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PREFACE

First of all let us believe and recall the neglected fact in our life that “the mother of all
human science is Mathematics”. Dear students, readers, researchers and all those who
respect mathematics, we introduce this book which may be helpful for them. Most of the
researchers directed their own research work to the numerical analysis, due to the rapid
communications and the advances in the computer programming. In the present book, we
introduce some mathematical concepts that are widely important and can be considered on the
basis of the numerical analysis. We presented the topics in a simple way of presentation and
no proofs for theorems, because we decided to introduce the scientific material without
complications related to those working on pure mathematics. Our main research work is the
computational engineering and applied mathematics and numerical analysis; therefore, the
present book can serve as the base of a future textbook in numerical analysis. We hope and
pray that this work will last forever.
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CHAPTER 1

Functions of One Variables

Abstract: This chapter aims mainly to spot the lights on the basis of mathematics
of function of one variable, different types, properties. Functions encountered
nearly in everything in our daily live and even who works in the field of numerical
analysis needs to be in a solid background of the mathematics of functions.

Keywords: Domain, elementary basic functions, function definition,

range.

1. INTRODUCTION

Functions arise in a great variety of situations, here are some examples,
such as the area of the circle of a given radius, the surface area of a sphere
and the volume of the sphere. The functions are also found in different
branches of science and also can be found in our usual daily life. One can
say, studying the functions are not restricted to mathematics but also in so
many branches of science, technology and engineering [1].

2. CALCULUS IN GENERAL

The following diagram shown in Fig. (1), is general layout of calculus
during this stage of study.

3. FUNCTION DEFINITION

A function is defined as a relation between one or more independent
variables and other dependent variable [2]. One important manner for the

S. G. Ahmed
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reader is to differentiate between three different topics, function, relation
and equation. | see the relation is the more general topic from which one
can deduce the other two topics.

Derivatives

Calculus

Scalar

Differential
Lpplication

Functions

Forms

ector

Functions

Fig. (1). Calculus branches.
4. CONSTANTS AND VARIABLES
4.1. Constant

A constant is a quantity, which has one and only one value.
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Example

The diameter and length of the circumference of a circle can attain
different values depending on circumference. Consequently, generally
speaking, variables, whereas the ratio of the length of the circumference
to its diameter is a constant and equal to  [3].

4.2. Variable

A dependent variable y is a function of a variable x if they are related so
that to each value attained by x there corresponds a unique value of the
other variable y [4].

Example

For the following, determine if y can be considered a function or not.
1)  y=3-x

2  y*=3-x

Solution

1) Referring to the given formula, one can see easily that the
exponent of the dependent variable y is one, while the exponent of the
independent variable x is two, so for each two symmetric points over the
horizontal axis, only single value over the vertical axis. So this equation is
said to be a function.

@) Let us re-write the equation as y = ++/3—Xx. Here, it is clear that
for each value of x there exist two values for y which, is different
from the basic definition of a single-valued function. So the given
equation is a relation.



52 Higher Mathematics for Science, Technology and Engineering, 2016, 52-108

CHAPTER 2

Derivatives and Their Applications

Abstract: The basis of the derivative for functions of one variable is introduced
herein. The chapter started from the basic definition of the derivative, geometric
meaning and growing up to the derivatives of the basic functions. The rules of the
derivatives are presented in some details so as the reader can be easily familiar with
the different rules of derivatives.

Keywords: Derivatives, domain, elementary basic functions, range.

1. DEFINITION OF DERIVATIVE

The first derivative of any function f(x) is defined as [19]:

v i T(x+AX) - f(x)
f (X)_AI!(TO AX

(1)

The fraction in the right hand side is sometimes called Fermats difference
quotient [20].

Example
Find the first derivative for f (x)= x°

Solution

f/(x)zAlir_r,‘o f(x+AAxX)— f(x)

S. G. Ahmed
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v (X AX)? = X2
- i 007 =)

2 2 2
f(x)= lim X2 + 2xAxZX(Ax) — X
= 2X

Example

Find the first derivative for f(x)=x*-3x atx=2.

Solution
By definition
f/(x)= lim ((X +Ax)* =3(x+ AX))— (X3 - 3x)
M0 AX
f/(x)=3x*-3
Then

f/(x)=3>2) -3=9

2. RIGHT AND LEFT HAND DERIVATIVES

Afunction f(x) is said to be differentiable at a point x=a if the right
and the left-hand derivatives at this point are existed [21].
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Left-hand derivative

f(a+h)-f(a)

f'(a’) = lim 2)
h—0"
Right-hand derivative
f(a) — lim f(a+hh)— f(a) @)

Example

Discuss the differentiability of the following function:
X X<2
f(x)= { at x=2
>2

Solution

Let us now evaluate both left and right hand derivatives respectively as
follows:

Left-hand derivative

£ (a") = lim f(a+h)-f(a)

h—0~

h
£/(27) = lim X=2 21
h—0" X — 2

Right-hand derivative
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CHAPTER 3

Partial Differentiation and Their Applications

Abstract: The basis of the partial derivatives is the basis of the partial differential
equations and their wide applications. The chapter started from the basic definition
of the partial derivative, geometric meaning and their rules.

Keywords: Domain, range, elementary basic functions, functions of

several variables, partial derivatives.

1. INTRODUCTION
In mathematics, a partial derivative of a function of several variables is its

derivative with respect to one of those variables with the others held

constant. The function f(x, . ) has a number of partial derivatives

equals the number of its independent variables. The mathematical symbol

of the partial derivative is % for example the partial derivative of the
of

function with respect to the independent variable x writtenas ¢ [31].
OX

The basic formula for the first partial derivative is the same as in the total
derivative, therefore, let us now define the basic formula for the first
partial derivative for the function with respect to the independent variable
X, as follows:

S. G. Ahmed
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f(x+Axy)-f(x,y)

f, (0 y)= fim 20T @
The same definition is for any other independent variable:

_ i ooy +ay)-f(xy)
f,(xy)= lim Ay )

2. RULE FOR FINDING PARTIAL DERIVATIVES

To find fx deal with other independent variables as constant and the same
basic rule is still valid for all other independent variable.

Example

Using the basic definition of partial differentiation to find fx and fy for

f(xy)=x°
Solution
By definition;
e (HAX)Y? — xy?
fx(x’ y)_ AIJ(TO AX
2
_lim &Yy
Ax—=0  AX
f (X y)_ lim X(y+Ay)2 _Xy2
yA Ay—0 Ay
— Jim 294 _ 5
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The partial derivatives fx and fy are denoted by:

0
f =—f(x,
o oX (xy)
0
fy=5f(x,y)
Example

Find the following partial derivatives.

Find f,(21) and f,(21) given f(x,y)=x®+xy® -2y’
Solution

Holding y constant and differentiating with respect to x , we get
f (% y)=3x*+2xy® and

So

f(x=2y=1)=3x?+2xy°
=16

Holding x constant and differentiating with respect to y, we get
f,(x,y)=3x*y* -4y
So

f,(x=2,y=1)=8

111
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CHAPTER 4

Fundamentals of Equations and Equation
Theory

Abstract: Equations arise in different branches of mathematics, and so the need of
dealing with theory of equations as a separate topic of mathematics. In this chapter,
the theory of equations are described and explained well and in a brief details.
Operations related to equations and transformations are also explained well with
detailed examples.

Keywords: Cubic equation, roots of polynomials, remainder theory,

synthetic division, theory of equations, transformations of equations.

1. INTRODUCTION

Let us start the subject of theory of equations by asking our-self the
following question: What does it mean by a polynomial of degree "n™
[38]?

P(x)=a, +aX+a,x’ +aXx’ +----+a X" (1)
is called a polynomial of degree n.

Example

2+3x-3x" +4x* =0

And

S. G. Ahmed
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x3—\/§x+%:0

The coefficients a,, a, a,,---, @, may be complex, such as:
x* —iv/3x+8=0
Different types of polynomials given below, as shown in Table 1;

Table (1). Types of polynomials.

n Type Example
0 Const.nt P(X) =a,
1 Linear P(X) =a, +aX
2 Quad.atic P(x)=a, +a,x+a,x’
3 Cubic P(x)=a, +a,x+a,x* +a,x°

2. APOLYNOMIAL ROOTS

An algebraic equation of degree n of the form (1) has exactly n roots.
These roots may be real, complex distinct or repeated [39].

3. THEOREM OF THE REMAINDER

The Remainder Theorem is useful for evaluating polynomials at a given
value of x. The Theorem talks about dividing the polynomial by some
linear factor (x—a), where "a" is just some number. Then, thinking
about the long division, you end up with some polynomial answer q(x)
(for "quotient polynomial™) and some polynomial remainder r(x) [40].
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Example
Divide the polynomial p(x) = x3 — 7x — 6, by the linear factor x — 4:

x +4x+ 9

x—4)x3+0x2—?x—5
— 22 +4x°

4xt-Tx -6

—4x% +16x
9x— &
~9x+36
30

The final result is x? + 4x + 9 on top (this is q(x)), and a remainder of 30.

4. THE SYNTHETIC DIVISION

Synthetic division is another way to divide a polynomial by the binomial
X-C, where c is a constant [41]. The major steps can be stated as follow.

Step 1: Set up the synthetic division
Make sure first that you write it in descending powers and you put zero
for the missing terms. For example, if you had the problem

(x* - 3%+ 5+ (x-4)

The polynomial x* —3x+5, starts out with the fourth degree. This
polynomial is missing degrees three and two. We can now write the
division as follows:

:Jr—d‘r)x'*+[:]Jr3+[:]x:4 -3x+5

Then
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CHAPTER 5

Theory of Determinants and Matrices and
their Applications in Linear Equation Theory

Abstract: Determinants and matrices are very important subjects that are widely
found in different branches and topics in mathematics. The present chapter deals
with these two topics in some brief details starting the preliminary definitions of
determinants and matrices, their properties. The linear system of equations from its
mathematical constitution till different methods of solutions is also discussed in
brief details.

Keywords: Cofactors, determinants, elementary matrices, eigenvectors,

Laplace expansion, minors, matrix operations.

1. THE DETERMINANTS

Consider the following system of two linear equations:
ax+by=0 (1-a)
a,x+b,y=0 (1-b)

Eliminating of x and y gives:

& y_&

a__J_2% 2
b, X b, (@)
ap, —a,b, =0 3)

S. G. Ahmed
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or

b

a2 2

Equation (4) is called a determinant of second order [47]. Generally the
determinant of order n is written as:

a, b, C, d, . I,
a, b, c, d, ... l, )
a, b, C, d, ... l,
The diagonal which contains the elements, a,,b,,c,,........ 1, is called

the major, leading or principal diagonal.

2. SOME FUNDAMENTALS
2.1. The Minor

Each element ib any determinant has a minor. This minor is obtained by
deleting the row and the column corresponding to that element [48].

Consider the following determinant:
a b, C,

A=la, b, ¢, (6)
a3 b3 C3

The minor of b, is:

()
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2.2. The Cofactor

The cofactor is a minor determinant corresponding to any element of the
whole determinant, taking the sign rule into consideration. The sign of an
element is the ith row and jth column is (—1)"’. The cofactor of an
element is usually denoted by the corresponding capital letter.

2.3. The Laplace Expansion

Laplace expansion is a method to evaluate any determinant. The
determinant can be expanded in terms of any row (or column) as follows:

"Multiply each element of the row (or column) by its cofactor and then
add up all these terms" [49].

Expand the determinant given in (6), by the first row:

(8)

Thus, A is the sum of all products of the elements of any row (or
column) by the corresponding cofactors.

Example

Evaluate the following determinant:

1 3 5
A=|2 1 3

3 0
Solution

Expand through the first row:
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CHAPTER 6

Partial Fractions

Abstract: Partial fractions encountered within theoretical and applied problems.
Also, the partial fractions are good mathematical tools when solving complicated
integrals. The main usage of the partial fractions can be considered as a simplified
mathematical tool.

Keywords: Fraction decomposition, rational fractions.

1. INTRODUCTION

In algebra, the partial fraction decomposition or partial fraction
expansion is used to reduce the degree of either the numerator or the
denominator of a rational function. Partial fractions are used in
calculating the inverse of transforms; such as the Laplace transform, or
the Z-transform [55].

2. DEFINITION OF THE PROPER FRACTION
A FUNCTION OF THE FOLLOWING FORM [56]:
p(X)=a,x" +a, X" +a, X" +...+ax+a, 1)

Wherea,,a, 1,8, .o ,a,,and a, are constants and n is a positive integer,
is said to be a polynomial in x in degree n., e.g. P(X) =5x* ++2X—7 is
a polynomial of second degree.

3. RATIONAL FRACTION

A rational function is a quotient polynomial function, that is [57],

S. G. Ahmed
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P(x)
f(X)=—— 2

Where P(x) and Q(X) are two polynomials in x.

For example:
x* -3
f(X)=——
) x> +2x+1

is a rational function. A rational function is improper if the degree of the
numerator is greater than the denominator and other wise is proper.

Example

Consider the following two fractions:

3x2 -1
1) U3 502 g4
X" +7X° -4
2x3 +6x2 -9
@) 02 Ay o
XS —=3x+2

The first one is a proper fraction because the maximum degree of the
numerator is less than the maximum degree of the denominator. The
second one is an improper fraction, as the degree of numerator is larger
than the degree of the denominator. To reduce an improper fraction to a
proper one, the numerator is divided by the denominator.

The result of this process is

(2x+13)
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And a reminder

L 32x—-33 J

x> —3x+2

Which is in fact a proper fraction as the degree of the numerator is
smaller than the degree of denominator.

2x% +6x° -9 32x-33

5 =2X+12+ >
X°—3X+2 X°—=3X+2

FINDING ROOTS OF THE DENOMINATOR IN A FRACTIONAL

FUNCTION

The most important step in partial fraction is to find the roots of the
denominator. Here are some examples.

Example

X+4 B X+4
(X2 —)(x+1D)  (X=2)(x+2)(x+1)

Example
Expand the denominator in

X+5 X+5
X -1 (x* -1 +1)
B X+5
T (X=D(X? + X +D)(X+D)(X2 —x+1)
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Example
X+8 X+8
x(x* =16)  x(x* —4)(x* +4)
B X+8
X(X=2)(x + 2)(x* + 4)
Example
X+4 X+ 4

X2 +13x-7 (x+7)(2x-1)

PARTIAL FRACTIONS

Case of Linear Denominators

In the case the denominator p(x) is a multinomial function (i.e. a function
of x" with many elements) and it is possible to split this function into
several linear factors. In this case the rational function writes:

F(x)_ f(x)
p() (=X Jx = L (x= ;) 3)
= Al + Az +n An

The coefficients A1, Az,...An are evaluated as follows
First Method

1-Reduce equation (3) into the same denominator:
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+ A (X=X )X = Xg ) (X=X, 4)

AL (X=X X=X, orreen(X = X, ;)

2-Equate x=x1 in eq.(4), gives A1 = f(x)/(X-x2) (X-X3)..(X-Xn)
Equate x=xz in eq.(4), gives Az = f(x)/ (x-X1) (X-X3).. (X-Xn)
Similarly for the coefficients As, As,....An

Second Method

The coefficients are evaluated directly as :

i f(x)
A X )= X)X =)
i f(x)
A =]im (X=X )(X = X, )ere(X = X,,) ®)

f(x)

N x—x, (X—Xl)(X—XZ)...(X—Xn_l)

Example

X+4

Expand the function ————
X“+13x -7

Solution

The function is a proper fraction and is expanded as

x? +13x -7
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X+4
x> +13x -7
X+4 A B
= = +
(x+7)2x-1) x+7 2x-1

(a-1)

Evaluation of the coefficients Aand B
First method

Reduce equation (a-1) to the same denominator
A2x-1)+B(x+7)=x+4

at x=1/2 B(1/2+7) =1/2+4

Get

B=9/15

At x=-7 A[2(-7)-1]=-7+4

A(-15) =-3,

We get

A=1/5

Hence

X+4 _E 1 +g 1
x> +13x—7 5x+7 152x-1

Second method
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x+4 X+4
x2+13x—7 (x+7)2x-1)
A B

=——+
X+7 2x-1

Both results are the same.
Example

Find the partial fraction expansion of

7x* - 25X +6
(X* —2x-1)(3x-2)

Solution

Roots of

S. G. Ahmed
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(x2-2x-1)(3x-2)=0

1- First parenthis
x> -2x-1=0

Xy 5 —1+1+1
=1+4/2

2 — Second parenthis
3X—-2=0
X, =213

(a-2)

Expand the fraction into partial fractions

7x%-25x +6
(x* —2x-1)(3x—2)
Ax+B C
= +
(x> —=2x-1) 3x-2

(a-3)

Notice that the quadratic denominator is kept as x1,2 are irrational roots.

The coefficient of the second term is:

_ TX*-25x+6

C=Ilim —————

X% (x°—=2x-1)
=4

Then reduce equation (a-1) to the same denominator
(Ax+B) (3x-2) + C(x* —2x-1) = 7x> - 25x + 6

Equate coefficients of different powers of x
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Coefficient x? 3A+C=7

Replace forC =4 - 3A=3

A=1

Coefficient of x! 3B-2A-2C=-25
3B =-15

we get

B=-5

Replace for A,B and C in eq.(a-1)

7x%2 —25x +6 x-5 4

(x? ——1)(3x — 2) Cx2_2x-1 3x-2

RATIONAL FUNCTIONS WITH REPEATED LINEAR
DENOMINATOR

) _ A A A,

=+ ... 6
@b ax+b (@bl @iy ©
The coefficients A1,Az,....An are evaluated by one of the two methods:
First method
Eq.(6) is reduced to the same denominator (ax+b)"
Ar(ax+b)" 1+ Ar(ax+b)" ... +4n =f(x) (7

The coefficients of X%, x* , x?, ....x"* are equated in both sides od eq.(7) .
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This results in a system of (n) equations in the
unknown A1, Az,....An, which are solved subsequently.

Second method

Is known as Heaviside method, where the coefficients A1, Ao,....An are
evaluated in a descending order according to the following formulas

An - x—|>im/a f(X)
A= lim L f(x)
1 x>-bla dx
. 1d?
- = 8
An _x—I>I[Tk;]/a 21 dx? f(X) ( )

A = lim 1 _d f(x)

x->-b/a (n __‘]_)! d7

Example
x? -4x -15 . :
Express 3 na partial fraction form
x+2)
Solution
2
X®-4x-15 A B C (a-1)

3 + 2 T 3
(X +2) (X+2) (x+2)° (x+2)
where A, B, C are calculated using Heaviside method

A= lim i d

2
Ui (x° —4x-15) (a-2)
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B=lim Sf(x)= lim 2x—4=—8

x——2 dX X——2
C= Iir[lz f(X) = (-2)* -4(-2)-15=3

Replace for A, B, C in the original function:

x°-4x-15 1 8 3
Cox+2°%  x+2 (x+2)? (x+2)°

Another method of solution
2
Lxgmlet y =X+2, thenx=y-2
x+2)

 x?-4x-15  (y-2)°-4(y-2)-15
- (x+2)° y’

1 8 3
X+2 (x+2)* (x+2)°

which is the result obtained previously.

S. G. Ahmed

(a-3)

(a-4)

(a-5)

(a-6)

(b-1)

(b-2)
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Example

x?-6x+2 A B C D
20 o2 w2 2 "
X“(X-2) X< X (x-2)¢ X-2
Solution

Heaviside method is used

Roots of the denominator x?(x-2)?=0

The roots X = 0, x = 2 are double

2
A—lim X —6x+2: 2
x>0 (x-2)° -2?

(c-1)

A= % (c-2)

Similarly

B= a  f(x

x=0 dx (X - 2)°
_jim F& -2)? —2f(x)(x-2)
x—0 (X_2)4

_lim f(X)(x-2)-2f(x)
x—0 (X-2)3

(c-3)

where f(x)=x>-6x+2 ,f'(x)=2x-6

we get
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5 (BD-2"_
-2

C—lim 10 _1(2_-6_-3
x—2 x2 4 4 2
D=Iim 41
x>2 dx x2
_lim f(X).x? —42xf (x)
X—2 X
_lim f1(x).x —32f(x)
X—2 X
_f(2).2-21(2)
==
_(2@-2(-6) _,
8

Replace for A, B, C, D in the original equation

x?-6x+2 1 1 3 1

x2(x-2)2  2x% X 2(x—2)2+(X—2)

Example

Express in partial fraction

2x2+7x+23 A B C

(x-(x+3)2 (x-1) " (x +3)? T x+9)

S. G. Ahmed

(c-4)

(c-5)

(c-6)



Partial Fractions Higher Mathematics for Science, Technology and Engineering 239

Solution
2
A lim 2X +7x+23:2+7+23:g:2 (d-1)
x>l (x-3)2 (4)? 16
By Heaviside method
2
B — Iim 2X° +7x+23
x—-3 (X -1)

_29-73+23

R (d-2)

_18-21-23

-4
=-5
X (x-1) (6-3)
FOY(x -1) - f(X)

Cxo-3 (x-1)
Where
f(x)=2x2+7x+23 (d-4)
f(-3)=2.9-7.3+23=20 (d-5)
f (X)=4x + 7 (d-6)

f/(-3)=12+7=-5 (d-7)
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FRCCECHC RN @8)

Replace for A,B,C, and D in the original function;

C2X°+7x+23 25
T x=D(x+3)2 x-1 (x+3)2

(d-9)

CASE OF AQUADRATIC FACTOR IN THE DENOMINATOR
f(x) f(x) . Ax+8B . C

= = 9
p(x) (ax® +bx+c)fx-x) (ax®+bx+c) (x—x,) ®)
In this case C is evaluated by :
C=lim—1X (10)

x>x ax® +bx+c

And A, B are obtained from the reduction of equation (4) to the same
denominator; and the comparison of the coefficients of x° x!,..x" on both
sides of the following equation:

(Ax+B)(x-x1) + C( ax?+bx+c) = f(x) (11)
Example

Expand in a partial fraction form

4x* 28

_ a-1
x*+x%-6 (@-1)
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Solution
4x* - 28 _ 4x* - 28
X*+x2-6 (X*+3)(x*-2) (a-2)
Ax+B Cx+D

X3 X2
Reduce eq. (a-2) to the same denominator
(Ax-B)(x?-2)+(Cx+D)(x*+3)= 4 x°-28
Equate
Coefficient of x*A+C=0.. A=-C (a-3)
Coefficient of x* B+D=4..D=4-B (a-4)
Coefficient of x -2A+3C =0 (@-5)
Replace for A=-C get 5C =0 .- A=C=0 (a-6)
Coefficient of x° - 2B+3D=-28 (@-7)
Solving:
5D=-20.: D=-4 (a-8)
B=8 (a-9)

Replace for A,B,C and D, we get:
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2_
le 228 _ 28 B 24 (a-10)
XT+X°-6 X°+3 x°-2

RATIONAL FUNCTION WITH REPEATED QUADRATIC ROOTS

fx)_ ()

p(x) (ax? +bx+c)

(12)
_ AX+B, N Ax+B, A A X+ B, :
(ax? +bx+c)  (ax* +bx+c) (ax? +bx+c)
Example (12)
2
Find the partial fraction for 2X +102X 3
(X+1)(x°-9)
Solution
Let the denominator
2x3 + 10x — 3 = f(x) (a-1)
f(X) _ A N B N C (@-2)
x+Dx%2-9) x+1 x-3 x+3
Get A, B and C as follows
A lim f(X) :2(1)-10—3:-11:1 (a-3)
x>-1 (x2 -9) 1-9 -8 8
2 _ 2 _
_p 2x2+10x-3 _ 2(3) +10:3-3 _5 (a-4)

=lim =
x>8 (X +1)(X+3) 4.6 8
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Similarly C is evaluated

2x* +10x-3 _ 2.3)* +10(-3)-3 -5

C=Ilim = (3'5)
x>8 (x-1)(x-3) (-3-1)(-3-3) 8
2x*+10x-3 1/8 5/8 5/8

= + - (a-6)
x+1)(x°-9) x+1 x-3 x+3
Example

1 . .
Express as partial fractions
X” =X =x+1

Solution

1 1 1 (b-1)

CX=D)—(x=1) E-D(x=-1 (X=1)2(x+1)

This form is the first step to express fraction in a partial fraction form. It
is required to complete the solution.

Example

Find partial fraction Decomposition of

F(x)=—X=5
(x—=1) (x-2)
Solution
3x-5 A B

- (x2) (x-1)  (x-2)
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Reducing to the common denominator and equating the numerator, we
have:

3x—5=A(x-2) +B(x—1)
There are two methods to find the value of A and B:
Method (1)

Put x=1 in the above equation, we get:
31)-5=A1-2) , ..A=2

Put x=2 in the above equation also, we get:
3(2)-5=B(21) , ..B=1

Method (2)

Equating the coefficients of x'and x° (absolute term), we get

a system of equations for determining the unknown coefficients:

3=A+B ,and 5=2A+B,
then solving this system of equations, we get:

A=2,andB=1

. 3Xx-5 2 N 1
T (x=D(x2)  (x-1)  (x-2)
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Example

Find partial fraction Decomposition of

X+4
f(x)=
() 2x2 +13x—-7
Solution
F(x) = X+4 X+4 A B

ox2 +13x—7 (x+7)(2x-1) N (x+7) " (2x-1)

Reducing to the common denominator and equating the numerator, we
have:

X+4=A(2x1)+B(xX+7)

At X=1 —)B(1+7J=L1+4J , .'.B=g
2 2 2

15

At x=-7 - A2(-7)-1)=-7+4 .'.A:%
1 9
X+4 5 . 15

COxE413x—7  (x+7)  (2x-1)

Example

Find partial fraction Decomposition
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f(X):#
(x+1)° (x-2)
Solution
x*+2 A LA
(x+1)°% (x-2)  (x+1°®  (x+1)?
A, B

+ +
(x+1) (x=2)

Reducing to the common denominator and equating the numerator we
have:

(x> +2) =AX-2)+ A (X +1)(x-2)
+ A (X+D)*(x-2)+B(x+1)°
Equating the coefficients of x*,x?,x,and x°(absolute term), we get a

system of equations for determining the unknown coefficients,

1 —2 2
A=-1A =— A =— andB==.
A=A 9

x*+2 -1 L1
(x+1)°%(x-2) (x+1*®  3(x+1)?
2 2

- +
9(x+1) 9(x-2)
Example

x* +2x3-2x%>x -6

Express
(x* -1

as the sum of partial fractions
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Solution
First step is to reduce the given fraction to a proper one by division

x* +2x3-2x2-x—6
(¢ -1)

C2AX*+2)

(x+2) 1)

Second step is to reduce the decompose (X3 —1)to simpler form, i.e.,

(3 =1) = (x=1)(x® + x+1)
Now we have

22X +2)
(X=D(x? +x+1)

x*+2x3-2x%x -6

(x3 ) (x+2)

i.e., we have to reduce the term

2(x% +2)
(X=D(x? +x+1)

to its partial fractions , i.e.,

2x*+2) A . Bx+C
X=D(2 +x+1) (x=1) (x%+x+1)

Or
2(x? +2) = A(X? +x+1) + (Bx +C)(x -1)

To obtain A, put x=1 in the above equation, then; A=2.
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Coeff. of xo,give 4=A-C,then C=-2

Coeff. of xl,give 0=A-B+C,then B=0

2(x* +2) 2 2
(x=D(X*+x+1D) (x=1) (xX*+x+1)
4 3 2
X +2x3—2x -x—6=()(+2)_2 1 : 1

(x* -1 (x=1) (x*+x+1)
Example
Express

x? +4x3 +11x% +12x+8
(X2 +2x+3)%(x+1)

as the sum of partial fractions
Solution
Decompose the fraction into partial fractions

x* +4x% +11x° +12x +8
(x? +2x+3)*(x+1)
Ax+B Cx+D E
= + +
(x* +2x+3)*>  (x*+2x+3) x+1

Where

x* +4x3 +11x% +12x+8 = (Ax+ B)(x+1)
+(Cx+ D)(x? +2x+3)(x +1)+ E(x? +2x +3)? Combining the above
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indicated methods of determining coefficients, we find:
To obtain E, put X =—1 in the above equation, then:

E=1.
Coeff. of x*, give 1=C+E

Coeff. of x3,give 4=3C+D+4E
Coeff. of x2, givell = A+5C + 3D +10E
Coeff. of x*, give

12=A+B+3C+5D+12E

Coeff. of x°, give 8=B+3D+9E

Then solving this system of equations, we get:

A=1, B=-1, C=0, D=0,andE =1.

Therefore;

X' +4x% +11x* +12x+8 x-1 1
(x? +2x+3)*(x+1) (x? +2x+3)% x+1

Example

Find the partial fraction expansion of

7x2-25% +6
(x? =2x-1)(3x—2)
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Solution

7x*-25x+6  Ax+B . C
(x2=2x-1)(B3x—-2) (x>-2x-1) (3x-2)

Where

7x%-25X+6 = (AX + B)(Sx —2)+C(x? —2x—1) Equate coefficients of

different powers of x , we find:

Coef. of xz,give 3A+C =7
Coef. of x*, give —2A+3B-2C=-25

Coef. of x°, give —2B—C =6

Then solving this system of equations, we get : A=1, B=-5, and
C=4

~ 7x*-25x+6  x-5 L4
T (x2-2x-1(Bx-2) (x2-2x-1) (3x-2)

SUPPLEMENTARY PROBLEMS

FIND PARTIAL FRACTION DECOMPOSITION OF THE
FOLLOWING RATIONAL FRACTIONS:

2x -1

D xDx-2
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) X
X +1D)X +3)(x +5)
(3) X+ 2
(X2 -7x +12)
(x? -x —12)
2
5 X
(%) oy
(6) SX+4
X2 + 2X
% X
X% -1)(x + 2)
x(x +1)3
(9) 1
x(x % +1)
(10) 2x%2 —3x—3
(x -1)(x? - 2x + 5)
1
11
b x3 +1
(12) 3x-7

x3+x%+4x+4
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(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

x3+x-1

(x%+2)2

1

(X2 -XXx?-x+1)

2x4 —x2 +6x%2 —x+8

X(x % + 2)2

45x3 —42x% +20x —1

15x 2 —14x + 3

x3 —10x? +13

(x —1)(x2 —5X + 6)

1

x3-x% —x+1

X+2

X2 —7x +12

12x +11

X>+Xx—6

8—X

2x2% +3x—2

XS

x% —4

3x? —8x+9

(x-2)°

S. G. Ahmed
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3x3 +10%2 + 27x + 27

24 x2(x+3)2
25 5x% +8x +21
(X% + X +6)(X +1)
X—-2
(29) x3 —x? —2x
(x2 +4)?
(28) x4 +3x% +x+1
(X +1)(x% +1)?
9) (x§x+34_)()>(<:i1)
(30) 7x3 +16x% + 20x +5
(x2 +2x+2)2
(31) x? —10x +13
(x—l)(x2 —5Xx +6)
(32) 2x% —11x +5
(x —3)(x% +2x —5)
(33) 26 +13X
12x% —11x —15
(34) >

(x—1)(x +2)°
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(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

7x-1

1-5x% +16x°

x* —3x% +3x2 +10

(x+1)*(x-3)

5x3 + 6x% + 5x

(x? —1fx+12)°

3x® —8x% +10

(x—1)°

x® —10x +13

(x—1)(x? —5x+6)

2x3 + x> —x-3

x(x —1)(2x +3)
2x -1

x-D(x-2)

X
X+D)X +3)(X +5)

X+ 2
(x? -7x +12)

2x+ 2
(x? -x —12)

X2

(x* -4

S. G. Ahmed
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(46) 5x +4

X2 + 2x
(47) x*
(X% -1)(X + 2)
x(x +1)3
(49) L1
X(x < +1)
(50) 2x%? —3x—3
(X -1(x? -2x +5)
1
51
D x3 +1
3X-7
52
2 X3+ X% +4x +4
x3+x-1
53 _—
&3 (x%+2)2
(54) 1
X% -Xx?-x+1)
(55) 2x4 —x% +6x2 —x+8

X(x % + 2)?

3 2
(56) 45x° —42x° +20x -1
15x % —14x + 3
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(57)

(58)

(58)

(59)

(60)

(61)

(62)

(63)

x3 —10x? +13

(x —1)(x2 —5x + 6)

1
3

x3-x% —x+1

X+ 2

X2 —7x+12

12x +11

X>+X—6

8—-X

2x2% +3x -2

X3

x2 -4

3x? —8x+9

(x-2)°
3x3 +10x% + 27x + 27

x2(x+3)2

S. G. Ahmed
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CHAPTER 7

Vector Differential and Integral Calculus

Abstract: The topics vector differential and integral calculus arise in many
practical and engineering applications. This chapter concerns mainly with these
topics but few revision on the basis of vectors is introduced. Scalar and vector
functions are also introduced due to their importance in numerical analysis.

Keywords: Inner product of vectors, scalar function, vector definition,

vector product, vector function.

1. VECTORS QUANTITIES

A vector describes a physical quantity, such as displacement velocity and
acceleration. It is represented by a bold letter V, or V We will describe in
this chapter operations like, addition subtraction, multiplication of vector
(dot and cross products) A direction and a magnitude describes a vector.
Fig. (1) shows A&B are two vectors with different magnitude and

direction.
\

Fig. (1). A&B are two vectors with different magnitude and direction.

1.1. Vector Definition

A vector is a quantity that is determined by both its magnitude and
direction. The vector may describes a physical quantity, such as
displacement velocity and acceleration [58].

S. G. Ahmed
All right reserved-© 2016 Bentham Science Publishers



258 Higher Mathematics for Science, Technology and Engineering S. G. Ahmed

1.2. Vector Length

The length (Magnitude) of the vector a is also called the norm (or
Euclidean norm) of the vector a and is denoted BY |a].

1.3. Equality of Vectors

Two vectors A& B are said to be equal if they have the same magnitude
and direction.

2. COMPONENTS OF UNIT VECTOR

Any vector has a three components associated with the principle axes as
follow [59]:

i=[L00]  j=[010] k =[0,01] (1)

These unit vectors are shown in Fig. (2), with coordinates on the axes.

X

Y

Fig. (2). Unit vector and its components.
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3. SPECIAL TYPES OF VECTORS

3.1. Zero — Null — Vector

It is a vector having no direction and zero magnitude and denoted by the
symbol O.

3.2. Proper Vector

The proper vector is defined as any vector of any magnitude differs from
zero and have defined direction

3.3. Position Vector

A Cartesian coordinate system being given, the position vector r of a
point A:(x,y,z) is the vector with the origin (0,0,0) as the initial point
and A:(x,y,z) asthe terminal point. Thus r:[x,vy, ]

4. GEOMETRICAL ADDITION AND SUBTRACTION OF

VECTORS

To deal with vectors, it is very important to be in a good understanding
well the geometric interpretation of the vector, and then we can move
after that to addition, subtraction, and multiplication [60]. Let us refer to
Fig. (3), and assume that we have two vectors OA and AB

A 4

Fig. (3). The position vector and its components.
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Fig. (4). Vectors addition.

In Fig. (4), the vector OBis the resultant vector of the two vectors OA
and AB, respectively. Mathematically, this can be written as:

OB =OA+ AB ()

Equation (3), represents the addition of two vectors. Let us now turn to
the subtraction of the same two vectors but in this case, the direction of
the two vectors will be opposite to each other, see Fig. (5), then the vector
OB will represents the subtraction of the two vectors.

Fig. (5). Vector subtraction.

Mathematically, this subtraction will be written as:

OB =OA-BA (3)
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Theorem

The commutative and associative laws holds for addition of any number
of vectors.

To understand the concept of the commutative and associative laws, let us
refer back to Fig. (6) and have a look to the vectors OA and AB, and
written as a and b, then:

C B

O A
Fig. (6). Addition of two vectors.
OB=0A+AB=a+b (4)
OC=AB=b
. ()
CB=0OA=a
Thus
OB=0OC+CB=b+a (6)
Therefore
a+b=b+a (7)
From equations (6-8), one can prove the theorem.
Refer to Fig. (7).
BD=c 8

Then
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OD = OB+ BD = (OA+ AB )+ BD = (a-+b)+c ©)
Also
OD = OA+ AD = OA+(AB + BD)=a+(b-+c) (10)
(0] B
A

Fig. (7). Geometry of commutative and associative laws.

5. MULTIPLICATION AND DIVISION OF A VECTOR BY
SCALAR

Multiplication of a vector by scalar can be defined as [61]:
e =[n| (1)

To obtain unit vector, we divide the vector by its magnitude as follows:
A

A

A= (12)

6. DIVISION OF ASEGMENT IN AGIVEN RATIO
To divide any segment in a given ration, let us assume that we have two
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position vectors a and b, as shown in Fig. (7), then it will be required to
find another position vector r that will divides the straight line AB

internally by the ration m:n
A

@) B

Fig. (8). Division of a segment in a given ratio.

Referring to Fig. (8), from the triangle OBR, one can write:

OB =OR+RB
Or
RB=OB-OR=b-r (13)

And from the triangle OAR, we have:

OR =OA+ AR
Or
AR=OR-OA=r-a (14)

Then we have:
m-RB =n-AR (15)
Making use of equations (13) and (14) into (15), one can get:

m-(b—r)=n-(r-a)
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Therefore;
mb+ na

r= m+n=0 (16)
m+n

7. COMPONENTS OF VECTORS

In Cartesian coordinate system xyz , let the initial point be P(xl, Vi, zl)and
the terminal point is Q(x,,Y,,z,), therefore any vector between these
two points will have three components as follows [62]:

a =X, =X,
a, =Y, Y, (17)
a; =12,-1,

These components can take the other following form:
a=[a,a,,a,] (18)

In terms of these components, the magnitude of the vector will be:

a/=+a,’ +a,” +a;’ (19)

8. ALGEBRAIC VECTOR ADDITION

Assume that we have two vectors, written in terms of their components
ala,,a,,a,] and blb,,b,,b, ], therefore:

a+b=[a, +b,a, +b,,a, +b,] (20)

9. BASIC PROPERTIES OF VECTOR ADDITION

Assume that we have three vectors a,b,c, then the following properties
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hold:

a+b=b+a (21)
(a+b)+c=a+(b+c) (22)
a+0=0+a=a (23)
a+(-a)=0 (24)

10. INNER (DOT) PRODUCT

10.1. Inner Product in Terms of the Angle

The dot product of two vectors is denoted by (.), therefore if we have two
vectors a,b, then the dot product is given as [63]:

ab =|aljb| cos y (25)
Where y is the angle between the two vectors.

Example

Find the dot product for the following two vectors, aand b and the angle
between them is 30 degree, given that their moduli are 6 and 9
respectively.

Solution

The given data can be summarized as follow:

1- Two vectorsa and 5

2- The angle between the two vectors is 30
3- The magnitude of the two vectors are 6 and 9
Then:
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ab =|alb|cos y = 6x9xcos 30
=273

10.2. Inner Product in Terms of their Components

Assume that the two vectors are given in terms of their components,

ala,,a,,a, | and bb,,b,,b,], then the inner product can be written as:
ab=ab, +a,b, +a;b, (26)

11. VECTOR (CROSS) PRODUCT

The cross product is completely differs from inner product starting from
its mathematical symbol up to the final result. In the inner product leads
to a scalar quantity while the vector product leads to another vector
perpendicular to the plane containing the two vectors [64]. Assume that
we have two vectors given in terms of their components afa,,a,,a,] and
blb,,b,,b,], then:

c=axb (27)
Also
axb=|alb|sin ¥ (28)
And finally;

i J k
c=axb=|a a, a, (29)
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12. VECTOR AND SCALAR FUNCTIONS

Vector calculus involves two types of functions, vector and scalar
function [65].

12.1. Vector Function

It is the function whose values are vectors; i.e,

V=V(p): [Vl(p)’ Vz(p)’ Vs(p)] (30)

depending on the points p in space. In applications, the domain of
definition for such a function is a region of space or surface in space or a
curve in space.

We say that a vector function defines a vector field in that region.
Examples are shown below in the following figure. In Fig. (9) three
different examples of vector function, the field of tangent vectors of a
curve, the field of normal vector of a surface and finally, the velocity of a
rotating body [66].

Fig. (9). Vector function.
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12.2. Scalar Function

It is the function whose values are scalars; i.e,
f=1(p) (31)

depending on the points p in space.

A Dbrief example of the scalar function is the distance f(p) of any point
p from a fixed point p, in space is a scalar function whose domain of
definition is the whole space.

Example

f(p) Defines a scalar field in space. If we introduce a Cartesian coordinate

systemand p, has the coordinates (xo,yo,zo),then f s given by the
well-known formula:

f(p)=fxy,2)=y(x=% F +(y =y, ) +(z-2,)" (32)
An important note is that the direction cosines of the line through p and

p, are not scalar function because their values will depend on the
choice of the coordinate system.

Example

At any instant the velocity vectors v(p) of a rotating body constitute a
vector field, the so-called velocity field of the rotation. If we introduce a
Cartesian coordinate system having the origin on the axis of rotation,
then:
v(x,y,z)=wxr
=wx[x, vy, z] (33)
= wx [Xi + yj + zK]

Where (x, y,z) are the coordinates of a point pat the instant under
consideration. If the coordinates are such that the z-axis is the axis of
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CHAPTER 7

Vector Differential and Integral Calculus

Abstract: The topics vector differential and integral calculus arise in many
practical and engineering applications. This chapter concerns mainly with these
topics but few revision on the basis of vectors is introduced. Scalar and vector
functions are also introduced due to their importance in numerical analysis.

Keywords: Inner product of vectors, scalar function, vector definition,

vector product, vector function.

1. VECTORS QUANTITIES

A vector describes a physical quantity, such as displacement velocity and
acceleration. It is represented by a bold letter V, or V We will describe in
this chapter operations like, addition subtraction, multiplication of vector
(dot and cross products) A direction and a magnitude describes a vector.
Fig. (1) shows A&B are two vectors with different magnitude and

direction.
\

Fig. (1). A&B are two vectors with different magnitude and direction.

1.1. Vector Definition

A vector is a quantity that is determined by both its magnitude and
direction. The vector may describes a physical quantity, such as
displacement velocity and acceleration [58].
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1.2. Vector Length

The length (Magnitude) of the vector a is also called the norm (or
Euclidean norm) of the vector a and is denoted BY |a].

1.3. Equality of Vectors

Two vectors A& B are said to be equal if they have the same magnitude
and direction.

2. COMPONENTS OF UNIT VECTOR

Any vector has a three components associated with the principle axes as
follow [59]:

i=[L00]  j=[010] k =[0,01] (1)

These unit vectors are shown in Fig. (2), with coordinates on the axes.

X

Y

Fig. (2). Unit vector and its components.
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3. SPECIAL TYPES OF VECTORS

3.1. Zero — Null — Vector

It is a vector having no direction and zero magnitude and denoted by the
symbol O.

3.2. Proper Vector

The proper vector is defined as any vector of any magnitude differs from
zero and have defined direction

3.3. Position Vector

A Cartesian coordinate system being given, the position vector r of a
point A:(x,y,z) is the vector with the origin (0,0,0) as the initial point
and A:(x,y,z) asthe terminal point. Thus r:[x,vy, ]

4. GEOMETRICAL ADDITION AND SUBTRACTION OF

VECTORS

To deal with vectors, it is very important to be in a good understanding
well the geometric interpretation of the vector, and then we can move
after that to addition, subtraction, and multiplication [60]. Let us refer to
Fig. (3), and assume that we have two vectors OA and AB

A 4

Fig. (3). The position vector and its components.
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CHAPTER 8

Special Functions

Abstract: Special functions are mostly wide and found in different branches of
practical and engineering problems. No one can cover all different types and
classifications of such functions. In the present chapter, we will do our best to
cover most and famous special functions. This study will cover main topics in each
type starting from the basic definition, mathematical formula, properties and more.

Keywords: Bessel functions, beta function, error function, Gamma function,

Legendre polynomials, orthogonal property, Rodrige polynomials.

1. INTRODUCTION

The Gamma and Beta functions are two important special functions. The
special function is defined as an integral or solution of differential
equation. Defined as integral as in the case of Gamma and Beta functions,
and defined as the solution of a differential equation as in the case of
Bessel functions, Legendre and Rodrige polynomials.

2. GAMMA FUNCTION

Gamma function is one of the most important functions that simplifies
evaluating integrals, which indeed, difficult to evaluate it analytically.
Gamma function, mathematically, defined as [74]:

r(n)= [x" ~1e™ Xdx 1)
0
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If one integrate by parts, yields:

X =0 "
I {an(%}} +(n—1)J'xn_2e_ Xdx )

In equation (2), the first term vanishes at both limits of integration,
therefore, it becomes:

o0
I =(n —1)jxn ~ 2™ Xgx

3
. ®)
=T(n-1)
Therefore, the gamma function takes the new form:
I(n)=(n-1r(n-1) @)

From equation (4), it is clear that the gamma function is known
throughout a unit interval, say; 1<n<2, then the values throughout the
next interval are found, subsequently the next one and so on. The graph of
gamma function is shown in Fig. (1).

Ei
||I2
N
i1
N

Fig. (1). Graph of gamma function.
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3. VALUES OF GAMMA FUNCTION

Values of gamma function differ according to the value of the variable n.
This variable may take, positive, negative, fraction and or integer. Next, we
will show how gamma function will be according to the corresponding value.

3.1. Case (1) Positive Integer

In this case, the gamma function takes the following formula:

r(n)=(n-1)! (5)
Example
r(5)=(5-1)!=(4)1=24 (Ex1-1)

3.2. Case (2) Positive or Negative Fraction

In this case, two different formulas are used according to the sign of the
variable n positive or negative.

3.2.1. Case (2-1) Positive Fraction

In this case, the gamma for a positive fraction evaluated according to the
following formula:

r(n)=(n-1)r(n-1) (6)

It is important to remember that we apply equation (6) to the fraction n
till the value of n becomes in the interval 1.1<n<1.9, then make use of
Table 1.

Table (1). Tabulated values of Gamma function.

n 11 1.2 13 14 15 1.6 1.7 18 1.9

r(n) 951 918 .898 .887 .886 .895 .905 931 .962
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CHAPTER 9

Real and Complex Fourier Series

Abstract: Fourier series is one of the topics that used in function approximation,
especially when it is recommended using series expansion instead of using the
function it-self. But one may ask himself just simple question, is the Fourier series
can be good alternative than the original function?. The answer is actually no and
no one can say we can get accurate approximation for the function but we can say
Fourier series is quite approximation for the function within specified period under
prescribed conditions related to the function itself.

Keywords: Complex Fourier Expansion. Fourier series, Half-Range

Expansion, Odd and Even Function,

1. INTRODUCTION

Fourier series are series of cosine and sine terms and arise in the
important practical task of representing general periodic functions. The
theory of Fourier series is rather complicated, but the application of these
series is simple. These series, named after the French physicist JOSEPH
FOURIER (1768-1830) [91], are a very powerful tool in connection with
various problems involving ordinary differential equations. In the present
chapter, we shall discuss the basic concepts, facts and techniques in
connection with Fourier series.

2. PERIODIC FUNCTIONS
A function f(x) is said to be periodic if and only if there exist a positive

S. G. Ahmed
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number T such that for any x in the domain, f(x+T)= f(x) where T is
called the Period of f(x), the graph of the function is shown in Fig. (1)
[92].

Fig. (1). Saw tooth periodic function.

Example (1)
Find the period for the following function, f(x)=cos x
Solution
To find the period of the function f(x)=cos x, we apply the concept of
the periodic functions.
f(x)= f(x+T)=cosx =cos(x+T)
COSX = cos XcosT —sinxsinT

To achieve this equation, the first term in the right hand side should

reduce to cosx while the second term should equal to zero. Therefore,
cosT =1=T =2rx

Example (2)
Find the period for the following function, f(x)=sinx

Solution

To find the period of the function f(x)=sin X, we apply the concept of
the periodic functions.

sinx=sinxcosT—cosxsinT

To achieve this equation, the first term in the right hand side should
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reduce to cos x while the second term should equal to zero. Therefore,
cosT =1=T =2x

Example (3)
Graph the following periodic functions:
-k -1<x<0
f(x)=
( ) +k 0<x<1
With period T =2
Solution

The graph of the given function is shown in the Fig. (2) below, taking into
consideration that the periodic function repeats its-self each period.

3. FOURIER SERIES

Fourier series arise from the practical task of representing a given
periodic function in terms of sine and cosine functions. A periodic
function f(x) with period T =2¢ can be represented by a trigono-
metric series, called Fourier series as follows [93]:

f(x)=a, + i(an cos% +b, sin %)

n=1

1)
The coefficients that appear in the above expansion are called Euler
coefficients, which are unknown.

The first coefficient a, can be determined according to the following
procedure.

Determination of a,

Integrate both sides of the above series, as follows:
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