly  distinct  conformation  between  the  two  dimerizing  receptors  in  the
intracellular region, resulting in differential tyrosine phosphorylation profiles and
unique  sets  of  docking  substrates,  ultimately  leading  to  distinct  biological
outcomes  [31].  Proteins  that  directly  bind  the  phosphorylated  tyrosines  of  the
EGFR through their SH2 domain include PLC-(, GAP, Grb2, and Crk [15, 32 -
34] whiles others such as Shc interact via their PTB domain [32]. HER2, HER3
and  HER4  also  contain  areas  in  their  intracellular  region  for  SH2  domain
containing proteins to bind [34]. However, each HER receptor displays a distinct
set  of  C-terminal  auto-phosphorylation  sites  resulting  in  the  recruitment  of  a
different set of substrates. The recruitment and activation of these molecules to
the  receptor  in  turn selectively  activates  downstream signaling networks  which
include  the  RAS-RAF-MAPK-ERK1/2  pathway,  the  PTEN  regulated
phosphatidylinositol 3-kinase (PI3-K)-Akt-mTOR pathway, Src-Signal transducer
and activator of transcription (STAT) family members and the Phospholipase C
gamma (PLCγ) signaling pathway [35] (Fig. 1). In turn these signalling molecules
interact with nuclear transcription factors and cytoskeletal proteins triggering gene
transcription  of  many  proteins  involved  in  regulating  a  variety  of  cellular
functions  and  changes  in  cell  polarity  and  morphology  [36,  37].

Furthermore, despite being originally recognised as a mechanism in which cells
inactivate  signalling  by  internalisation  and  degradation  of  activated  receptors,
EGFR  signalling  is  sustained  or  initiated  following  receptor  endocytosis  and
subsequent trafficking through early and late endosomes [38 - 40]. In addition, the
EGFR (and the other HER family members) translocate into the nucleus where
they are involved in direct gene transcription [41 - 47]. Finally, the presence of
EGFR ligands, full length EGFR and the truncated variant EGFRvIII, that are all
signaling  competent  have  been  discovered  in  secreted  exosomes  suggesting  an
inter-cellular role of EGFR signaling [48 - 50].

Not surprisingly, due to the EGFR’s many associations at the cell membrane and
the diverse network of signaling, and as outlined in our previous review (Part I of
this series), EGFR activation is intimately associated with many cellular activities
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CHAPTER 3

Chemotherapeutic, Immunologic, and Molecularly
Targeted Therapy for the Treatment of Advanced
Melanoma
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Abstract:  Over  the  past  several  decades,  the  incidence  of  melanoma has  increased.
Although  surgery  remains  the  primary  treatment  modality  for  localized  early-stage
lesions,  melanoma  is  often  diagnosed  following  locoregional  and  distant  disease
spread. Prognosis for advanced stage disease is dismal as one would expect; however,
nowadays, the myriad of systemic therapies have allowed for improvements in disease
free and overall survival. Such systemic treatment approaches include chemotherapy,
immunotherapy,  and  molecularly  targeted  agents.  Since  the  time  of  the  approval  of
dacarbazine  by  the  Food  and  Drug  Administration  for  the  treatment  of  metastatic
melanoma in 1975, other agents have gained approval including interleukin-2, immune
checkpoint inhibitors such as ipilimumab (anti-CTLA-4), and others. More recently,
studies  suggest  that  combination  regimens  of  the  aforementioned  approaches  may
further improve outcomes when compared to monotherapy. Herein, the authors provide
an  up-to-date  comprehensive  review  on  the  chemotherapeutic,  immunologic,  and
molecularly  targeted  therapy  approaches  to  the  treatment  of  advanced  melanoma.
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INTRODUCTION

Over the past several decades, the incidence of melanoma has markedly increased
[1 - 3]. Worldwide, approximately 50,000 deaths can be attributed to melanoma
each year [4]. Melanomas originate from melanocytes, which reside in the basal
layer of the epidermis and produce melanin. Several mechanisms are thought to
underlie  the  malignant  transformation  of  normal  melanocytes  in  melanoma
development.  Perhaps  one  of  the  most  well  studied  risk  factors  for  melanoma
development  is  ultraviolet  radiation  [5].  Under  normal  circumstances,  melanin
helps protect  the skin from ultraviolet  light.  Overtime,  excessive sun exposure,
results  in  excessive  DNA  damage  to  proliferating  melanocytes,  thereby  over-
whelming the normal DNA repair mechanisms. Occasionally in the process, a cell
will  undergo malignant transformation [5].  Furthermore,  several  genes,  such as
BRAF,  PTEN,c-Kit,  p53,  CDKN2A/p16  are  implicated  in  the  development  by
mutation, deletion, or amplification. Mutations in these genes may be induced by
UV  radiation  or  are  inherited  and  ultimately  result  in  the  dysregulation  of  the
normal  cell  cycle  checkpoints.  Understanding  the  complex  interplay  of  genetic
and  environmental  factors  in  melanoma  pathogenesis  is  an  ongoing  area  of
investigation.

Surgery is the primary treatment modality for localized early stage lesions, with
estimated 5 and 10-year survival rates approximating 97% and 93% for patients
with Stage 1a, T1aN0M0 melanomas (≤ 1mm, without ulceration and mitosis ≤
1/mm2)  [6].  Metastatic  melanoma  carries  an  overall  median  survival  of  4-12
months, depending on the site of distant disease [7]. The current melanoma TNM
staging system was recently updated using data from an expanded American Joint
Committee  on  Cancer  (AJCC)  Melanoma Staging  Database  [4].  For  metastatic
melanoma  (stage  IV),  elevated  serum  levels  of  LDH  and  site(s)  of  metastases
define the M1 stage into three categories: M1a - only distant skin, subcutaneous or
nodal  metastases  and  normal  LDH,  M1b  -  lung  metastases  is  present  with  a
normal LDH, or M1c - metastases to any other visceral site and elevated LDH [4].
As one would expect, prognosis worsens as disease progresses from M1a to M1c
disease.
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While the prognosis after surgical resection in patients with early stage disease is
favorable, the median overall survival for patients with distant metastases (stage
IV)  treated  with  chemotherapy  is  less  than  a  year,  and  5-year  survival
approximates  10%  [3].  When  considering  metastatic  disease,  surgery  may
improve outcomes, and complete resection has been shown to improve survival
when compared to incomplete resection [8, 9]. Melanoma is generally considered
to be a relatively radio-resistant  tumor;  however,  radiation therapy (e.g.,  whole
brain  irradiation  or  stereotactic  radiosurgery)  has  been  used  in  adjuvant  and
palliative  settings,  such  as  in  cases  of  metastasis  to  the  brain  [10  -  12].

Table 1. Select agents approved by the US Food and Drug Administration (FDA) for the treatment of
advanced melanoma.

Class Agent Year FDA
Approved Indication

Chemotherapy Dacarbazine 1975 Stage IV melanoma

Immunotherapy

High-Dose Interferon
alfa-2b (IFN-α)

1996 Adjuvant treatment of intermediate and
high-risk melanoma (Stage IIB/C, Stage III)

High-Dose Interleukin-2
(IL-2)

1998 Stage IV melanoma

Ipilimumab 2011 Unresectable Stage III or Stage IV
melanoma

Nivolumab 2014 Unresectable Stage III or Stage IV
melanoma

Pembrolizumab 2014 Unresectable Stage III or Stage IV
melanoma

Molecularly
Targeted Therapy

Vemurafenib 2011 Patients with BRAF V600E mutation with
unresectable Stage III or Stage IV melanoma

Trametinib 2013 Patients with BRAF V600E/V600K
mutation who have unresectable Stage III or

Stage IV melanoma

Dabrafenib 2013 Patients with BRAF V600E mutation with
unresectable Stage III or Stage IV melanoma

Trametinib/ Dabrafenib
Combination

2014 Patients with BRAF V600E/V600K
mutation who have unresectable Stage III or

Stage IV melanoma

Systemic  therapy  remains  the  primary  treatment  modality  for  stage  IV  disease
[13].  Prior  to  2011,  high  dose  interleukin-2  (IL-2)  and  an  alkylating  agent,



Frontiers in Clinical Drug Research - Anti-Cancer Agents, 2016, Vol. 3, 271-324 271

CHAPTER 4
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Abstract:  In  the  1920s,  Otto  Warburg,  one  of  the  leading  biochemists  of  the  20th

century, uncovered a striking phenotype of cancer cells: their increased dependence on
lactic  acid  fermentation  for  energy  production  compared  to  that  of  the  normal  cells
from which they derived. Warburg viewed this metabolic particularity of cancer cells,
which came to be known as the Warburg effect, as a driving force in carcinogenesis.
This  perception  suggested  a  novel  path  for  cancer  therapy,  a  strategy  that  Warburg
himself proposed and defended with passion to his death. However, for many decades,
both  his  metabolic  theory  of  cancer  and  suggested  therapeutic  approach  were
essentially  ignored  by  cancer  researchers,  who  were  mostly  focused  on  the  genetic
basis of the disease and on the intricacies of the pathways known to promote cellular
proliferation, differentiation and death. Still, thanks to the combined efforts of those
who chose to pursue Warburg’s line of research, experimental evidence supporting and
extending Warburg´s findings on the metabolism of cancer cells accumulated. In the
1980s,  18F-deoxyglucose  positron  emission  tomography  (18FDG–PET)  was
implemented in the clinic.  This metabolic imaging technique, which is based on the
avidity  of  cancer  cells  for  glucose,  represents,  to  this  day,  the  only  successful
exploitation  of  the  Warburg  effect  for  medical  purposes.  The  wide  success  of
18FDG–PET  in  the  diagnosis  and  staging  of  tumors  is  among  the  factors  most
responsible for renewing interest in the central carbon metabolism of cancer cells. This
renewed interest was further boosted by the discovery of multiple links between central
carbon metabolism and cellular  proliferation, differentiation and death and  culminated
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in  the  recent  classification,  by  Weinberg  and  Hanahan,  of  tumor  metabolism  as  an
emerging  cancer  hallmark.  Tremendous  research  effort  is  now being  devoted  into  a
more  detailed  and  comprehensive  elucidation  of  the  metabolic  rewiring  that
accompanies  neoplastic  transformation  and,  unsurprisingly,  targeting  the  metabolic
peculiarities  of  tumors  has  become  a  hot  topic  in  drug  discovery.  This  chapter
summarizes past and current efforts at targeting the Warburg effect for selective cancer
therapies.

Keywords:  Aerobic  glycolysis,  Central  carbon  metabolism,  Clinical  trials,
Diabetes,  Emerging  cancer  hallmark,  18F-Deoxyglucose  positron  emission
tomography (18FDG–PET), Hypoxia, Ketogenic diet, Metabolic cancer therapies,
Metformin, Pasteur effect, Targeted cancer therapies, Warburg effect.

1.  THERAPEUTICAL  APPROACHES  TO  CANCER:  FROM
CHEMOTHERAPY TO TARGETED THERAPIES

The oldest written description of cancer known to exist can be found in the Edwin
Smith Papyrus, which is based on what was known in surgery and medicine up to
3000 BC [1,  2].  But humans must have,  in all  likelihood, been fighting against
cancer throughout their existence. Although this papyrus describes the treatment
of tumors with cauterization, it also acknowledges the absence of a cure for the
disease. By 400 BC, Hippocrates, the “Father of Medicine”, advised against the
treatment of deep-seated tumors, as this would shorten the lives of patients [2].
Fortunately,  this  perception  of  cancer  as  an  incurable  disease  did  not  prevent
significant  advances  in  cancer  therapy,  mostly  during  the  last  century.  Some
milestones  in  cancer  therapy  will  be  briefly  discussed  in  this  section.

The first successful inductions of tumor regression via systemic administration of
chemical  substances  can  be  traced  back  to  the  1940s.  At  that  time,  our
understanding of human cancer biology was very limited and the discovery of the
anticancer activity of the first cancer drugs stemmed from chance observations.
Namely,  from  the  post-mortem  observation  of  severe  myelosuppression  and
lymphoid hypoplasia in First World War soldiers dying of mustard gas exposure,
which  suggested the use of nitrogen  mustards  for the  treatment of lymphomas
[3,  4],  and  the  observation  of  increased  proliferation  of  acute  lymphoblastic
leukemia (ALL) cells upon administration of folic acid to children with ALL [5],
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which suggested the use of two folate analogues (aminopterin and amethopterin
(methotrexate;  brand  names  Abitrexate™  and  Brimexate™)1)  to  treat  this
neoplasy [6]. Although brief, due to development of tumor resistance to the drugs,
these remissions stimulated further research on cancer therapy [7].

By this time, attempts were also being made at the rational design of compounds
capable  of  interrupting  cell  proliferation.  These  early  attempts  led  to  the
development  of  several  purine  analogs,  designed  to  interfere  with  the  natural
production  of  DNA.  The  two  most  promising  analogs,  6-mercaptopurine
(Purinethol™,  Alti-Mercaptopurine™)  and  thioguanine  (Tabloid™,  Lanvis™),
were  introduced in  the  clinic  in  the  1950s,  establishing a  novel  class  of  cancer
drugs [8, 9]. Notwithstanding these attempts at rational drug design, serendipity
continued to play a role in the discovery of novel classes of cancer drugs. That
was the case with vinca alkaloids, whose anticancer potential emerged in a screen
for  antidiabetic  activity  [10].  Other  discoveries  were  the  result  of  systematic
screenings, most notably that conducted on thousands of natural products by the
National Cancer Institute, which led to the discovery of the anticancer activity of
taxanes and camptothecins [11].

Once  the  mechanisms  of  action  of  these  cancer  drugs  became  known,  new
compounds with similar actions, but with refined structures, could be synthesized.
It  was  hoped  that  these  novel  structures  would  improve  their  pharmacological
properties,  namely  in  terms  of  stability  and  efficacy.  However,  gains  achieved
using  this  approach  were  rather  modest  [7].  Those  achieved  through  further
systematic  screenings were,  likewise,  modest,  as  most  of  the new cancer  drugs
thus discovered belonged to the classes already in clinical use [12].

It  is  worth  noting that,  in  spite  of  exhibiting distinct  mechanisms of  action,  all
cancer  drug  classes  used  in  the  clinic  up  to  the  mid  1970s  acted  by  directly
interfering  with  cellular  proliferation:  nitrogen  mustards  are  non-specific  DNA
alkylating  agents  [13];  the  antimetabolite  methotrexate  inhibits  the  enzyme
dihydrofolate  reductase  (DHFR),  thereby  compromising  the  synthesis  of
thymidine and purines and, ultimately, DNA synthesis [14]; vinca alkaloids and
taxanes  are  both  antimitotic  agents  [15];  camptothecin  is  an  inhibitor  of
topoisomerase I [16], an enzyme essential for DNA unwinding during replication
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Abstract:  Follicular  lymphoma  (FL)  is  the  most  frequent  indolent  non-Hodgkin
lymphoma.  Therapeutic  strategies  vary  from  withholding  treatment  to  aggressive
chemoimmunotherapy regimes, and stem cell transplantation, depending on the stage
and risk stratification at diagnosis. A prominent role of the microenvironment in FL-
cell  survival  and  lymphomagenesis  has  been  brought  to  light  and  consequently  the
manipulation of the FL-cell niche is progressively becoming an important therapeutic
tool in FL. Chemotherapy agents are no longer under the spotlight, leaving the main
role  to  immunotherapeutic  strategies  and  targeted  therapy  that  aim  towards  disease
control  with  minimal  side-effects  and  sequelae.  Immunotherapy  with  monoclonal
antibodies, radioimmunotherapy and vaccines, has resulted in increased response rates
and survival in FL patients.

Adoptive immunotherapy is an emerging strategy for FL treatment, aiming to exploit
the immune system's natural tendency to attack tumoral cells. AntiCD20 monoclonal
antibodies  have  become the  backbone  of  first  line  and  relapse  treatments  combined
with  chemotherapy  regimens.  Anti-idiotype  vaccines  are  the  best  developed  active
immunotherapy strategy, with proven efficacy in patients with FL on first relapse. The
other vaccine types (Dentritic cells,  proteoliposomal or DNA) are still  in preclinical
development.  Adoptive  cell  transfer  (NK  cells,  LAK  and  effector  T-lymphocytes),
chimeric-antigen  receptor (CAR)  engineered  T-cells and  Bi-specific T-cell  engaging
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antibodies (BiTE) for passive immunotherapy remain also experimental  approaches,
although promising pre-clinical results have recently become available.

The  following  chapter  will  summarize  FL  biology  and  conventional  treatment  with
immunochemotherapy,  with  a  final  section  focusing  specifically  on  novel
immunotherapy  strategies  (active  and  passive)  for  the  treatment  of  FL.

Keywords: Adoptive cell-therapy, Anti-idiotype vaccines, Dentritic-cell vaccines,
Follicular  lymphoma,  Immunotherapy,  LAK  cells,  Monoclonal  antibodies,  NK
cells, Radioimmunotherapy, Vaccines.

1. INTRODUCTION

Follicular lymphoma (FL) is the most frequent indolent non-Hodgkin’s lymphoma
(NHL),  it  is  known  to  arise  from  the  follicular  B  lymphocytes  and  typically
features an indolent clinical course consisting of relapses followed by prolonged
remissions. FL was originally named Brill-Symmers disease, it was first described
in 1925 as a benign adenopatic disorder, typical of the elder [1]. FL is the second
most common NHL in United States and Eastern Europe, representing 20-40% of
all NHL and 70% of indolent lymphomas, with a yearly incidence of 3/100.000
[2, 3]. Definitive cure of FL seems to occur rarely [4], although patient survival
continues to improve with a current average above 10 years [5 - 8].

Improvements in the outcome of FL have been driven by the appearance of novel
biologic  agents  [9]  together  with  a  better  risk  assessment  at  diagnosis,  which
combines  the  traditional  FLIPI  (Follicular  Lymphoma  International  Prognostic
Index) [10] with genetic and molecular biomarkers [11]. These tools have helped
clinicians  to  individualize  treatment  intensity,  reduce  unnecessary  treatment-
related  toxicity  and  ultimately  achieve  durable  complete  remissions  [12,  13].
Immunotherapy  (e.g.  anti  CD20  antibodies,  radioimmunotherapy  or  idiotypic
vaccination)  have  probably  been the  greatest  advance  in  FL treatment  over  the
past  50  years,  contributing  to  the  extension  of  disease  free  intervals  and
challenging some of the oldest paradigms about FL treatment, such as incurability
or the use of front-line aggressive treatment to extend survival [14].
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2. BIOLOGY OF FOLLICULAR LYMPHOMA

2.1. Histopathology of FL

FL is  a  neoplasm composed  of  germinal  center  B  cells  (also  known as  follicle
center  cells),  typically  both  centrocytes  and  centroblasts,  maintaining  at  least
partially  the  follicular  histologic  pattern.  FL  is  characterized  by  the
t(14;18)(q32;q21)  translocation  resulting  in  overexpression  of  anti-apoptotic
BCL2 protein [15 - 17]. The World Health Organization (WHO) classification of
malignant lymphomas defines three histologic grades of FL (1, 2 and 3), based on
the number of centroblasts per high power field, using the cell counting method
developed by Mann and Bernard [18]. More than 15 centroblasts per high power
field defines grade 3 which is subsequently classified into grades 3a and 3b (3a
representing  an  admixture  of  centrocytes  and  centroblasts  and  3b  predominant
sheets  of  centroblasts).  Grade  3  FL  is  heterogeneous,  with  increasing  aggre-
ssiveness and less survival correlating with increasing centroblast counts [19]. In
fact,  clinical  course  of  grade  3b  FL  overlaps  with  that  of  aggressive  NHL and
therefore  should  be  treated  as  such  [15].  FL  tumor  cells  express  surface
immunglobulin (SIg+: IgM, IgD, IgG or rarely IgA) and also express typical B
cell associated antigens (CD19, CD20, CD22, CD79a). Other phenotypic features
include BCL2+, BCL6+, CD10+, CD5-, CD43+/- [20, 21]. Some cases, especially
grade 3b, may lack CD10 but retain BCL6 expression. CD43 is a common marker
of grade 3 FL [22, 23].

2.2. Follicular Lymphoma-cell Origin

The  t(14;18)(q32;q21)  translocation  involves  BCL2  and  IGH  genes,  the
breakpoint is located at the 5´ end of J heavy-chain (JH) gene, suggesting that the
event  occurs  at  the  DH  to  JH  rearrangement  stage;  such  event  occurs  in  bone
marrow lymphoid progenitors or B cell precursors (pro-B and pre-B cells) [24 -
28].  Furthermore,  FL-cells  occasionally  display  class-switch  recombination
(CSR),  suggesting  altogether  an  origin  between  lymphoid  progenitors  in  bone
marrow and late germinal center follicular cells [29, 30].

After  the  immortalization  event,  FL-cells  are  thought  to  continue  their  normal
differentiation  path  through  the  germinal  center  in  spite  of  the  BCL2-IGH
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CHAPTER 6
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Abstract:  Epigenetics  is  increasingly  recognized  to  play  an  important  role  in
tumorigenesis. The epigenome encompasses a multitude of elements that regulate gene
expression, including DNA methylation, histone modification, microRNA, and more
recently, non-coding RNA. Aberrant regulation of the epigenome has been implicated
in altered gene expression and function, which contribute to cancer development and
progression via the promotion of cellular transformation, metastatic spread, and drug
resistance. Emerging evidence indicates that the activities of key epigenetic regulators
including DNA methyltransferases and histone modification enzymes are sensitive to
cellular  metabolism.  The  efficiency  of  these  metabolic  enzymes  depends  on  the
availability  of  substrates  and/or  co-factors  that  can  be  profoundly  altered  in  cancer.
Mutations in metabolic enzymes in cancer also generate oncometabolites that can lead
to the dysfunction of DNA and histone demethylases. Conversely, through mediating
aberrant  expression  of  genes  that  are  involved  in  cellular  metabolism,  epigenetic
mechanisms  could  contribute  to  metabolic  rewiring  in  cancer  to  confer  a  growth
advantage to cancer cells. Understanding this cross-talk between epigenetics and cancer
cell metabolism may unravel novel therapeutic opportunities. In this chapter, we will
review  recent  discoveries  linking  epigenetics  and  cancer  cell  metabolism,  their
implications in oncogenesis, and highlight potential approaches to target these cancer-
specific abnormities therapeutically.
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INTRODUCTION

Epigenetics is defined as heritable changes in gene expression that are not resulted
from change(s) in the underlying DNA sequence. Epigenetic regulation of gene
expression can be highly dynamic and of a transient nature, or can be relatively
stable  and  be  passed  to  offspring  through  the  germline.  Given  its  role  in  the
regulation of gene expression, it is increasingly recognized that epigenetics play
an  important  role  in  cell  growth,  differentiation  and  development.  The  human
‘epigenome’ encompasses three major elements that  interact  with each other to
co-operatively to either activate or silence gene expression, which involves direct
chemical modification of DNA by methylation, alteration of DNA accessibility by
histone modifications, and the selective silencing of mRNA levels by noncoding
RNA.

The tight  regulation of  the epigenome is  essential  in  normal cellular  processes.
Consequently, disruption of the epigenetic machinery can cause the inappropriate
activation or silencing of genes, leading to the development of numerous diseases.
The notion that epigenetic disruptions may be associated with cancer development
was  first  proposed  in  the  1980’s  [1,  2].  Extensive  research  over  the  past  two
decades  has  clearly  demonstrated  that  epigenetic  dysregulation  contributes  to
tumorigenesis by silencing of tumor suppressor genes [3 - 5]. With the advent of
next-generation sequencing in conjunction with chromatin immunoprecipitation
(ChIP-Seq) [6] and microarray technologies (e.g. Illumina 27K and 450K) [7], we
are  just  beginning  to  appreciate  the  impact  of  epigenetic  dysregulation  in  the
development of cancers on a genome-wide scale [8].

Comprehensive molecular characterization of the cancer genome, transcriptome,
epigenome  and  proteome  by  the  Cancer  Genome  Atlas  (TCGA)  has  further
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highlighted the role of aberrant epigenetics across different types of cancer, such
as  promoter  DNA  hypermethylation  in  a  subset  of  colorectal  cancers  [9]  and
extreme hypermethylation in Epstein-Barr virus (EBV)-associated gastric cancer
[10]. Moreover, whole genome sequencing has unraveled a number of epigenetic
regulators, such as chromatin modification enzymes, that are recurrently mutated
in various cancers, indicating that they may be driver mutations in carcinogenesis
[11].

Recent  studies  have  revealed  an  intricate  relationship  between  epigenetics  and
cancer metabolism [12 - 14]. Cancer cells exhibit metabolic alterations to support
an increased biosynthesis [15] and adaptations to allow their proliferation under
an  adverse  microenvironment  [16].  For  example,  cancer  cells  consume  more
glucose than normal cells through aerobic glycolysis, an inefficient pathway that
generates  much  less  ATP  than  oxidative  phosphorylation,  a  phenomenon  also
known as the ‘Warburg’s effect’ [17]. Such a metabolic re-programming is crucial
for cancer cell survival, and is activated by oncogenic signaling cascades such as
PI3K-AKT-mTOR [18]  and  transcription  factors  such  as  the  hypoxia-inducible
factor (HIF) and MYC [19], and the inactivation of tumor suppressor signaling,
e.g. LKB-AMPK [20].

Metabolic sensing by the epigenetic machinery represents a built-in mechanism to
regulate cellular activities in response to environmental clues, and it is frequently
deregulated  in  cancers  [12,  16].  There  exists  a  four-way  cross-talk  between
epigenetics  and  metabolism  in  cancer:  epigenetic  dysfunction  that  1)  directly
affects  expression  of  metabolic  enzymes;  and  2)  indirectly  alters  signaling
transduction cascades involved in the control of cell metabolism; and metabolic
alternations that 3) influence the availability of substrates and cofactors necessary
for the proper functioning of epigenetic modification enzymes; and 4) result in the
production of oncometabolites that act as agonists or antagonists for epigenetic
modification enzymes. In this chapter, we will provide a brief background on the
epigenetic and metabolic dysregulation in human cancers, followed by a detailed
account  of  the  cross-talk  between  epigenetics  and  cancer  metabolism,  its
underlying  cause,  clinical  significance  and  potential  therapeutic  implications.
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Abstract:  Apoptosis  (called  as  programmed  cell  death)  is  vital  for  maintaining
homeostatic balance between cell survival/cell deaths in metazoan cells. Apoptosis is
regulated  through  extrinsic  (or  receptor  mediated)  and  intrinsic  (or  mitochondria
mediated) pathways. The pro-apoptotic proteins (e.g. Bax, Bak, Bad, Bcl-Xs, Bid, Bik,
Bim and Hrk) and the anti-apoptotic proteins (e.g.  Bcl-2, Bcl-XL, Bcl-W, Bfl-1 and
Mcl-1)  are  crucial  to  control  the  apoptotic  pathways.  Dysfunctions  of  apoptosis
pathways  are  implicated  in  cancer  as  defects  in  these  pathways  not  only  promote
tumorigenesis  but  also  confer  resistance  to  cancer  cells  to  most  conventional
chemotherapies  as  well  as  radiotherapy.  The  apoptosis  occurs  by  imbalanced  pro-
apoptotic  and  anti-apoptotic  protein  levels,  impaired  or  reduced  death  receptor
signalling and caspase function. Hence, targeting apoptosis pathways is considered as
an attractive strategy for therapeutic intervention in cancer. The past decade recorded
tremendous advances in this area especially small molecular intervention of apoptosis
pathways  for  cancer  treatment  which  resulted  in  several  compounds  under  clinical
development.  This  chapter  reviews  the  current  progressions  in  the  development  of
bioactive  molecules  targeting  apoptotic  pathways  with  special  emphasis  on  small
molecular anticancer drugs under clinical trials. Some excellent examples are; nutlins,
MI-888,  MI-219  and  SM-164  which  target  MDM2,  ABT-263,  AT-406  and  GX15-
070MS which target Bcl-2 family of proteins, birinapant, GDC-0917, HGS-1029 and
LCL-161  which  target  IAPs  (inhibitors  of  apoptotic  proteins).  The  content  of  this
chapter  will  be  enlightening  the  readers  in  academic  and  research  to  update  their
knowledge on the anticancer drugs especially target proteins responsible for apoptosis.
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CANCER

Cancer is a life threatening, multifaceted disease that involves disruption of the
normal  balance  of  cellular  life  and  death  through  dysregulation  of  cellular
homeostasis  and  the  prevailing  mechanisms  responsible  for  cell  growth  and
replication. Mechanisms responsible for cancer development include dysregulated
response to growth signals, angiogenesis, uncontrolled replication, tissue invasion
and metastasis, and evasion of apoptosis. Statistically, cancers accounted for 8.2
million deaths and 14 million new cases in 2012 and the number of cancer related
deaths is expected to rise to 22 million within the next two decades [1 - 3].

Anticancer drug discovery is a challenging task owing to high attrition rate mainly
attributed  to  lack  of  efficacy,  non-selectivity,  toxicity  and  incompatible
pharmacokinetic  profiles  of  anticancer  agents  which  are  under  clinical
development. Hence, discovery of “safe and effective” anticancer drugs remains a
priority area for researchers working on cancer worldwide. The effectiveness of
drugs  used  for  the  cancer  therapy  is  dependent  on  the  type  of  targets  which  it
modulates.  Biochemical  pathways  necessary  for  growth  and  survival  of  cancer
cells  are  attractive targets  for  anticancer  drug discovery.  The former comprises
mainly  of  signal  transduction  pathways  regulating  growth  and  proliferation  of
cancer cells  while the latter comprises of pathways which enhances survival of
cancer  cells  by  imparting  ability  to  repair  and  evade  cell  death  (apoptosis).
Targeting apoptosis  pathways for  anticancer  drug discovery is  relatively  a  new
avenue  compared  to  the  much  established  therapeutic  strategies  targeting
pathways  regulating  growth  and proliferation  of  cancer  cells.  Nevertheless,  the
increased understanding of molecular mechanisms that regulate apoptosis together
with  convincing proof-of-principle  evidence  obtained in  several  animal  models
confirming the validity of apoptosis targeted drug discovery for cancer led to the
development  of  several  apoptosis-based  therapeutics  for  cancer  therapy.  This
chapter  reviews  the  advancements  in  the  discovery  and  development  of  small-
molecules  attacking apoptotic  pathways with special  emphasis  on the bioactive
molecules under clinical trials.
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APOPTOSIS

Apoptosis  (programmed  cell  death)  is  essential  for  maintaining  homeostatic
balance between cell survival/cell deaths in metazoan cells. The role of apoptosis
in  the  physiological  and the  pathological  conditions  remains  to  be  an intensely
investigated area in biological research [4]. Apoptosis is triggered by imbalance in
the  pro-apoptotic  and  anti-apoptotic  protein  levels  resulting  from  impaired  or
reduced  death  receptor  signalling  and  caspase  functions.  Apoptosis  is
accompanied by a  series  of  biochemical  changes including caspases  activation,
DNA and protein breakdown, membrane changes and recognition by phagocytic
cells [5, 6]. Dysfunction of apoptosis pathways are implicated in cancer as defects
in these pathways not only promote tumorigenesis but also confer resistance to
cancer cells to most conventional chemotherapies as well as radiotherapy. Hence,
targeting  the  apoptosis  pathways  is  considered  as  an  attractive  strategy  for
therapeutic  intervention  in  cancer  [7].

MECHANISMS OF APOPTOSIS

Understanding the mechanism of apoptosis formation is vital to comprehending
the pathogenic circumstances developed from disordered apoptosis (Fig. 1) [5].
Apoptosis  is  triggered  either  through mitochondria  (intrinsic)  or  death  receptor
mediated pathways (extrinsic). A myriad of stress signals caused by therapeutics
(chemo  and  radiotherapies)  activate  the  intrinsic  pathways  of  the  apoptosis.
Subsequently, the signal is relayed to the mitochondria upon the stress, leading to
the mitochondrial  outer membranes permeabilization (MOMP). This allows the
apoptotic  proteins  including  cytochrome  c  and  second  mitochondrial-derived
activator of caspases (SMAC) to be released into the cytosol from mitochondria.
The cytochrome c causes the formation of a multiprotein complex (apoptosome)-
cytochrome c, apoptotic protease activating factor 1 (APAF1) and procaspase-9,
initially. This causes activation of the caspase-9 activity and downstream caspase
cascade  from  procaspase-9.  Further,  the  release  of  SMAC  stimulates  caspase
activation by neutralizing IAPs, which regulates apoptosis through inhibition of
caspases [5, 6].
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